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xi

Despite the wealth of data describing mechanisms underlying health and 
disease in living systems, health care costs continue to rise, and there is a 
growing need for improved and more affordable treatments. Efficient drug 
discovery and development requires methods for integrating preclinical data 
with patient data into a unified framework to project both efficacy and safety 
outcomes for new compounds and treatment approaches.

In this book we present the foundations of systems biology, a growing mul-
tidisciplinary field, applied specifically to drug discovery and development. 
Systems biology formally integrates knowledge and information from multiple 
biological sources into a coherent whole by employing proven engineering and 
mathematical modeling approaches. The integrated system allows rapid analy-
sis and simulation that can inform and optimize the drug research and devel-
opment processes, by formalizing, and testing, the set of acceptable hypotheses 
in silico, thereby reducing development time and costs and ultimately improv-
ing the efficacy of novel treatments.

This book is the first systems biology text to focus on how systems biology 
can be specifically applied to enhance drug discovery and development, with 
particular emphasis on real-world examples. Other texts on systems biology 
to date have focused on particular subdisciplines of systems biology (such as 
cellular networks) and have not specifically addressed drug discovery and 
development. This book introduces key methodologies and technical 
approaches for helping to solve many of the current challenges facing the 
pharmaceutical and biotechnology industries.

The target audience for the book includes those training or currently 
involved in all phases of drug discovery and development. Specific examples 
include life scientists, pharmacologists, computational and systems biology 
modelers, bioinformaticians, clinicians, and pharmaceutical/biotech manage-
ment. The methods and case studies presented here will help researchers 
understand the diverse applications of the systems approach and integrate 
these technologies into their drug discovery and development programs. Those 
who incorporate these approaches successfully should increase their organiza-
tion’s competitiveness to address unmet market needs as well as more complex 
diseases and therapies.

The book is divided into four complementary parts. Providing a foundation 
for the techniques of systems biology, Part I provides an introduction to  
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engineering and mathematical methods employed to characterize biological 
systems. In particular, Chapter 2 overviews model construction and analysis, 
focusing on model building, parameter estimation, model validation, and sen-
sitivity analysis. Chapter 3 presents general statistical modeling approaches as 
well as methods for representing and analyzing nonlinear dynamical biochemi-
cal networks, of which feedback and feedforward loops are central players. In 
addition to modeling fundamental biological interactions and dynamics, an 
essential element of the systems biology approach is the study and simulation 
of population-level variability. To this end, Chapter 4 presents how drug phar-
macokinetics is affected by variations in drug absorption, distribution, metabo-
lism, and excretion, illustrating methods for predicting interindividual 
variability essential for rationale compound evaluation.

Part II highlights systems biology techniques aimed at enhancing the drug 
discovery process. An essential component of drug discovery is target identi-
fication and validation. To tackle many of the challenges inherent in these 
processes, Chapter 5 introduces a variety of complementary systems approaches, 
including text-mining, disease and therapeutics modeling, large multicontext 
data sets, regression modeling, and network and dynamic pathway modeling. 
In Chapter 6, systems biology approaches are applied to lead identification 
and optimization disciplines. In particular, systems approaches are shown to 
enable building bridges between compounds’ chemical and biological activi-
ties. In this way, lead identification and optimization are enhanced by the 
systematic quantification of the optimal pharmacokinetic and pharmacody-
namic compound profiles, defined potentially for specific patient populations. 
Chapter 7 addresses drug safety by exploring the role of biological motifs, in 
particular switchlike circuits, critical for dose–response models. Such models 
help uncover complex emergent behaviors and reveal factors driving variable 
patient responses to drugs that could limit efficacy or even lead to low-inci-
dence adverse responses. Finally, Chapter 8 presents the use of mechanistic 
systems models for the study of pharmacokinetics and pharmacodynamics 
during discovery and early development. These models integrate a mechanistic 
understanding of biology and disease processes into a framework to aid in the 
selection of lead compounds, evaluation of dosing regimens, and support of 
optimal study design for specific patient populations.

Part III addresses particular applications of systems biology to drug devel-
opment. Illustrating practical drug development challenges, Chapter 9 details 
the development and validation of a multiscale mathematical model for angio-
genesis, integrating molecular and tissue-level processes. Here the exemplary 
model is applied for treatment personalization, and results suggest that an 
arrested drug candidate can be efficacious if applied in combination with 
current standards of care. Chapter 10 presents methods for applying systems 
biology to candidate biomarker identification. In particular, the chapter high-
lights the biomarker discovery process, its application to drug development, 
and the utility of mechanistic systems modeling to biomarker development in 
cardiovascular disease and rheumatoid arthritis. Finally, to aid in the design 
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and execution of costly clinical programs, essential aspects of clinical trial 
simulations are presented in Chapter 11, where both clinical efficacy and safety 
are essential considerations.

In the final section of the book, Part IV, we address how systems biology 
technologies can synergize with other approaches. To this end, Chapter 12 
presents how biological pathway analysis can be integrated into drug discovery 
systems approaches. Chapter 13 addresses aspects of personalized medicine 
and how functional mapping aimed at understanding genes and genetic net-
works can be used to help predict drug responses in patients. The book con-
cludes in Chapter 14 with a broad overview of opportunities and challenges 
in systems biology that should ultimately help to extend both its reach and its 
acceptance, thereby further enhancing pharmaceutical productivity and the 
success of drug discovery and development for the benefit of patients.

In addition to the contributing authors of this book, we would like to thank 
our collaborators and colleagues throughout the years who have helped 
develop and apply systems biology approaches to drug discovery and develop-
ment. We look forward to future advances and successes in the coming years 
as these approaches are applied and extended by dedicated researchers for 
enhanced drug discovery and development and ultimately, better care for 
patients.

Daniel L. Young

Seth Michelson

Palo Alto, California

Redwood City, California
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Systems Biology in Drug Discovery and Development, First Edition. 
Edited by Daniel L. Young, Seth Michelson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

CHAPTER 1

Introduction to Systems Biology in 
Drug Discovery and Development

DANIEL L. YOUNG

SETH MICHELSON

Genomic Health Inc., Redwood City, California

Theranos Inc., Palo Alto, California

Summary

Over the last several decades, medical and biological research has opened vast 
windows into the mechanisms underlying health and disease in living systems. 
Integrating this knowledge into a unified framework to enhance understand-
ing and decision making is a significant challenge for the research community. 
Efficient drug discovery and development requires methods for bridging pre-
clinical data with patient data to project both efficacy and safety outcomes for 
new compounds and treatment approaches. In this book we present the foun-
dations of systems biology, a growing multidisciplinary field applied specifi-
cally to drug discovery and development. These methods promise to accelerate 
time lines, to reduce costs, to decrease portfolio failure rates, and most signifi-
cantly, to improve treatment by enhancing the workflow, and thus the com-
petitiveness, of pharmaceutical and biotechnology organizations. Ultimately, 
these improvements will improve overall health care and its delivery.

SYSTEMS BIOLOGY IN PHARMACOLOGY

Discovering a new medicine is a multistep process that requires one to:

•	 Identify a biochemically based cause–effect pathway (or pathways) inher-
ent in a disease and its pathophysiology
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•	 Identify those cells and molecular entities (e.g., receptors, cytokines, 
genes) involved in the control of those pathways (typically termed targets)

•	 Identify an exogenous entity that can manipulate a molecular target to 
therapeutic advantage (typically termed a drug)

•	 Identify, with some level of specificity, how manipulation modulates the 
disease effects (termed the mechanism of action of the drug)

•	 Identify that segment of the patient population most likely to respond to 
manipulation (typically through the use of appropriate surrogates termed 
biomarkers)

Given these challenges, pharmaceutical drug discovery and development is 
an extremely complex and risky endeavor. Despite growing industry invest-
ment in research and development, only one in every 5000 new drug candi-
dates is likely to be approved for therapeutic use in the United States (PhRMA, 
2006). In fact, approximately 53% of compounds that progress to phase II 
trials are likely to fail, resulting in amortized costs of between $800 million 
and $1.7 billion per approved drug (DiMasi et al., 2003; Gilbert et al., 2003; 
Pharmaceutical Research and Manufacturers of America, 2006). Clearly, the 
crux of the problem is the failure rate of compounds, especially those in late-
stage clinical development. To solve this problem, one must clearly identify 
the most appropriate compound for the most appropriate target in the most 
appropriate subpopulation of patients, and then dose those patients as opti-
mally as possible. This philosophy forms the cornerstone of the “learn and 
confirm” model of drug development suggested by Sheiner in 1997.

For example, to address these three issues specifically, the Center for Drug 
Development Science at the University of California–San Francisco has devel-
oped a set of guidelines for applying one particular in silico technology, biosim-
ulation, to the drug development process (Holford et al., 1999).

These guidelines define a three-step process. During step 1, the most rele-
vant underlying biology describing the pathophysiology of the disease is char-
acterized, as are the pharmacokinetics of any candidate compound aimed at 
its treatment. In step 2, the various clinical subpopulations expected to receive 
the compound are identified and characterized, including measures of inter-
patient variability in drug absorption, distribution, metabolism, and excretion, 
and compound-specific pharmacodynamics are established. Once steps 1 and 
2 are complete, this information is used in step 3 to simulate and thus design 
the most efficient clinical trial possible.

We believe that the general principles outlined above should not be 
restricted to only one methodology (i.e., biosimulation) but should be extended 
to the entire spectrum of in silico technologies that make up the generic dis-
cipline called systems biology. Systems biology is a rapidly developing suite of 
technologies that captures the complexity and dynamics of disease progression 
and response to therapy within the context of in silico models. Whether these 
models and their incumbent analytical methodologies represent explicit physi-
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ological models and dynamics, statistical associations, or a mix thereof, en suite 
they provide the pharmaceutical researcher with access to the most pertinent 
information available. By definition, that information must be composed of 
those data that best characterize the disease and its pathophysiology, the com-
pound and its mechanism of action, and the patient populations in which the 
compound is most likely to work. With the advance of newer and faster assay 
technologies, the gathering of those data is no longer the rate-limiting process 
it once was. Rather, technologies capable of sampling the highly complex 
spaces underlying biological phenomena have made the interpretation of 
those data in the most medically and biologically reasonable context the next 
great hurdle in pharmaceutical drug discovery and development.

To address these challenges adequately, the pharmaceutical or clinical 
researcher must be able to understand and characterize the effects of diverse 
chemical entities on the pathways of interest in the context of the biology they 
are meant to affect. To accomplish that, research scientists and clinicians must 
have at their disposal the means to acquire the most pertinent and predictive 
information possible. We believe that systems biology is a particularly attrac-
tive solution to this problem. It formally integrates knowledge and information 
from multiple biological sources into a coherent whole by subjecting them to 
proven engineering, mathematical, and statistical methodologies. The inte-
grated nature of the systems biology approach allows for rapid analysis, simu-
lation, and interpretation of the data at hand. Thus, it informs and optimizes 
the pharmaceutical discovery and development processes, by formalizing, and 
testing, the most biologically relevant family of acceptable hypotheses in silico, 
thereby enabling one to reduce development time and costs and improve the 
efficacy of novel treatments.
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CHAPTER 2

Methods for In Silico Biology: 
Model Construction and Analysis

THERESA YURASZECK, PETER CHANG, KALYAN GAYEN, ERIC KWEI, 
HENRY MIRSKY, and FRANCIS J. DOYLE III

University of California, Santa Barbara, California

Systems Biology in Drug Discovery and Development, First Edition. 
Edited by Daniel L. Young, Seth Michelson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

2.1.  INTRODUCTION

Despite increasing investment in research and development, the productivity 
of the pharmaceutical industry has been declining, and this unfortunate phe-
nomenon necessitates novel approaches to drug discovery and development. 
Systems biology is an approach that shows great promise for identifying and 
validating new drug targets and may ultimately facilitate the introduction of 
personalized and preventive medicine. This interdisciplinary field integrates 
traditional experimental techniques from molecular biology and biochemistry 
with computational biology, modeling and simulation, and systems analysis to 
construct quantitative mathematical models of biological networks in order to 
investigate their behavior. The utility of such models depends on their predic-
tive abilities. Although constructing models that can predict all phenotypes 
and perturbation responses is not feasible at present, it is tractable to develop 
models of sufficient detail and scope to predict behavioral responses to par-
ticular perturbations and to perform sensitivity analyses. Model building, vali-
dation, and analysis are usually iterative processes in which the model becomes 
successively closer to the reality of the biological network and its predictions 
become more accurate. In this chapter we introduce model building, param-
eter estimation, model validation, and sensitivity analysis and present case 
studies in each section to demonstrate these concepts.
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2.2.  MODEL BUILDING

2.2.1.  Types of Models

Systems biologists use a variety of models to describe biological data. These 
models can be categorized into interaction-, constraint-, or mechanism-based 
models (Stelling, 2004). Interaction-based models represent network topology 
without consideration for reaction stoichiometry and kinetics. Topology maps 
reveal the modular organization of biological networks, a property that facili-
tates the study of biological organisms because it suggests that subnetworks 
can be studied in isolation. These maps also reveal the principles by which 
cellular networks are organized. Such principles provide insight into network 
behaviors.

Constraint-based approaches utilize information about interaction partners, 
stoichiometry, and reaction reversibility but contain no dynamic information. 
Due to the availability of such data, metabolic networks are frequently ana-
lyzed using constraint-based approaches. This approach can elucidate the range 
of phenotypes and behaviors that a system can achieve given the stoichiometry, 
interaction, and reversibility constraints. It has also been used to predict the 
optimal distribution of metabolic fluxes within a system from the range of 
possible solutions, where the optimal distribution is that which maximizes or 
minimizes some assumed objective, such as biomass production (Famili et al., 
2003). Such analyses give insight into the behavior of an organism not only as 
it currently exists, but also its evolution; if the in silico predictions are in agree-
ment with the experimental data, the assumption that the organism evolved 
to produce the optimized function is consistent with the data.

The most detailed models, the mechanism-based models, capture reaction 
stoichiometry and kinetics, providing quantitative insights into the dynamic 
behavior of biological networks. These models require substantial amounts of 
information about network connectivity and kinetic parameters. These require-
ments have limited the application of these models, although there are several 
systems for which this type of model has been constructed successfully. Such 
models are advantageous because they generate testable experimental hypoth-
eses about dynamic cellular behavior. They also facilitate in silico experiments 
designed to elucidate biological design principles. For example, a model of the 
heat shock response in Escherichia coli was analyzed to determine the role of 
the feedback and feedforward loops that characterize this system (El-Samad 
et al., 2005). The heat shock response (HSR) is a mechanism that compensates 
for stress in the cytoplasm. Stress leads to the accumulation of unfolded and 
misfolded proteins and subsequently triggers the HSR, which induces the 
expression of genes that relieve the accumulation of these denatured proteins 
in the cytoplasm. Induced genes include those that encode chaperone proteins, 
which facilitate the folding of unfolded and misfolded proteins, and proteases 
to eliminate denatured proteins from the system. The HSR is a tightly con-
trolled process governed by a complex regulatory architecture consisting of 
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interconnected feedback and feedforward loops. Although simpler systems 
could in theory also prevent protein accumulation, evolution and natural selec-
tion led to this more complex design. In silico experiments in which the feed-
back and feedforward loops were removed from the system successively 
showed that this relatively complex design provides enhanced robustness com-
pared to simpler systems (El-Samad et al., 2005). These insights would be 
difficult if not impossible to generate in vivo.

2.2.2.  Specification of Model Granularity and Scope

One of the design challenges a modeler faces is that of determining the appro-
priate granularity and scope of a model. These choices are made based on the 
intended purpose of the model and the available data. When designed pru-
dently, models will yield useful testable predictions and provide insights to 
pertinent mechanisms underlying an observed behavior. Granularity defines 
the level of scale that a model encompasses for a given biological network. In 
modeling biological systems, granularity from the level of molecules to cells 
to organ systems is considered. Usually, a model encompasses several levels 
based on the available data, the current understanding of the biological com-
ponents, the model complexity, and the intended model applications. The 
appropriate level of granularity is also determined by considering the biologi-
cal properties and behaviors of interest.

On the other hand, scope describes the extent of mechanistic details repre-
sented in a model. For example, at the molecular level, one has to decide which 
molecular components and reactions to include, and when modeling tissue 
behavior, one may have to decide what cell types to include. Mechanism-based 
models are typically very granular but reduced in scope compared to less 
detailed but larger-scoped topology networks. Constraint-based models are 
intermediate in scope and detail. Regardless of the modeling approach, the 
appropriate level of abstraction, taking into consideration granularity and 
scope, will yield consistent links between biological levels without including 
every detail (Stelling, 2004). The case study presented in Section 2.2.6 illus-
trates the impact of granularity and scope on model predictions.

2.2.3.  Approaches to Model Construction

Model construction can be approached in a top-down or bottom-up manner. 
Top-down approaches are essentially a reverse-engineering exercise and are 
not to be confused with the traditional reductionist approach frequently taken 
by biologists. The top-down approach to in silico model building starts with 
genome-wide data, such as microarray data, and attempts to infer the underly-
ing networks leading to the observed behavior from these data. This type of 
approach is facilitated by the availability of high-throughput data and is advan-
tageous when mechanistic details and connectivity, or the wiring diagram for 
a system, are not well known (Kholodenko et al., 2002). The building of more 
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empirical models in which the mechanistic details are “lumped” together is 
also considered a top-down approach; this results in a model that captures the 
relevant behavior although the mechanistic details are masked. Bottom-up 
approaches, on the other hand, combine connectivity and pathway information 
into a larger network. They start with the constitutive elements, such as genes 
or proteins, link them to their interaction partners, and identify the reaction-
rate parameters associated with each interaction. Both top-down and bottom-
up approaches can lead to detailed models able to predict dynamic response 
to perturbations.

A method that combines concepts from the top-down and bottom-up 
approaches has been proposed and applied with success to model protein 
folding (Hildebrandt et al., 2008). This top-down mechanistic modeling 
approach starts with the most basic mathematical model possible and succes-
sively expands the model scope. The impact of each model addition on the 
system’s performance is evaluated, elucidating the structural requirements of 
the system (Hildebrandt et al., 2008). In essence, this top-down approach starts 
with a model that captures limited mechanistic detail of the system and eluci-
dates the most critical network interactions as it progressively adds detail to 
the wiring diagram, ultimately resulting in a highly detailed mechanistic model. 
A case study employing this method to study protein folding of a single-chain 
antibody is described in Section 2.2.8.

2.2.4.  Metabolic Network Analysis

Metabolic behavior is closely associated with phenotype, and the sequencing 
of the human genome enables the possibility of metabolic network analysis 
(Cornish-Bowden and Cardenas, 2000; Oliveira et al., 2005; Schwartz et al., 
2007). Metabolic networks are highly complex, formed by hundreds of densely 
interconnected chemical reactions. Powerful computational tools are required 
to characterize such complex metabolic systems (Famili et al., 2003; Klamt and 
Stelling, 2003; Nielsen, 1998; Palsson et al., 2003; Reed and Palsson, 2003; 
Schilling et al., 2000; Wiback et al., 2004).

Two basic approaches are available for metabolic network analysis. First, 
the kinetic approach is based on fundamental reaction engineering principles, 
but this approach generally suffers from a lack of detailed kinetic information. 
The Palsson group (University of California–San Diego) has developed a 
dynamic model for a human red blood cell, a system for which detailed kinetic 
information is available. Second, structural approaches require only the stoi-
chiometry of the metabolic network. For a structure-based metabolic network 
analysis, four approaches are available:

1.	 Metabolic flux analysis
2.	 Flux balance analysis
3.	 Extreme pathway analysis
4.	 Elementary mode analysis


