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PREFACE 

This book gives an introduction to the classical well-known special functions which 
play a role in mathematical physics, especially in boundary value problems. Usually 
we call a function "special" when the function, just as the logarithm, the exponential 
and trigonometric functions (the elementary transcendental functions), belongs to 
the toolbox of the applied mathematician, the physicist or engineer. Usually there is 
a particular notation, and a number of properties of the function are known. This 
branch of mathematics has a respectable history with great names such as Gauss, 
Euler, Fourier, Legendre, Bessel and Riemann. They all have spent much time on 
this subject. A great part of their work was inspired by physics and the resulting dif-
ferential equations. About 70 years ago these activities culminated in the standard 
work A Course of Modern Analysis by Whittaker and Watson, which has had great 
influence and is still important. 

This book has been written with students of mathematics, physics and engineer-
ing in mind, and also researchers in these areas who meet special functions in their 
work, and for whom the results are too scattered in the general literature. Calculus 
and complex function theory are the basis for all this: integrals, series, residue cal-
culus, contour integration in the complex plane, and so on. 

The selection of topics is based on my own preferences, and of course, on what 
in general is needed for working with special functions in applied mathematics, 
physics and engineering. This book gives more than a selection of formulas. In the 
many exercises hints for solutions are often given. In order to keep the book to a 
modest size, no attention is paid to special functions which are solutions of periodic 
differential equations such as Mathieu and Lame functions; these functions are only 
mentioned when separating the wave equation. The current interest in 4-hypergeo-
metric functions would justify an extensive treatment of this topic. It falls outside 
the scope of the present work, but a short introduction is given nevertheless. 

xi 



χίϊ PREFACE 

Today students and researchers have computers with formula processors at their 
disposal. For instance, MATLAB and MATHEMATICA are powerful packages, with pos-
sibilities of computing and manipulating special functions. It is very useful to ex-
ploit this software, but often extra analysis and knowledge of special functions are 
needed to obtain optimal results. 

At several occasions in the book I have paid attention to the asymptotic and nu-
merical aspects of special functions. When this becomes too specialistic in nature 
the references to recent literature are given. A separate chapter discusses the stabili-
ty aspects of recurrence relations for several special functions are discussed. It is 
explained that a given recursion cannot always be used for computations. Much of 
this information is available in the literature, but it is difficult for beginners to lo-
cate. 

Part of the material for this book is collected from well-known books, such as 
from HOCHSTADT, LEBEDEV, OLVER, RAINVILLE, SZEGO and WHITTAKER & WATSON. 

In addition to these I have used Dutch university lecture notes, in particular those by 
Prof. H.A. Lauwerier (University of Amsterdam) and Prof. J. Boersma (Technical 
University Eindhoven). 

The enriching and supporting comments of Dick Askey, Johannes Boersma, Tom 
Koornwinder, Adri Olde Daalhuis, Frank Olver, and Richard Paris on earlier ver-
sions of the manuscript are much appreciated. When there are still errors in the 
many formulas I have myself to blame. But I hope that the extreme standpoint of 
Dick Askey, who once advised me: never trust a formula from a book or table; it 
only gives you an idea how the exact result looks like, is not applicable to the set of 
formulas in this book. However, this is a useful warning. 

Nico M. TEMME 
Amsterdam, The Netherlands 
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1 
Bernoulli, Euler and Stirling Numbers 

A well-known result from calculus is the alternating series 

~ (-ι)" - 1 

5 ' = 2 Σ 2 n - l ' n=l 

which can be used for the computation of the number π, although the series 
converges very slowly. However, summing the first 50 000 terms gives the 
remarkable result 

(-1)" 
2 y ^ 2 n - 1 

71=1 

= 1.5707 86326 79489 76192 31321 19163 97520 52098 58331 46876. 

Using a criterion for convergence of this type of series, we may conclude that 
this answer is correct to only six significant digits. When you compare the 
answer on the right-hand side with a 50-d approximation of 5π, you will reach 
the surprising conclusion that nearly all digits in the above approximation are 
correct, except for those underlined. In this chapter this intriguing aspect will 
be explained with the help of simple properties of Euler numbers and Boole's 
summation method. Another example is the series 

(_!)n+l 

1 n 

71=1 

You may try to sum the first 50 000 terms with high precision, and compare 
the answer with an accurate approximation of In 2. 

In this chapter we discuss basic properties of the Bernoulli, Euler and 
Stirling numbers, with applications to the summation methods of Euler and 
Boole. These methods are based on the polynomials of Euler and Bernoulli. 

1 



2 1: Bernoulli, Euler and Stirling Numbers 

Such topics are extensively discussed in classical books on the calculus of 
differences, the subject that played a prominent part in numerical analysis. 
A short introduction to difference equations is given §1.1.2. 

Just as many other special numbers, polynomials and functions, the special 
numbers and polynomials of this chapter can be introduced by generating 
functions. Usually these are power series of the form 

oo 

F(x,t)=y£fn(x)tn, 
n = 0 

where each fn is independent of t. The radius of convergence with respect 
to (complex) values of t may be finite or infinite. We say that F(x, t) is the 
function which the sequence {/ n} generates, and F is called the generating' 
function. Often, F and the coefficients fn are analytic functions in a certain 
domain. 

1.1. Bernoulli Numbers and Polynomials 

The Bernoulli numbers are named after Jakob Bernoulli, who mentioned the 
numbers in his posthumous Ars conjectandi of 1713; see BERNOULLI (1713). 
He discussed summae potestatum, sums of equal powers of the first η integers. 
For instance, we know from elementary calculus that 

n - l 

t — -n(n — 1) = - n — n , 
2 2 2 

n - l 

Σ .2 1 3 1 2 , 1 

= -n° - - τ Γ + - η , 
3 2 6 

i=l 
n-l 

Σ .3 1 4 1 3 , 1 2 
1 4 n 2 n + 4 H ' 

i = l 

n - l 

Σ .4 1 5 l 4 , 1 3 1 

t = -η η + - η - —η, 
5 2 3 30 

i = l 

and so on. Bernoulli was, in particular, interested in the numbers multiplying 
the linear terms η at the right-hand sides: - 5 , 5 , 0 , - ^ 5 , . . . . EULER 
(1755) called them Bernoulli numbers B\,B2, B3, B4 , As we know from 
the general result 

yiP = J - Y ( P + 1)Bkn'>+1-k, 
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they show up in other terms also; see Exercise 1.3. 

The Bernoulli numbers occur in practically every field of mathematics, 
in particular, in combinatorial theory, finite difference calculus, numerical 
analysis, analytical number theory, and probability theory. We discuss their 
role in the summation formula of Euler. 

1.1.1. Definitions and Proper t ies 

Instead of introducing the Bernoulli numbers Bn as above, we use a generating 
function for their definition: 

is even (prove it!), all Bernoulli numbers with odd index > 3 vanish: 

(1.1) 

Because the function 

B 2 n+i = 0, η = 1,2,3,. . . 

The first nonvanishing numbers are 

B0 = 1, Bi = B2 = -, B4 = -—, B6 = —, 
U , I 2 , i g , 1 3 Q 1 D 4 2 > 

3617 

510 

The Bernoulli polynomials are defined by the generating function 

|*| < 2π. (1.2) 

The first few polynomials are 

BQ(x) 

BI(X) 
1 

B2(x) 

B3(x) 

B4(x) x ^ - 2 x 3 + x 2 - - . 



4 1: Bernoulli, Euler and Stirling Numbers 

A further step yields the generalized Bernoulli polynomials: 

v ' n = 0 
(1.3) 

where σ is any complex number. By taking χ = 0 we obtain the generaJized 

Bernoulli numbers B^ = Β^\θ), which are polynomials of degree η of the 

complex variable σ. 

We now give some relations which easily follow from the definitions through 

the generating functions. 

Bn(x) dx = 0, η = 1,2,3,. / 
Jo 

Βη(χ) = Σ ifc)s^n"*' B"(x+y) = Σ ( t ) B k { x ) y n 

Bn(0) = Bn, Bn(l) = {-l)nBn. 

(1.4) 

(1.5) 

(1.6) 

Bn(l -x) = (-l)nBn(x), Bn(-x) = (-l)n [Bn(x) + n x " " 1 ] . (1.7) 

Bn(\) = - ( l - 2 1 - n ) B n . 

—Bn(x) = nBn-i(x), Bn{x + 1) - Bn(x) = nx n - l 

t("D 
fc=0 v ' 

Bk(x) = (n + l)xn. 

(1.8) 

(1.9) 

(1.10) 

The proof of (1.4) follows for example by integrating the left-hand side of (1.2) 
with respect to x. The properties (1.5)-(1.10) all hold for η = 0 ,1 ,2 , . . . . 
Property (1.10) gives for χ = 0 the identity for the Bernoulli numbers: 

(1.11) 

with which the numbers can be generated by means of a simple recursion. 
Symbolic manipulation on the computer may be very useful here. Numerical 
computations with finite precision will yield very inaccurate results, due to 
instability of (1.11). 

In Exercise 1.1c you can prove that 

0 0 7T> , , r 2 n + l 
tan ζ - V r - n n + 1 2 n + 1 

tan ζ - ^ l 1) ( 2 n + i)i -
n = 0 v ' 

(1.12) 
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where the relation between the tangent numbers Tn and the Bernoulli numbers 
Bn is defined by 

Bn 1,2,.. 2"(2 n - 1)' 

Tn is an integer with T2n = 0, η > 0. This follows from differentiating tan z: 
all even derivatives at ζ = 0 vanish and the odd derivatives are integers. The 
same holds for the coefficients of the MacLaurin expansion. We have 

T 0 = l, 7i = - l , T3 = 2, T5 

Finally, we mention 

-16, T 7 = 272, T9 -7936. 

Ja 
Bn(t)dt 

1 

n-l-1 
[Bn+i(x) - Bn+i(a)]. 

This property can be used in the proof of the memorable formulas 

η or ivH-i e>„ im V sin(27rro:c) 
fla„_i(x) = 2 ( - l ) (2n - 1)! ^ ( 2 π τ η ) 2 » _ ι . 

m = l v ' 

R ( „ \ or nn+lro^M c o s ( 2 7 r m x ) fl2n(x) = 2 ( - l ) (2n)! ^ n , 
m = l v ' 

(1.13) 

where η = 1,2,3,. . . and 0 < χ < 1. For a proof we may begin with the first 
line with η — 1. This gives a well-known result from the theory of Fourier 
series for the function B\(x) = χ — \. Then induction and the above integral 
relation should be used. The special case χ = 0 gives in (1.5) an interesting 
result for the even Bernoulli numbers: 

B2n = 2(-l)n+1(2ny.J2(2imi) -2n η = 1,2,3,. . . 
m = l 

(1.14) 

It is of interest, since with this result the series Χ)^ =χ τη~8 (the Riemann zeta 
function, which will be discussed in the following chapter) can be expressed 
in terms of Bernoulli numbers when s is an even positive integer. When 
s = 2,4,6 we thus have 

^ 1 7T 
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0 0 

n=l : 

Γ 

n=l : 

Figure 1.1. The functions Bn(x), η — 1 and η = 3. 

For odd s-values a similar relation is never found. 

The Fourier series for Bernoulli polynomials in (1.13) can be defined for 
all real values of x. Outside the interval [0,1] the series do not represent 
polynomials, of course, but periodic functions of x. These periodic functions 
are very important, and we introduce a special notation Bn(x) by defining for 
η = 0,1,2 , . . . 

Bn(x) = Bn(x), 0<x<l, 

and 
Bn(x + 1) = Bn(x), χ e JR. (1.16) 

The functions Bn(x) have continuous derivatives up to order n - l . This easily 
follows from the earlier properties, for instance from (1.13). They become 
smoother as η increases. As will follow from §1.1.3, the periodic functions 
Bn(x) play an important part in Euler's summation formula. 

In Figures 1.1 and 1.2 we show the first four functions Bn(x), η — 1,2,3,4. 

1.1.2. A Simple Difference Equat ion 

One of the results of the previous subsection (see (1.9)) reads 

f(x + l)- f(x) = nxn-\ 

a difference equation with solution f(x) = Bn(x). It follows that the Bernoulli 
polynomials can be used to construct a solution of the difference equation 

f(x+l)-f(x) = Pn(x), 

where Pn{x) is a polynomial. When Pn{x) = Z)k=o w e c a n w r i t e t f t e 

general solution in the form 

K=0 
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n = 2: « = 4 : 

Figure 1.2. The functions Bn(x), η = 2 and η = 4. 

where π ( χ ) is an arbitrary periodic function of χ of period 1. 
The function f(x) — ωηΒη(£) is a solution of the more general difference 

equation 
Κχ + ω)-/(χ) 

ω 
(1.17) 

with φ(χ) = nxn 1 . When we want to solve this equation for general φ{χ), 
we may call 

oo 

f(x) — Α - ω Σ, Φ(χ + ηω) 

ue 

71=0 

a formal solution of the difference equation (1.17), where A is independent of 
x. For example, when φ(χ) = exp(—x), we obtain 

oo 

f(x) = A - ω Σ e~x~™ = Α - γ 
n = 0 

which indeed is a solution of (1.17). The series in this example is convergent, 
but in general this condition is not satisfied. Several methods are available to 
use a modified form of the formal solution, from which well-defined solutions 
can be obtained. For instance, we can take A = φ(χ) dx, with c > 0 and 
TV a large integer, and we define 

.TV ΛΓ 

/N(X) = / φ(χ) dx — φ(χ + ηω). 

When the limit of / A T ( x ) exists as Ν —» oo, this limit may be a solution. For 
example, let c = Ι,ω = 1 and φ(χ) = 1/x, χ > 0. Then 

71=0 J Ln=0 
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and each quantity between square brackets tends to a finite limit, as Ν —» oo; 
see the next subsection, Example 1.2. From Chapter 3, formula (3.10), we 
infer that the function fw(x) tends to a special function, the logarithmic 
derivative of the gamma function φ(χ), which indeed satisfies the difference 
equation f(x + 1) - f(x) = 1/x. 

In a second method the function φ(χ) in (1.17) is replaced with φ(χ,μ) 
that satisfies lim^_»o Φ{χ>μ) — Φ{χ)· F ° r instance, we can take 

φ(χ, μ) = φ(χ)β~μχ, μ > 0. 

Let c be a number independent of x, and assume that 

/ φ(χ, μ) dx, and Υ φ(χ + ηω, μ) 
J c n=Q 

both converge. Then we define as the solution of (1.17) the function f(x) = 

l i m ^ o ί(χ,μ), where 

f(x, μ)) = φ(χ, μ) dx - Y^ φ(χ + ηω, μ) 

n = 0 

(1.18) 

provided that this limit exists. It is shown in the classical literature (for 
instance, in NORLUND (1924)) that this f(x) indeed satisfies (1-17), and that 
this solution is independent of the particular choice of φ(χ,μ). Other choices 
are also possible. It is easily verified that for (1.17) with c = 1, ω = 1, φ(χ) = 1, 
the function f(x, μ) is given by 

and that l im / i _o f{x. Μ) = x ~ \ = B\(x), a Bernoulli polynomial. 

Example 1.1. Consider the difference equation 

f(x + l)-f{x) =ηχη~1β-μχ, μ > 0 , x>0, 
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which for μ = 0 reduces to the difference equation of the Bernoulli polynomi-
als. We try to find f(x, μ) of (1 .18) . Take c = 0, then 

/•oo oo 

/ ( « , μ ) = / n i " - 1 e - " l

l i i - V n ( i + m ) " - 1 e - ' , ( I + m » 

JO _ n 

oo 

e-^dt- J2 e - ^ + ^ l = » ( - ! ) 

= n ( - l ) 

= » ( - ! ) 

oo 

- Σ 

dn— 1 

7 1 - 1 

m = 0 

oo 

771=0 

n - i β " " 1 Γ1 e —μχ 
+ 3μη~ι [μ ' e-V-l 

- ι & n - l 
in— 1 

θμ n - l 
i - l 5 m ( l ) 

lm=l ml 

(^r-nBm(x) 
m ( m - n ) ! 

In this derivation we have used the generating function (1 .2) . When μ —• 0, 

we have /(χ,μ) = Bn(x), which again shows that Bn(x) satisfies the second 
relation in (1 .9) . 

1.1.3. Euler ' s Summat ion Formula 

A striking application of Bernoulli numbers and polynomials is EuJer's sum-
mation formula, that links a finite or infinite series and an integral. This 
formula yields an efficient method for evaluating some slowly convergent se-
ries by means of an integral. Turning it round, by this method also an integral 
can be approximated by discretization, which leads to the trapezoidal rule. 
In EULER ( 1 7 3 2 ) the proof of the formula can be found. 

Theorem 1.1. Let the function f: [ 0 ,1 ] —• <D have A; continuous derivatives 
(k = 0 , 1 , 2 , . . . ) . Then for k > 1 

/ ( I ) = £ f(x) dx + £ £ ψ ϊ [ / « " " ( Ι ) - / ( ^ ( O ) ] + Rt, 

Rk=(—^r~ JQ fW(x)Bk(*)dx. 

with 

Proof. The proof runs with induction with respect to k. For k = 1 the 
claim is true, which follows from integrating by parts. Then the property 

1 
Bm(x) B„ 

m+l m + 1 

is used to go from /c = m > l t o / c = m-r-l . 

(x) 
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With similar conditions for / on the interval \j — l,j] we have 

m= I1 mdx+J2t^i\f{i'1)u)-f^1Hj-i)\+Rk, 

Jj-i i = 1 *• 

with 

Rk = {-Ζη^- J' fih\x)Bk(x) dx, 

where Bk(
x) is the function introduced in (1.16). 

The next step joins a number of these intervals: 

J » = ( / Μ ώ + έ φ ^ - ^ " ) - / · 1 - 1 5 ^ ) ] +Rk, 

with 

Rk=^-JL— J fW(x)Bk(z)dx. 

For k = 1 this gives the formula 

/ ( l ) + /(2) + · · · + / (n) = ^ " /(*) dx + i [/(η) - /(0)] + j f ^ (*)/'(*) dx, 

with Bi(a;) a sawtooth function on [0, n]. This is Euler's summation formula 
in its simplest form. The formula expresses a connection between the sum 
of the first η terms of a series and the integral of the corresponding function 
over the interval [0,n]. 

Example 1.2. Take 

/ (* )= 1 

x + 1 
and replace in the above formula η with n - l . Then we obtain the classical 
example 

1 + ^ + 5 + ϊ + ··· + ^ = 1 η " + έ + 5 - Γ _ 1 ^ ^ ( Γ 
dx 
+ x)2' 

The integral is convergent when η —> oo. From this we infer that 

7 = Hm ( i + I + i + i + . . . + I _ l n n ) 
n-*oo \ 2 3 4 η ) 

exists as well. The limit 7 = 0.5772 15664 90153... is called Euler's constant. 
From this example also follows that 

dx 
^ 2 · 
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Since 

fljfc(0) = 0, k = 3 ,5 ,7 , . . . 

all terms with odd index can be deleted in the summation formula, except the 
term with index i — 1. And at both sides we can add the term /(0). Then 
the result is 

Theorem 1.2. Let the function f: [0,n] —» <D have (2k + 1) continuous 
derivatives (k > 0, η > 1). Then 

Σ/« = f'/(*)<**+£[/(«)+/(<>)] 
fc (1-19) 

+Σ(|ϊ[/ ( 2 ί- 1 )(η)-/ ( 2 !- 1 )(ο)]+^, 

with 

^ = f a b T I ) i r / i ! t t + 1 ) ( a ! ) I W l ( ! B ) < f a -

The summation formula is usually presented in this form, and is connected 
with the trapezoidal rule (Exercise 1.7). 

Example 1.3. We take f(x) = x2. Since f^(x) = 0 for each x, the 
contribution of the remainder Rk in (1.19) is zero when k > 1. For k — 1 
(1.19) then reads 

£ i2 = Γ x2 dx + V + \B2[f\n) - f(0)} = V + V + Jn. 
i = 0 J ° 

An alternative summation formula for infinite series arises through the 
intermediate form 

Σ/(*)= Γ f(x)dx+-\f(n) + f(m)] 

- : β <"·) 

+E(^i[/ ( 2'" 1 )w-/ ( 2 ," 1 )H+ R" 
with 
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with 

In this formula we replace η with oo, which is allowed when the infinite series 
and the indefinite integrals 

/ / f{2k+1){x)B2k+l{x)dx 

exist. In addition we assume that / and the derivatives occurring in the 
formula tend to zero when their arguments tend to infinity. The result is 

0 0 ί-OO ρ 

^ -/m 2 few 

1 Ζ" 0 0 

This form of Euler's summation formula can be fruitfully applied in summing 
infinite series. It is important to have information on the remainder Rk. It 
is not always necessary to know the integral in Rk exactly. Also, it is not 
necessary to know whether 

lim Rk = 0. 
k—>oo 

In many cases this condition is not fulfilled, or the limit does not even exist. 
An estimate of the remainder can be obtained through the following theorem. 

Theorem 1.3. Let f and all its derivatives be defined on the interval [0,00) 
on which they should be monotonic and tend to zero when χ —• oo. Then Rk 

of (1.19) satisBes 

^ = β * ϊ ^ ϊ [ / ( 2 ΐ ! + 1 ) ( » ) - / ( 2 * + 1 ) ( 0 ) ] , with 0 < * * < ! . 

Proof. First we remark that 

/<*)(*), f(k+l)(x), fc = 0 , l , 2 , . . . 

have fixed and different signs on [0,00). Let f(x) > 0, χ > 0. Then it is easily 
verified (consider the graph of the sine function) that the sign of 

/ sm(2wmx)f(x)dx, m = 1,2,3,.. . 
Jo 

is also positive. From (1.13) and (1.16) then follows that the sign of 

/ B2n+i(x)f(x)dx, 7 1 = 1 , 2 , 3 , . . . , m = 0 , l , 2 , . . . 
Jo 
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equals the sign of ( — l ) n + . From this we also conclude that the remainder 
ujfc of (1.19) have different signs for subsequent values of k. This implies that 
Rlc and (ify. — Rk+ι) have the same sign and hence that 

| i fe |<| .Rfc-i?fe + i | . 

From (1.19) it follows, however, that 

R k ~Rk+i = w + b . [ ^ ( 2 f c + 1 ) ( n ) - / ( 2 f e + 1 ) ( o ) ] • 

This is exactly the 'first neglected term' in Euler's summation formula. The 
sign of this term equals the sign of R^ and the absolute value of this term at 
least equals the absolute value of R^. g 

A similar result holds for formula (1.21). In this case we have 

R k = ~ e k ^ k f k . f i 2 k + 1 ) { m ) ' w i t h o ^ ' * ^ 1 - < L 2 2 ) 

The theorem says that, with the conditions on / , the error in taking in (1.21) 
k terms of the series in the right-hand side is smaller than the first neglected 
(fc + l ) - t h term. In practical problems one tries to find this (k + l ) - t h term 
that falls below the requested accuracy, and one sums the series on the right-
hand side of (1.21) as far as the k—th term. In other words, one may sum the 
series until a particular term falls below the accuracy. This naive criterion, 
which is very popular in summing infinite series, is fully legitimate here. 

Example 1.4. Sum the series 

oo 1 

Σ 73 
t=l 

with an error less than 1 0 - 9 . First we compute 

9 1 
Σ"^ = 1-19653198567··-
i = i 1 

Next we apply (1.21) with f(x) = l/x3 and m = 10. Namely, (1.21) should 
not be used with the low value m — 1, but with one that makes Rk small 
enough (for an acceptable value of k). Our / fulfills the conditions of Theorem 
1.3. Verify that the third term in the series of the right-hand side of (1.21) 
equals 

- — ̂ -2520 χ 10~ 8 = - — χ 1 0 - 8 = - 0 83 χ 1 0 - 9 

42 6! 12 
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Hence, we apply (1.21) with k = 2, and we obtain 

oo 9 oo 
^ = 1 = ^ + 1 + ^ 1 = 1.19653198567· 
i = l 1 i=l 1 i=lO 

r°° dx ι ι 

/lO ^ + 2 0 0 0 + 4 0 0 0 0 12000000 
+ / ^ + — + — - = 1.20205690234, 

JlC 

with an error that is smaller than 0.83 χ 1 0 - 9 . The actual error is 0.82 χ 1 0 - 9 . 

From this example we see that the error estimate can be very sharp. An-
other point is that Euler's summation formula may produce a quite accurate 
result, with almost no effort. To obtain the same accuracy, straightforward 
numerical summation of the series £ } i - 3 requires about 22360 terms. 

Not all series can be evaluated by Euler's formula in this favorable way. 
Although the class of series for which the formula is applicable is quite interest-
ing, Euler's method has its limitations. Alternating series should be tackled 
through Boole's summation method, which is based on the Euler polynomials 
(see §1.2.2). 

Several other summation formulas have been invented to improve the con-
vergence of slowly convergent series. Each method has a favorite class of series 
for which the method is extremely successful. Monotonicity and regularity of 
the derivatives of the function / that generates the terms of the series always 
is a good starting point. 

To obtain information on how many terms one needs using (1.22) one may 
use estimates of the Bernoulli numbers. Since the radius of convergence of 
the series in (1.1) equals 2π, one can use the rough estimate 

B2k+2 _ q 
(2fc + 2)! (27Γ) 

-(2fc+2) as k —> oo. 

This estimate can be refined by using the first series in (1.13). Since the series 
assumes values between 1 and 2, we have (see also Exercise 1.2) 

< ( - l ) " + 1 7^<27dL n = l , 2 , 3 , . . . . (1.23) 
(2π) 2 " v ' (2n)! (2ττ)2" 

When also estimates of the derivatives of / are known, much information on 
Rlc of (1.22) may become available. 

1.2. Euler Numbers and Polynomials 

The EuJer numbers have a less dominant place in mathematics than those 
of Bernoulli, although the definitions are quite similar. Again definitions 


