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PREFACE 

In this textbook on mathematical logic, we take the position of a mathematician 
rather than a logician. We select and discuss the material referring directly to 
mathematical practice either by applications to other branches of mathematics 
or by explaining the nature of mathematical reasoning. In our approach, 
relational structures are given priority over logical languages. In the exposition 
we treat the subject as any part of mathematics as far the methods and the level of 
accuracy is concerned. 

The book is addressed first of all to students of mathematics and to all 
mathematicians who want to have some familiarity with this beautiful domain of 
science. The technical difficulties do not exceed those used in any standard course 
of, say, abstract algebra. Nevertheless, to understand the book, some mathe- 
matical experience seems necessary. 

Pah I of the book (Chapters 1 through 17) is an introductory course at 
graduate level. In Chapters 1 to 4 we develop the theory of relational structures 
with a particular emphasis on Boolean algebras. In Chapters 5 to 7 we introduce 
and discuss formulas, the truth relation, theories, and models. Chapters 8 to 11, 
devoted to the notion of proof, culminate in Godel’s completeness theorem. In 
Chapters 12 to 17 we deal mostly with model theoretic topics such as definability, 
compactness, ultraproducts, realization, omitting of types, and so on. 

Part I1 (Chapters 18 through 24) consists of famous theorems crucial in the 
development of mathematical logic. In Chapters 18 to 21 we present Godel’s 
theory, leading to his celebrated incompleteness theorems. Chapter 22 is devoted 
to the independence proof of Goodstein’s theorem from Peano arithmetic. The 
next chapter contains Cohen’s proof of Tarski’s theorem on elimination of 
quantifiers for the theory of real closed fields. Finally, in Chapter 24 we present 
the Matiyasevich theorem on diophantine relations giving a solution of the tenth 
Hilbert problem. All the above theorems are provided with complete and 
rigorous proofs. 

Each chapter ends with a number of exercises. Some of them are easy; those 
more difficult are supplied with hints. We advise the reader to solve them all. 

As in any branch of mathematics, we make use of some set-theoretical 
apparatus. The introductory chapter contains the set-theoretical notions and 
theorems (without proofs) used throughout the book. 

ZOFIA ADAMOWICZ 
PAWEL ZBIERSKI 
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INTRODUCTION 

In this introductory chapter we set forth the logical and set-theoretical notation 
and theorems to be used throughout the book. 

Elementary Logic 

Mathematical statements (expressing properties of some objects) are called 
formulas. Given any formulas q5 and $, we can form the following new ones: 
the negation 14 (not 4) the implication q5 -+ $ (if q5 then $), the disjunction q5 V $ 
(6 or $), the conjunction q5 A $ (4 and $), and the equivalence q5 = 11, (4 if and 
only if $). The operational symbols 7, +, V, A and 3 are called the (logical) 
connectives (besides the above there are also other connectives but we shall not 
use them). Recall that 

l q 5  is true if q5 is false and -w$ is false if q5 is true; 
4 -+ $ is true except when the antecedent q5 is true and the consequent $ is 

q5 v $ is true if at least one of the factors 9, $ is true, otherwise false; 

q5 G 11, is true if both q5 and $ are true or both false, otherwise false. 

false; 

A $ is true if both q5 and $ are true, otherwise false; 

The symbols V and 3 denote the universal and the existential quantifiers, 
respectively. Thus, Vx4 abbreviates “for every x, @’ and 3 xq5 stands for “there 
exists an x, such that 4.” The symbols VX.E Xq5 and 3 x  E Xq5 denote, respec- 
tively, Vx(x E X -+ q5) and 3x(x E X A 4). 

Operations on Sets 

The membership relation is denoted by E. Thus, x E A means that an object x 
belongs to (is an element of) the set A, while x $ A means that x does not belong 
to A. For any sets A and B we can form the union A U B, the intersection A n B, 

1 



2 INTRODUCTION 

and the difference A \ B. Thus, we have 

X E A U B  = X E A V X E B ,  

x E A n B  = X E A A X E B ,  

x € A \ B  E x € A A x $ B .  

The empty set is denoted by 0 and the set inclusion (containment) by C. Thus, 
we have 

A B = V x ( x  E A 4 x E B).  

The proper inclusion is defined as follows: 

A E B  = A ~ B A A # B .  

The power set P ( A )  of A is the family of all subsets of the set A,  
P ( A )  = {x: x E A } .  An indexed family of sets is denoted by {A i :  i E I }  and 
its union and intersection by U { A i :  i E I }  and n { A i :  i E I } ,  or UiEl Ai and niel Ai,  respectively. 

Thus, we have 

x € U A i  = 3 i E Z ( x E A i )  

x E n A i  EE V i  E I ( x  E Ai) .  

i d  

i E I  

Sets A ,  B are said to be disjoint, if A n B = 8, that is, A and B have no 
common element. A family F is called disjoint if it consists of nonempty sets and 
any two sets A,  B E F are disjoint. 

Functions 

The symbols dom(f) and rng(f) denote, respectively, the domain (the set of 
arguments) and the range (the set of values) of a functionf. The expression 

f: X-Y 

means that f is a function defined on X, dom(f) = X, and with values in Y, 
rng(f) E Y. If rng(f) = Y, we say thatf is onto Y, andf is one-to-one, if a # b 
impliesf(a) # f ( b ) ,  for any a, b E X. 

The symbolsf[A] andf-' [B] denote the image of a set A and the counterimage 
(inverse image) of B, respectively. 

Letf: X-X. A subset A C Xis said to be closed underf, iff[A] G A, that is, 
f ( a )  E A for all a E A. 
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The composition of an f :  X+ Y and a g: Y+Z is denoted by gf or g of. 
The restriction off to a subset A 5 dom(f) is denoted byflA. The symbol N 
(sometimes w )  denotes the set of natural numbers, that is, nonnegative integers. 
A k-element sequence, where k E N, is a function defined on the set { 1, . . . , k} (or 
on another k-element set). We write a = (a, , . . . , ak), where ai = a(i) is the value 
of a at i. Functions F defined on the set N are sometimes called infinite sequences 
and one denotes F by (Fi: i E N). 

Products and Relations 

The product A x B of sets A, B is defined as the set of all ordered pairs (a, b) with 
a E A and b E B. A (binary) relation on A is any subset r 5 A x A. It is 
customary to write r(a,b) or arb instead of (a ,b)  E r and not r(a,b) or afb 
instead of (a, b) $ r. In the first case we say that r holds for a, b and in the latter 
that r does not hold for a, 6. 

The product A l  x . . x A,, of any finite number of sets is defined as the set of 
all n-element sequences (al , .  . . ,a,) with ai E A,, for i = 1,.  . . , n. For n = 2 this 
definition is consistent with the previous one, since the two-element sequences 
can be identified with the ordered pairs in an obvious way. If A ,  = + . - = A,, = A, 
then A ,  x - x A,, is denoted by A" (and called the nth power of A). 

Any subset r 
A binary relation N on a set A is called an equivalence, if N is reflexive 

pa E A(a 21 a)], symmetric p a , b  E A(a II b --f b N a)] ,  and transitive 
pa,  b, c E A(a N b A b N c --+ a N c)] .  The subset 

A l  x - - x A,, is called an n-ary (n-argument) relation. 

[a] = { x  E A: x N a}  

is called the equivalence (or abstraction) class of a. The family 
A /  N = { [a] :  a E A} of all equivalence classes is a partition of A; that is, 
distinct classes are disjoint and the union of all classes is A. 

Orderings 

A binary relation 5 is called a partial ordering if it is reflexive px E X ( x  5 x) ] ,  
antisymmetric and transitive 
p x ,  y E X ( x  5 y A y 5 z -+ x 5 z)] .  A partial ordering is linear if, in addition, 
it is connected: Vx, y E X ( x  5 y V y 5 x ) .  Given orderings (X, 5*) and 
(Y,  5 '), a one-to-one function f: X+ Y is called an order embedding if it 
satisfies the condition 

px, y E X ( x  5 y A y 5 x + x = y)], 

x _<* y if and only if f ( x )  r Y f ( y ) ,  for all x ,y  E X. 

If, in addition,f is onto Y, thenf is called an order isomorphism. 
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The Kuratowski-Zorn Principle 

A subfamily F0 C 3 of a given family of sets 3 is called a chain if we have 

A c B  or B C A ,  

for any A, B E F0. 
The maximum principle of Kuratowski-Zorn states the following: If 3 is a 

family such that the union U(Ai :  i E I} of any chain (Ai: i E I} C 3 belongs 
to 3, then 3 has maximal elements (i.e. sets A E 3 such that A $ B holds for no 
BE 33 

Now, let F be an arbitrary family of sets. A choice function for 3 is any 
function g defined on 3 such that g ( A )  E A, for each A E 3. The axiom of choice 
says that every family 3 of nonempty sets has a choice function. In particular, 
there is always achoice function for the family P(A) \ {O}, of nonempty subsets 
of A, where A is any nonempty set. 

Definitions by Induction 

Let 3 be a family of sets. For every function G: 3-4 there is a family 
(6: n E N} of all the iterations G" = G o . . . o G (n-times). It follows that for 
every operation G: 3-3 and every set B E 3 there exists exactly one sequence 
F: N-Fsuch that Fo = Band fi,+l = G(FJ, for each i E N. Further, it can be 
proved that for every set B there is a family 3 such that B C 3 and 3, 2 3, for 
every n E N (the latter property means that 3 is closed under formation of finite 
sequences). 

Assume that a sequence F: N - 3  has the following property: For some 
set D, 

that is, 
and ul , . . . , a, E Fi. We shall often make use of the following theorem. 

consists of some sequences of the form (d, u l ,  . . . , u,,), where d E D 

Theorem. For an arbitrary function H: D x U n E ~  Wn-W and any 
h: F0-W there exists exactly one function g: UiENI;;.-W such that 
g( Fo = h and 

g(d,u~, . * .Yun)  =H(d,g(~i),...,g(an)) 

for each (d, q,. . . ,a,) E Fi, i > 0. Here, W is an arbitrary set. 

Cardinal Arithmetic 

The cardinality (power) of a set A is denoted by card A. Thus, card A = card B 
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means that there exists a one-to-one function f from A onto B and 
card A 5 card B means that card A = card Bo for some subset Bo s B (which 
is equivalent to the existence of a one-to-one function g: A-+B). 

A set A is countable, card A = w, if card A = card N; that is, A is of the same 
power as the set N of natural numbers. The following rules hold true, for any 
infinite sets A l ,  . . . , A,: 

card ( A ,  u . . . U A , )  =card ( A l  x . . .  x A,) =max{card A, ,  ..., card A n } .  

If the sets Ai  are all of the same power equal to card A for i E I, then 

card u Ai = max{card I, card A}. 
iEI  

It follows, for example, that card UnEN A" = card A, for any infinite set A. 
The Cantor-Bernstein theorem states the following: 

If A C_ B C_ C and card A = card C, then card B = card A(= card C). 

Classes 

Intuitively, a class is a collection of objects which is too large (i.e., it has too many 
elements) to be a set. For example, the collection of all sets is a class, as the 
Russell paradox shows. Some other examples are the class of all orderings, the 
class of all groups, the class of all compact spaces. It is convenient to regard sets 
as classes and classes that are not sets are called then proper classes. Each 
formula +(x) determines the class 

consisting of all the xs with the property +. The use of classes of this form is 
inessential, that is, does not lead out of the ordinary set theory (since statements 
about K, can be replaced by equivalent statements about sets only). The union 
A u B, the intersection A n B, and the difference A \ B of classes A, B are defined 
in an obvious way. Notice that 

For a systematic exposition of set theory we refer the reader to Monk [M4], 
Vaught p2] ,  and Hayden and Kennison [HK]. An axiomatic theory of classes is 
developed in Kelley [Kl]. 
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1 
RELATIONAL SYSTEMS 

Relational systems (called also relational structures) are in common use in 
mathematics. Among the most familiar examples of relational systems are 
groups, rings, fields, linear spaces, modules, and so on. Thus, in any branch of 
mathematics we are concerned with a particular kind of relational structures (the 
terms relational structure and relational system will be used interchangeably). We 
can even say that relational structures are the main subject of interest in 
mathematical research. 

The main subject of mathematical logic is a connection between semantics and 
syntax. To put it more directly, mathematical logic investigates the relationship 
between relational systems and formulas (expressing properties of elements in 
the system). Hence, relational systems and formulas are two fundamental 
notions of mathematical logic. ' 

First, we shall be dealing with relational systems. Formulas will be introduced 
in Chapter 5.  

Now we pass to the precise definition. First, let us recall the general notion of a 
relation with a finite number of arguments. 

Let A be an arbitrary nonempty set. For any integer n 2 1 we can form the 
product 

A" = A x . . . x A n times. 

The set A" consists of all n-termed sequences (a,, . . . , a,,), where ai E A for 

Every subset r 2 A' is called then an n-ary relation on the set A. According to 
i =  1, ..., n. 

generally accepted'notation, we write 

r ( a , , .  . . ,a,,), ( r  holds for the q,. . . ,a,,) if (a,, . . . ,a,,) E r. 

and 

not r ( a l , .  . . ,a, ,) ,  ( r  does not hold for the a l ,  . . . ,a,) $ ( a l , .  . . ,an)  @ r. 

9 



10 RELATIONAL SYSTEMS 

In the case of n = 1 the set A’ can be identified with the set A (identifying the 
sequence (a) with the element a). Consequently, unary relations r on A will be 
identified with subsets r C A. 

We shall often write r A  to indicate that r is a relation on the set A. Every 
function 

f: A”+A 

defined on the product A” and assuming its values in the set A is called also an n- 
ary operation on the set A. Similarly, for relations we shall often write fA to 
emphasize thatf is an n-ary operation on the set A, for some n 2 1. 

A relational system is a nonempty set A jointly with some selected relations 
and operations on A and some elements of A. More exactly, a relational system A 
is given by 

1.1 A = ( A ,  R, 7, C), 

where A is a nonempty set called the universe of A, 72 is a family of finitary 
relations on A, T is a family of operations on A, and C E A is a subset of A. The 
elements a E C are called distinguished elements of the system A. 

As already mentioned, relational systems are also called relational structures. 
We shall use also shorter terms: a system or a structure. The definition is due to 
Tarski [Tl]. 

Now, let us comment on this definition. We pose no limitations on the number 
of relations, operations, or distinguished elements of A-the families 72, 7, Ccan 
be finite or infinite of arbitrary cardinality. It is often convenient to represent 
R, T,  C as indexed families. In this case, consequently accepted throughout this 
book, the system 1.1 can be written in the form 

1.2 A = ( A ,  {r? : i E I } ,  {A” : j E J } ,  {cf : k E K } ) ,  

for some sets I, J ,  K of indices. We do not assume that the abovk enumeration is 
one-to-one. If A has finitely many relations, operations, and distinguished 
elements and, for example, I = { 1 , .  . . , n } ,  J = { 1 , .  . . , m } ,  and K = { 1,. . . , I } ,  
then we write 

A A  A A = ( A ,  r f , .  . . , r n  ,fi , . . . , f,”, cf,  . . . ,cl ). 

Of course, we shall omit the indices, if there is no fear of misunderstanding. We 
say that A is finite or infinite if the universe A is finite or infinite, respectively. 
More generally, by the cardinality of A, card A, we mean the cardinality of the 
universe A. 

Let us note that some of the sets R, 3, C can be empty. If, for instance, 
3 = C = (il then A has relations only and in this case A is called apure relational 
system. If R = (il that is, A has operations and (possibly) distinguished elements, 
then A is said to be an algebraic system or in shortened form, an algebra). 
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Examples 

The system (N, <), of nonnegative integers with the usual ordering is an 
example of a pure relational system. It belongs to the class I& of all linear 
orderings (i.e., systems (A, I"), where the relation <" linearly orders the set A). 
We have K,, C KI, where Kl consists of all systems (X, r ) ,  where r is a binary 
relation on X. 

, 0, 1) are examples of algebraic 
systems. The class of all groups is contained in the class of all algebras with one 
binary operation and one distinguished element. 

Similarly, the class of all rings is a subclass of the class of all algebras with two 
binary operations and two distinguished elements. 

The field W = (R, 5, +, ., 0, 1) of real numbers with the usual ordering is an 
example of a general relational system. W belongs to the class of all ordered fields, 
that is, systems 

Any group (G, . , I )  and any ring (P, +, 

such that the algebra (F, +, a ,  0, 1) is a field, the relation 5 linearly orders F 
and is congruent with the field operations; the latter condition means that for any 
a , b E  F, 

a 5 b implies a + x 5 b + x for all x E F. 

and 

a 5 b implies a . x < b . x, for all x 2 0. 

1.3. The Type of a System 

For any relation r on the set A we let arg(r) denote the number of arguments of r.  
Similarly, we define arg(f), for any operation f on A. Thus, for any integer 
n E w, we have 

arg(r) = n if and only if r C A" 

and 

arg(f) = n if and only if dom(f) = A". 

Let A be a structure of the form 1.2. The type T = T(A)  of the structure A is 
defined as the triple 

7 = ((arg(rf>: i E I ) ,  (arg(&"):j E J ) ,  K). 

Thus, the type of A says what the arity (i.e., the number of arguments) of any 
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relation and operation of A is. Also, r says whether A has distinguished elements 
and how they are enumerated. For example, the type of a linear ordering can be 
described informally as “one binary relation,” that of a ring as “two binary 
operations and two distinguished elements,” and so on. 

Let us assume now that A and B are of the same type T, that is, .(A) = T(B). If 
A is such as in 1.2, then it follows that B has the form 

1 = (B,  { r f :  i E Z},{AB: j E J } , { c f :  k E K}) 

and the equalities 

1.4 

hold for all i E Z and j E J, respectively. Thus, any two structures A and I3 of a 
common type are built up in a similar way, in the sense that 1.4 holds (obviously, 
besides this, A and B can be totally different). 

Usually, in a given branch of mathematics we investigate one particular 
structure (e.g., the ordered ring Z of integers, the field C of complex numbers, 
the three-dimensional Euclidean space) or the whole class of structures having 
some common properties (e.g., the class of partial orderings, the class of abelian 
groups, the class of rings of polynomials, the class of Banach spaces). In the latter 
case the structures under consideration are of some common type T; that is, they 
constitute a subclass of the class K(T) consisting of all structures of type T. We 
shall see later that any class #(T)  has its logical language L(T) (defined in 
Chapter 9, so that the formulas of L(T) are interpretable in any structure 
A E K(T). 

EXERCISES 

1.1. Let T be an arbitrary type. Show that the class K(T) (of all structures of 
type T) contains structures ofevery (finite or infinite) cardinality 2 1. More 
generally, for every set A # 0, there is a structure A E K(T) with the 
universe A. 

1.2. Let A be a finite set, card A = n, and f ix an integer m 2 I .  
(a) What is the number of systems of the form (A, r), with arg(r) 5 m. 
(b) What is the number of systems of the form ( A , f ) ,  with arg(f) 5 m. 



2 
BOOLEAN ALGEBRAS 

The notion of a Boolean algebra is strictly connected with the logical calculus. It 
was introduced by Boole in the mid-ninteenth century and defined in full 
generality by Huntington in 1904; see [H3]. Later Boolean algebras were studied 
by Stone in the 1930s; see [S6], [S7]. The study of Boolean algebras is inspired not 
only by logic but also by other branches of mathematics, for example, set theory, 
measure theory, algebra, and topology. The main examples of Boolean opera- 
tions are logical connectives (disjunction, conjunction, negation) and set theo- 
retical operations (union, intersection, complementation). 

Let us consider an algebraic system 

A = ( A ,  +, *, -, 0, 1) 

in which the operations “ + ” and “ e ”  are binary, the operation “-” is unary, and 
the distinguished elements 0 and Q are assumed to be distinct. A system of this 
form is called a Boolean algebra if the following conditions hold (for any 
a, b, c E A):  

a + b = b + a, 
(a + b) + c = a + (b  + c)  , 

a . b = b - a ,  
( a .  b)  - c = a .  (b  c ) ,  

2.1. (a + b) . c = ( a .  c)  + (b  c ) ,  (a  - 6 )  + c = (a + c) . ( b  + c ) ,  
a + O = a ,  a . l  = a ,  

a * ( - a )  = 0. a + ( - a ) = 1 ,  

The elements a + b and a .  b are called the (Boolean) sum and product of the 
elements a, b, respectively, -a is called the Boolean complementation of the 
element a, and 0 and 1 are called the zero and unit. 

Example. (The power-set algebra). Let A = P ( X )  be the family of all the subsets 
of a nonempty set X. The Boolean operations are defined as the usual set 
theoretical operations 

a + b = a u b ,  a . b = a n b  and - a = X \ a .  

13 



14 BOOLEAN ALGEBRAS 

Moreover, we put (14 = p(the empty set) and 0 = X. By well-known laws of 
the algebra of sets, we infer that the so defined power-set algebra P ( X )  is a 
Boolean algebra. More generally, any field of sets, that is, a family R C P ( X )  
containing Pand X and closed under union, intersection, and complementation 
(with respect to X) is a Boolean algebra. In particular, the two-element family 
R = {@ X} is a field of sets. 

Now we shall derive from the axioms 2.1 some laws that are true in any 
Boolean algebra. 

2.2 a + a = a  and a . a = a .  

Proof. We have 

a = a + 0 = a + [ a .  (-a)] = (a + a)[a + ( -a) ]  = (a  + a)  . U = a + a. 

Similarly, 

a = a - 0 = a .  [a + (-a)] = a .  u + a .  ( -a)  = a .  a. 0 

Let us note that from 2.2 we get 

a + U = I  and a - O = 0 .  

Because 

and 

a . (14 = a . (a . ( - a ) )  = (a  . a)  . ( -a)  = a . ( -a)  = 0. 

For arbitrary sets u, b, the conditions a u b = b and a n b = a are equivalent 
and characterize the inclusion a C b. Similarly, in an arbitrary Boolean algebra 
we have 

2.3 The conditions a + b = b and a.b = a are equivalent. 

Proof. Multiplying both sides of the equality a + b = b by a we get 

a - b  = a .  (a + 6 )  = @ . a )  + ( a .  b) = a + (a * 6 )  = a .  (I + 6) = a * u = a. 

Conversely, by adding b to both sides of a .  b = a, we obtain 

a +  b = a *  b + b = (a  + 0) * b = Q . b = 6. o 

The above remarks suggest the following definition. 
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Dejinitiun. In any Boolean algebra we define a binary relation 5 as follows: 

if and only if a 5 b a + b = b. 

By 2.3 we can write 

a 5 b if and only if a .  b = a. 

If the algebra is a field of sets, then the relation 5 coincides with the inclusion. In 
the general case 

2.4 the relation 5 is a partial ordering. 

Proof. We have a 6 a, since always a + a = a, by 2.2. Assume that a 5 b and 
b 5 a, that is, a + b = band b + a = a. Hence, we get immediately a = b. If a 5 b 
and b 5 c, then 

a + c = a + ( b  + c) = a + b + c = b +  c = c, 

and thus a 5 c. 

2.5 

o 

From a 5 b it follows that a + x 5 b + x and a.x 5 b-x, for all x. 

Proof. 

( a + x ) + ( b + x )  = ( a + b ) + ( x + x ) = b + x  

and 

(a  . X )  . ( b  . x )  = (a  b)  . ( X  . X )  = a . x. 0 

From the already known laws 0 + a = a and a + 1 = I, we infer 

0 5 a 5 1 for any a, 

that is, 0 is the least and I is the greatest element of the algebra. 

Now, we prove the “lattice” property of 5. 

2.6 a + b = sup{a, b} and a .  b = inf{a, b}. 

Proof: Since a + (a  + b) = (a  + a)  + b = a + 6,  we have a 5 a + b. Similarly, 
b 5 a + b. I f  x is such that x 2 a and x 1 6,  then 

(a + 6 )  + x  = a +  ( b  + x )  = a + x  = x,  
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that is, a + b 5 x. Hence, a + b is the least upper bound of the set {a, b}, that is, 
a + b = sup{a, b}. The other equality can be proved similarly. 

From 2.6, by an easy induction, we infer 

a1 + . . . + a, = sup{a, , . . . , a,} 

a1 . * .  . . a, = sup{al,. . . ,an} 

for any elements a l l . .  . ,a ,  E A, while for infinite sets Z 5 A, the bounds s u p 2  
and inf Z need not exist. 

The following theorem characterizes the Boolean complement. 

2.7 I f a + x = l  anda .x=O then x=-a .  

Proof. Using the assumption a + x = 0 we get 

( -a) + x = [ ( -a)  + x] * (a + x )  = ( - a ) .  a + x . a + ( - a ) .  x + x . x 

= (a  + ( - a ) ) .  x + x = x + x = x ,  

that is, -a 5 x. On the other hand, using a - x = 0, 

x .  ( -a)  = x .  ( -a)  + x .  a = x .  ( ( -a)  + a )  = x .  0 = x ,  

that is x _< -a. Thus x = -a. 0 

Double complementation acts as identity; that is, 

2.8 -(-a) = a. 

Proof. In 2.7 we substitute -a for a and put x = a 0 

From 2.7 we also get -1 = 0 and -0 = 1. 
The De Morgan rules known from elementary logic or set theory can be stated 

in Boolean terms as follows: 

2.9 -(a + b) = ( - ~ ) ( - b )  and - (ab) = ( -a)  + ( -b) .  

Proof. To obtain the first equality, substitute x = (-a)(-b) in 2.8, replacing a 
by a + 6. The other equality can be proved in a similar way. 

The De Morgan rules 2.9 can be generalized (by an obvious induction) to an 
arbitrary finite number of elements, 

- (a ,  + . . . +a,) = ( -q)  . . * * (-a,) 


