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Life is a peephole, a single tiny entry onto a vastness - how can I not dwell on 
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PREFACE 

... synthetic universes dejined by simple rules ... 
- Tommaso Toffoli and Norman Margolus - Cellular Automata Machines 

I expect the children of 50 years from now will learn cellular automata before they 
learn algebra. 

- Stephen Wolfram - New Scientist, November 18, 2006 

The history of cellular automata is only quite recent, coming to life 
at the hands of two fathers, John von Neumann and Stanislaw Ulam 
in the early 1950s. Subsequent work in the early 1960s included that 
of Ulam and his co-workers at Los Alamos and by John Holland at 
the University of Michigan whose work on adaptation continued for 
several decades. Early theoretical research was conducted by Hedlund, 
Moore, and Myhill, among many others, not always under the name 
of cellular automata (CA), since the concept was still in its formative 
stages. A big boost to the popularization of the subject came from John 
Conway’s highly addictive Game of Life presented in Martin Gardner’s 
October 1970 column in ScientiJc American. Still the study of CA 
lacked much depth, analysis, and applicability and could not really be 
called a scientific discipline. 

xi 
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All that changed in the early 1980s when physicist Stephen Wolfram 
in a seminal paper, “Statistical mechanics of cellular automata,” initi- 
ated the first serious study of cellular automata. In this work and in a 
series of subsequent ones Wolfram began producing some of the images 
that have now become iconic in the field. Conferences were organized 
and people from various disciplines were being drawn into the field. It 
is now very much an established scientific discipline with applications 
found in a great many areas of science. Wolfram has counted more 
than 10,000 papers referencing his original works on the subject and 
the field of cellular automata has taken on a life of its own. Another 
milestone in the field was the publication in 2002 of A New Kind ofSci- 
ence, Wolfram’s 1200 page magnum opus, a monumental work which 
brought the subject to the attention of a truly global audience. 

The CA paradigm is very appealing and its inherent simplicity belies 
its potential complexity. Simple local rules govern an array of cells that 
update the state they are in at each tick of a clock. It has been found that 
this is an excellent way to analyze a great many natural phenomena, 
the reason being that most physical processes are themselves local in 
nature - molecules interact locally with their neighbors, bacteria with 
their neighbors, ants with theirs, and people likewise. Although natural 
phenomena are also continuous, examining the system at discrete time 
steps does not really diminish the power of the analysis. So in the 
artificial CA world we have an unfolding microcosm of the real world. 

One of the things self-evident to everyone is the order that is found 
in Nature. From an ameoba to plants to animals to the universe itself, 
we find incredible order everywhere. This begs the obvious questions: 
Where did this order come from - how could it have originated? One 
of the fundamental lessons of cellular automata is that they are capable 
of self-organization. From simple local rules that say nothing what- 
soever about global behavior, we find that global order is nonetheless 
preordained and manifest in so many of the biological and physical sys- 
tems that we will consider. In the words of theoretical biologist Stuart 
Kauffman, it is “order for free.” It is this order for free that allows us 
to emulate the order we find in Nature. 

Related to the creation of order is the notion of complexity. How 
can a finite collection of chemicals make up a sentient human being? 
Clearly the whole is greater than the sum of its parts. How can termites 
build complex structures when no individual termite who starts a nest 
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even lives to see its completion? The whole field of Complexity has 
exploded over recent years and here too CA play their part. One of the 
most endearing creatures that we shall encounter is Langton’s ant in 
Chapter 6, and this little creature will teach us a lot about complexity. 

Of course it is no longer possible in a single text to cover every aspect 
of the subject. The field, as Wolfram’s manuscript count shows, has 
simply grown too large. So this monograph is merely an introduction 
into the brave new world of cellular automata, hitting the highlights 
as the author sees them. The mathematics in Chapter 1 serves mainly 
to relate the notions of fractals, dimension, information, and entropy, 
which all feature in the science of CA. And in Chapter 2, dynamical 
systems are mathematical by their very nature. However, in the remain- 
der of the text, outbreaks of mathematics have been deliberately kept 
to a minimum. On the other hand, a more advanced and mathematical 
account of cellular automata can be found in the 2002 book by Ilachin- 
ski. An excellent pioneering work is, Cellular Automata Machines, by 
Tommaso Toffoli and Norman Margolus, both of whom have made im- 
portant contributions to the field. Many of the topics mentioned herein, 
such as dynamical systems, chaos, artificial intelligence, and genetic 
algorithms, are only touched upon in the context of cellular automata, 
but many fine books are available on any of these. It is the author’s in- 
tent that by being exposed to the tip-of-the-iceberg, the curious reader 
will be inspired to explore the vast wonderland below. 

As much as possible, the author has tried to implement Marvin Min- 
sky’s dictum that “You don’t understand anything until you learn it 
more than one way.” Indeed, several important notions are presented 
from multiple points of view and throughout the text there are several 
recurrent themes, such as point attractors, periodic cycles, and chaos, 
among others. 

One caveat concerning the applications of cellular automata. We 
aretex not making any claims that CA models are necessarily superior 
to other kinds of models or that they are even justified in every case. We 
are merely presenting them as one way of looking at the world which 
in some instances can be beneficial to the understanding of natural 
phenomena. At the very least, I think you will find them interesting. 
For those who already have a passing knowledge of the subject, I think 
you will discover some new things you have not seen before. Even if 
the entire universe is not one monolithic cellular automaton, as at least 



XiV PREFACE 

one scientist believes, the journey to understanding that point of view 
is well worth the price of admission. 

Finally, I wish to thank Auckland University students Michael 
Brough, Peter Lane, Malcolm Walsh, as well as Dylan Hirsch-Shell of 
UCLA, and Nick Dudley Ward of Pattle Delamore Partners Ltd, who 
produced many of the figures from the CA models given in the text, and 
Samuel Dillon who produced the Rule 30 data encryption figures. Their 
assistance has been invaluable as their programming skills far exceed 
my own. I also wish to thank my daughter-in-law Yuka Schiff for many 
of the fine graphics and my friend Michael Parish for introducing me to 
the fascinating world of bees and Maeterlinck’s classic monograph. A 
large debt of gratitude is owed to those who made valuable contributions 
to the manuscript in one form or another: Eshel Ben-Jacob, Michael 
Brough, Carlos Gershenson, Mario Giacobini, Dylan Hirsch-Shell, 
Jacques Mazoyer, Marc Ratkovic, Aaron Schiff, Birgitt Schonfisch, 
Dror Speiser, Guillaume Theyssier, and Jean-Baptiste Yunks. A very 
special thanks to Amy Hendrickson of T@nology, Inc. for doing such 
an excellent and painstaking job laying up the text and images. 

Several of the CA images were produced with the specialized soft- 
ware of Stephen Wolfram’s New Kind of Science Explorer, which can 
be purchased from the website http : //www . wolf ramscience. corn/, 
and Mirek Wojtowicz’s MCell program, which can be downloaded at 
his website http : //www . mirekw . com/ca/. The latter also permits 
the real-time viewing of the evolution of some of the CA discussed 
in the text. Another interesting CA simulator is hosted by Michael 
Creutz at http://quark.phy.bnl.gov/www/xtoys/xtoys.html. 
Definitely have a look at Andy Wuensche’s stunning website, http : 
//www . ddlab . corn/, and David Griffeath’s Primordial Soup Kitchen, 
http : //psoup .math. wisc. edu/welcome . html. An excellent CA 
resource website now edited by Tim Tyer is at http : //caf aq. corn/. 

A website specifically for this text has been set up by John Wiley 
& Sons at ftp://ftp.wiley.com/public/sci_tech_med/cellular_automata/. 
Here there are further examples that have not been included in the 
text, Java applets, CA computer code, as well as a venue for interested 
readers to send in their own experimental contributions to the subject. 

July 2007 

JOEL L. SCHIFF 
University of Auckland 
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CHAPTER 1 

PRELIMINARIES 

Nothing shocks me. I’m a scientist. 
-Harrison Ford (as Indiana Jones) 

1.1 SELF-REPLICATING MACHINES 

The origins of cellular automata can be traced back to mathematician 
John von Neumann’s attempt to create a self-replicating machine. In 
1948, von Neumann read a paper at the Hixon Symposium in Pasadena, 
California (“The general and logical theory of automata”), in which 
he outlined, among other things, a plan for a self-replicating machine 
(von Neumann actually refers to such a machine as an automaton). The 
question von Neumann addresses is this: “Can one build an aggregate 
out of such elements in such a manner that if it is put into a reservoir, in 
which float all these elements, each of which will at the end turn out to 
be another automaton exactly like the original one?” He then proceeds 
Cellular Automata: A Discrete View of the World. By Joel L. Schiff 
Copyright @ 2008 John Wiley & Sons, Inc. 

1 



2 PRELIMINARIES 

to outline the following argument to show that this is entirely feasible 
in principle. 

One starts with a machine (universal constructor) A that has the abil- 
ity to construct any other machine once it is furnished with a set of 
instructions denoted by I .  Machine A is envisaged to float in the reser- 
voir of liquid with all the necessary component parts that it requires for 
any particular construction. We now attach to our machine A another 
component called B that can make a copy of any instruction that is 
supplied to it. A final component, labeled C, von Neumann called the 
“control mechanism,” which has the functions of initiating A to con- 
struct a machine as described by the instructions I and then cause B to 
make a copy of the instructions 1 and supply the copy of the instructions 
to the machine newly formed by A. Then the entire apparatus can be 
denoted by M = A + B + C. 

To get things rolling, we furnish a machine M with a set of instruc- 
tions for constructing itself, I M ,  and call the resulting system MI. It 
is this machine, MI, that is capable of replicating itself. For, C ini- 
tiates the construction of M by A, it then has B make a copy of the 
instructions 1~ and these are furnished to M to form the system hT 
once again. And so on. 

It is the multiple use of the instruction set 1~ that is crucial here. First, 
the instructions must be followed by A, second, they must be copied 
by B, and last, the copy must be attached to the machine constructed 
by A. 

Overall, the copying mechanism is similar to the replication of living 
cells whereby the DNA (instructions) are first copied by cells preced- 
ing cell division. Interestingly, Christopher Langton [ 19861 comments: 
“Since he [von Neumann] was able to demonstrate that such a machine 
can exist, it becomes plausible that many, perhaps all, of the processes 
upon which life is based are algorithmically describable and that, there- 
fore, life itself is achievable by machines.” The study and implementa- 
tion of these processes have become the domain of the newly emerging 
subject of artificial life and we shall encounter many instances of it 
throughout this book. 

Von Neumann had now shown that a self-replicating machine was 
established in principle, but at the time of his lecture, he did not suggest 
how one could be implemented. The technology of the day simply was 
not capable of such an implementation. 
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According to received wisdom, it was the Polish- American math- 
ematician Stanislaw Ulam who suggested to von Neumann that he 
should try constructing his self-replicating automaton using the con- 
ceptual framework of what are now known as cellular automata. The 
resulting system outlined in the early 1950s and later completed after 
von Neumann’s death by Arthur Burks (see von Neumann [ 19661) was 
a universal Turing machine embedded in a two-dimensional cellular 
lattice that had 29 states for each cell and a 5-cell neighborhood (now 
known as a von Neumann neighborhood) that required -200,000 cells. 
However, it was never actually implemented. 

Exactly what is meant by dimension and states will be dealt with in 
the sequel. 

A simpler 8-state self-replicating cellular automaton was created by 
Codd [1968] with some computer assistance. Then in 1984, Christo- 
pher Langton demonstrated self-reproduction in an 86-cell looped path- 
way using 8 states with a 5-cell neighborhood, which did not exhibit the 
feature of universal construction as did the von Neumann and Codd ma- 
chines, but simply reproduced itself. Langton’s loop has a construction 
arm attached to it and consists of an outer sheath of cells that remain in 
a fixed state and an inner sequence of “DNA” cells in various states that 
circulate around the loop (Fig. C.1, see color section). At the junction 
of the loop and arm, the DNA cells are replicated: One copy goes back 
around the loop and the other copy travels down the construction arm 
where it is translated at the tip of the arm spawning new growth. 

Once a side of the offspring loop is fully generated, the growth pat- 
tern makes a left turn and propagates another side and so on until the 
offspring loop is complete. Then the connection between parent and 
offspring is severed (cutting the umbilical cord so to speak) and both 
parent and offspring propagate separate construction arms to begin the 
process anew (Fig. C.2, see color section). 

Construction continues in this fashion with each new loop generating 
at least one new offspring. When a loop tries to extend an arm into a 
region already occupied, it will retract the arm and the DNA of that loop 
is erased and the loop becomes inert. The Langton loops will continue 
this replication process indefinitely expanding outward with time and 
filling the plane (Fig. C.3, see color section). 
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Although each loop contains the same DNA sequence, the number 
of times it can replicate itself will depend on the space available in its 
immediate environment. 

A somewhat simpler self-replicating loop that dispenses with the 
outer sheath but also having eight states was constructed by Reggia et 
al. [ 19931. A simple and brief proof of the existence of a self-replicating 
CA machine capable of universal computation was given by A. R. Smith 
[1991]. Another approach was taken by Morita and Imai [ 19971, who 
devised cellular configurations that were able to reproduce by self- 
inspection rather than from any stored self-description. 

In the realm of actual self-reproducing machines, a primitive form 
was demonstrated by Roger Penrose (the well-known physicist) and 
his father Lionel back in 1957 using a set of flat shaped wooden blocks 
that produced copies of a particular coupling when the blocks were 
shaken in a box enclosure. In 2001, Greg Chirikjian of Johns Hop- 
kins University developed a LEG0 robot that drove around a track and 
assembled modules to make a copy of itself. Recently, Hod Lipson 
and colleagues (Zykov et al. [ZOOS]) at Cornell University have created 
a self-replicating robot consisting of a tower of cubes that can swivel 
around and pick up other cubes and stack them to create another tower 
identical to itself. According to Lipson, this opens up the possibility of 
using robotic systems in future space travel that can repair themselves. 

An overview of 50 years of research on self-replication can be found 
in the article by M. Sipper [1998], who also created an interactive 
self-replicator (Stauffer and Sipper [2002]). Certainly the notion of 
self-replication has proved enormously popular with the creators of 
computer viruses. 

1.2 GRAND TURING MACHINES 

In his seminal 1936 paper on computable numbers (“On computable 
numbers, with an application to the Entscheidungsproblem”), English 
genius Alan Turing discussed a very general type of computer that 
has become known as a Turing machine. This machine is theoretical 
in nature and today still finds applications in computer science. In the 
words of computer scientist Edward Fredkin, “It was a way to formalize 
all the things that a mathematician could do with a pencil and paper.” 
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Figure 1.1 An idealized version of a Turing machine with the head reading 
the input of the tape below. The entire mechanism can move one square to 
either the right or left. 

It can be thought of as a mechanical “head” that has an infinite strip 
of tape in both directions that lies beneath it. The head can both read 
and write onto the tape. The head is allowed to exist in a finite number 
of internal states, say Ic. The state of the head changes by interacting 
with the input from the tape beneath it. The tape is divided into an 
endless succession of square cells in which either a number 1 is written 
or the cell is blank, which we interpret as being the number 0. While 
the tape is infinite in length, there can only be a finite number of cells 
containing the number 1. The remaining cells must all be blank. The 
head reads just one such cell at a time - the one directly beneath it. 
Upon the head reading the value 0 or 1 of this cell, it replaces this value 
either with a 1 or 0 or with the same symbol. The head then moves one 
square either to the right or to the left (or not at all) and goes into one of 
its other allowable states. It then repeats the above sequence for each 
cycle of the machine. The new state of the head, the value the head 
gives to a particular cell, and the movement of the head left or right 
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Figure 1.2 
given in the text, denoting Head State 1 = v and Head State 2 = A. 

Graphical form of the Turing machine state transition function 

are all governed by some underlying set of instructions - the state 
transition function. There are also special starting and halting states. 
The output is written on a portion of the tape that can be read by an 
observer after a halt state has been reached (Fig. 1.1). 

As an example, let us assume that the head has just two allowable 
states 1 and 2, with a state transition function given by the format 

(Head State, Cell State) + (Head State, Cell State, Move) 

specifically, say: 

These four rules could also be depicted in the graphical form of Fig. 1.2, 
where Head State 1 = V and Head State 2 = A. 

So, the first cell of Fig. 1.2 illustrates the first rule: (1,l) + 
(2 ,0 ,1 ) ;  meaning, if HS = 1 (i.e., V) and the head is on a cell with 
CS = 1 (gray), then HS becomes 2 (i.e., A), the CS is changed to 0 
(white) and the head moves 1 cell to the right along the tape, and so 
forth with each rule. We can represent the evolution of this Turing ma- 
chine by letting each step be depicted in a vertical downward direction 
with moves of +1 being to the right and -1 being to the left. Thus 
the above Turing machine would evolve as in Fig. 1.3 from an initial 
condition HS = 1, CS = 0. 

Via the preceding rules, ( 1 , O )  + ( 2 , l  , l), so that the HS is changed 
to 2, the initial cell state is changed to CS = 1, and the head moves one 
cell to the right. This state of affairs is denoted on the second line down, 
where we have the initial cell in state 1 (gray), and the head (in HS = 2) 
has moved over one cell to the right, over a cell in state 0 (white). Next 



GRAND TURING MACHINES 7 

Figure 1.3 
example in the text starting with an initial condition HS = 1, CS = 0. 

The time evolution (top to bottom) of the Turing machine 

we find that (2,O) + (1 , 1, - 1) , meaning that the HS now becomes 
1, the CS becomes 1, and the head moves one cell to the left, directly 
over the initial cell (which was gray from before). Now HS = 1 and 
CS = 1, so we use (1,l) + (2 ,0 ,  l), which alters the head to HS = 2, 
the cell state changes to CS = 0, and the head moves one cell to the 
right again (which also was gray from before). And merrily on the head 
goes, in this simple case never moving beyond the first two cells, and 
continually repeating its actions in a four-step cycle. 

One question that one may ask about any particular Turing machine 
is, given a particular input, will the machine stop? This general ques- 
tion is known as the “halting problem” and it was shown by Turing 
himself that there is no way in principle to decide whether any particu- 
lar Turing machine will stop or not. It may be noted that this result has 
ramifications to the whole field of mathematics itself. 

Many mathematical questions can be posed in the language of whether 
or not a specific Turing machine will halt or not. For example, Opper- 
man’s conjecture states that for any integer n > 1, between the numbers 
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n2 and (n  + 1)2 one can always find a prime number. For example, 
between 32 = 9 and 4’ = 16 lies a prime, in fact two in this case, 11 
and 13. As the integers n start to get larger and larger, the number of 
primes starts to thin out so there is always a possibility that there will 
not be sufficient numbers of primes to fit between every n2 and (n  + 1)” 
Fortunately, n2 and (n + 1)2 spread out too. In spite of the elementary 
nature of this conjecture, no one has been able to prove or disprove it. 

We could set up a Turing machine that would check to see if there 
was indeed a prime between every pair of numbers n2 and (n + l)’, 
and we could instruct the machine to stop if for some pair a prime was 
not found. If the Turing machine does stop, then we have produced a 
counterexample to the Opperman conjecture and it is false. If somehow 
we knew that this Turing machine never stopped, then we would know 
that the Opperman conjecture was indeed true. But being able to solve 
the halting problem for this particular Turing machine is equivalent to 
determining the truth or falsity of the Opperman conjecture. 

This means that there can be no general algorithm for deciding the 
truth or falsity of mathematical problems, which was the Entschei- 
dungsproblem in the title of Turing’s paper. This problem was first 
enunciated by the famous German mathematician, David Hilbert, at 
the 1900 International Congress of Mathematicians and was included 
in a list of 23 mathematical problems to be considered over the ensu- 
ing new century. This problem asked whether or not there was some 
general mechanical procedure that would be able to determine the truth 
or falsity of a large body of well-defined mathematical problems such 
as the Opperman conjecture. And as we have just seen, Turing showed 
this was not possible. 

Turing machines with different sets of instructions are capable of 
doing different tasks, while there are some that are capable of emu- 
lating the performance of any other Turing machine. These are uni- 
versal Turing machines and are said to be capable of performing uni- 
versal computation. They can in fact do any calculation that is com- 
putable. Actually, the ubiquitous personal computer is effectively a 
universal Turing machine. Although a personal computer does not 
have an infinite storage capacity, it is essentially large enough to be 
considered so. Until recently, the simplest universal Turing machine 
was due to Marvin Minsky, who in 1962 produced a universal Tur- 
ing machine with seven head states and four cell states. Based on 
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the universality of Rule 110 (Section 3 . 3 ,  Wolfram 120021 reduced 
this to just two head states and five cell states. In May 2007, Wol- 
fram offered a $25,000 prize to anyone demonstrating that a partic- 
ular two head statehhree cell state Turing machine is universal (see 
http: //www . wolframscience. com/prizes/tm23/ for details). 

Other work of Alan Turing’s is encountered in Chapter 5 regarding 
reaction-diffusion equations, but we mention here just one further prod- 
uct of Turing’s fertile mind - the Turing test - first proposed in 1950, 
although originally referred to by Turing as the imitation game. In this 
test, there is a human being in one room and a computer in another. Both 
communicate with those outside the room via some electronic device 
such as a teletype. An interrogator asks questions of the inhabitants of 
both rooms and tries to decide which is the human and which is the 
computer. If the interrogator, after a given period, is unable to deter- 
mine which is which, the computer is said to have passed the Turing test. 
This is a very straightforward test of “machine intelligence” and in spite 
of many criticisms and objections over the years, it has stood the test 
of time very well. What it is not is a test of “machine consciousness” 
and this complex issue will be discussed further in Chapter 6. 

Turing himself believed that in 50 years time an average interroga- 
tor after 5 minutes of questioning would have no more than a 70% 
chance of deciding which was the computer and which was the per- 
son. Nevertheless, as of the present date, no computer has even come 
close to passing the Turing test. In 1966, Joseph Weizenbaum of MIT 
created a computer program called ELIZA (after G. B. Shaw’s Eliza 
Doolittle character of Pygmalion fame) that simulated the responses 
of a Rogerian psychotherapist. Some administrative staff members 
actually consulted ELIZA concerning their everyday problems and 
even the simple-minded Apple I1 version had many of this author’s 
friends conversing intelligently with ELIZA for a few minutes. Read- 
ers are welcome to discuss their psychological problems with ELIZA 
athttp://www.manifestation.com/neurotoys/eliza.php3. 

1.3 REGISTER MACHINES 

Computers basically perform operations on numbers that are stored 
in what are called registers. A (Minsky) register machine is just an 
idealization of the basic manipulations that are performed on the num- 
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Figure 1.4 An example of a simple register machine with two registers and 
five instructions. Light gray indicates register 1 and dark gray register 2. An 
increment instruction is denoted by and a decrement by 4 together with the 
path of the jump (arrowed). The output after each step is at the right with the 
first column displaying the contents of register 1 and the second column the 
contents of register 2. Both registers are initially empty (top line right) and 
the instructions begin with the incrementing of register 1 (first box left). Note 
the cyclic nature of the contents of register 1. 

bers contained within the registers of a real computer. In order for 
the computer to perform a simple calculation such as the addition of 
two numbers, it must take the numbers stored in one of the registers 
and combine it with the number stored in another register. A register 
machine has three types of instructions: INC(rement), DEC(rement) 
and HALT. The INC instruction increments by 1 the number stored in 
a particular register and then the machine proceeds to process the next 
instruction. The DEC instruction has two components: it decrements 
by 1 the number stored in a particular register and then it will “jump” 
to another specifically designated instruction. But there is one caveat 
here. The number in a register cannot be less than zero, so if the value 
of zero is stored in a register and that register is to be decremented, 
then the instruction is ignored and the machine proceeds to the next 
instruction. Finally, the HALT instruction does simply that - it halts 
the operation of the register machine (Fig. 1.4). 

Computer scientist Marvin Minsky [ 19671 showed that all one needs 
is just two registers to emulate a universal Turing machine. 

The reader can create their own Turing machines and register ma- 
chines and investigate their behavior using Wolfram’s NKS Explorer. 


