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About the Cover

The watercolor portrait of Carl Friedrich Gauss was made

by J.C.A. Schwartz in 1803 (photo courtesy of Axel

Wittmann, copyright owner). This is the decade when Gauss

first used the least squares method to determine orbits of

asteroids and comets. The 1963 picture of Rudolf Kalman in

his office at the Research Institute for Advanced Studies was

taken after he first published papers describing the Kalman

filter (photo courtesy of Rudolf Kalman, copyright owner).

The GPS IIF spacecraft is the latest operational version of

the spacecraft series (picture courtesy of The Boeing

Company, copyright owner). The GPS ground system uses a

Kalman filter to track the spacecraft orbits and clock errors

of both the spacecraft and ground monitor stations. A least

squares fit is used to compute the navigation message

parameters that are uplinked to the spacecraft and then

broadcast to user receivers. GPS receivers typically use a

Kalman filter to track motion and clock errors of the

receiver. The plot shows the root-mean-squared user range

error (URE) for 29 GPS satellites operational in 2005. Those

URE values were computed using smoothed GPS orbit and

clock estimates as the “truth” reference (see Example 9.6 of

Chapter 9).
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PREFACE

Another book on Kalman filtering and least-squares

estimation—are there not enough of them? Well, yes and no.

Numerous books on the topic have been published, and

many of them, both old and recent, are excellent. However,

many practitioners of the field do not appear to fully

understand the implications of theory and are not aware of

lessons learned decades ago. It often appears that model

structure was not carefully analyzed and that options for

improving performance of the estimation were not

considered. Available books present information on optimal

estimation theory, standard implementations, methods to

minimize numerical errors, and application examples, but

information on model development, practical

considerations, and useful extensions is limited.

Hence the first goal of this book is to discuss model

development in sufficient detail so that the reader may

design an estimator that meets all application requirements

and is somewhat insensitive to modeling errors. Since it is

sometimes difficult to a priori determine the best model

structure, use of exploratory data analysis to define model

structure is discussed. Methods for deciding on the “best”

model are also presented. The second goal is to present

little known extensions of least-squares estimation or

Kalman filtering that provide guidance on model structure

and parameters, or that reduce sensitivity to changes in

system behavior. The third goal is discussion of

implementation issues that make the estimator more

accurate or efficient, or that make it flexible so that model

alternatives can be easily compared. The fourth goal is to

provide the designer/analyst with guidance in evaluating

estimator performance and in determining/correcting

problems. The final goal is to provide a subroutine library



that simplifies implementation, and flexible general purpose

high-level drivers that allow both easy analysis of

alternative models and access to extensions of the basic

estimation.

It is unlikely that a book limited to the above goals would

be widely read. To be useful, it must also include

fundamental information for readers with limited knowledge

of the subject. This book is intended primarily as a

handbook for engineers who must design practical systems.

Although it could be used as a textbook, it is not intended

for that purpose since many excellent texts already exist.

When discussions of theory are brief, alternate texts are

mentioned and readers are encouraged to consult them for

further information. Most chapters include real-world

examples of topics discussed. I have tried to approach the

topics from the practical implementation point of view used

in the popular Applied Optimal Estimation (Gelb 1974) and

Numerical Recipes (Press 2007) books.

Why am I qualified to offer advice on optimal estimation? I

was very lucky in my career to have been in the right place

at the right time, and had the great fortune of working with

a number of very talented people. The reputation of these

people allowed our organizations to consistently obtain

contracts involving R&D for innovative state-of-the-art

estimation. In several cases our implementations were—to

our knowledge—the first for a particular application. Some

of the approximately 40 estimation applications I have

worked on include:

1. Spacecraft orbit determination (batch least squares,

Kalman filtering, and smoothing) and error analysis

2. Spacecraft attitude determination

3. Determination of imaging instrument optical bias and

thermal deformation

4. Combined spacecraft orbit and optical misalignment

determination



5. Monitoring of crustal movement using spaceborne

laser ranging

6. Ship and submarine tracking (active and passive)

7. Aircraft tracking (active and passive)

8. Missile tracking using radar

9. Real-time tank maneuvering target tracking using

multiple hypothesis testing

10. Tank gun tube flexure prediction

11. Ship inertial navigation error modeling

12. Missile inertial guidance error modeling

13. Geomagnetic core field modeling

14. Nonlinear model predictive control for fossil power

plants

15. Subsurface ground water flow modeling and

calibration

16. Geophysical modeling

17. Optical image landmarking using shoreline

correlation

18. Spacecraft bi-propellant propulsion modeling

19. Spacecraft thruster calibration using in-orbit data

20. Global Positioning System constellation

orbit/clock/monitor station tracking (filtering, smoothing,

and maximum likelihood estimation process noise

optimization)

21. Atomic clock calibration

The wide range of applications has included filters with as

few as three states and as many as 1000. The ground water

flow modeling software has been used on problems with

more than 200,000 nodes (400,000 unknowns), although

the solution technique does not compute an error

covariance matrix. Some models were based on first-

principles, some models were empirically derived, and

others were both. Because of this wide range in applications

and model types, it was necessary to develop software and



methods that could easily adapt to different models, and

could be configured to easily change the selection of states

to be estimated. The need to execute large scale problems

on computers that were 200 times slower than today’s PCs

made it necessary to use reduced-order models of systems

and to implement efficient code. This forced the

development of tools and methods for simplifying the

dynamic models, and for determining which states are

important to the estimation. It also encouraged

development of software that could easily adapt to different

models and to different selections of estimated states. The

lessons learned from these experiences are the focus of this

book.

This book starts with introductory material and gradually

expands on advanced topics. The first chapter briefly

describes the estimation problem and the history of optimal

estimation from Gauss to Kalman. Notation used in the book

is discussed. Other background material on matrix

properties, probability theory, and stochastic processes

appears in Appendices.

Chapter 2 discusses different types of dynamic models,

their use as the basis of estimation, and methods for

computing the state transition and process noise matrices.

Use of first-principles models, reduced-order models, and

models for dynamic effects that are poorly known are

addressed. Chapter 3 describes several real-world problems

that demonstrate various modeling principles and are used

as examples in later chapters.

Chapter 4 derives least-squares estimation from several

different points of view (weighted least squares, Bayesian

least squares, minimum mean-squared error, minimum

variance, maximum likelihood, maximum a posteriori) and

discusses various implementations. Chapter 5 discusses

least-squares solution techniques such as Cholesky

decomposition of the normal equations, QR decomposition,



Singular Value Decomposition, and iterative Krylov space

methods. Also addressed is the theory of orthogonal

transformations, solution uniqueness, observability,

condition number, and the pseudo-inverse. Numerous

examples demonstrate the issues and performance.

Chapter 6 discusses methods to evaluate the validity of

least-squares solutions, error analysis, selection of model

order, and regression analysis for parameter estimation.

Chapter 7 addresses the important topics of least-squares

estimation for nonlinear systems, constrained estimation,

robust estimation, data editing, and measurement

preprocessing. Real-world examples are given.

Chapter 8 presents the basics of Kalman filtering, and

shows that it is based on fundamental concepts presented

in earlier chapters. Discrete and continuous versions of the

Kalman filter are derived, and extensions to handle data

correlations and certain types of model errors are

presented. Other topics include steady-state filtering, outlier

editing, model divergence, and model validation. The

relationship to the Wiener filter is also discussed.

Since real-world problems are frequently nonlinear,

methods for nonlinear filtering are discussed in Chapter 9.

Also discussed are smoothing (fixed point, fixed interval,

and fixed lag), analysis of various modeling errors, design of

reduced-order models, and measurement preprocessing.

Chapter 10 discusses numerical issues and shows how use

of factorized (square root) estimation can minimize the

growth of numerical errors. The factorized U-D and SRIF

algorithms and their various implementations are discussed

at length, and smoothers designed to work with the factored

filters are presented. An example based on an inertial

navigation system error model is used to compare

properties of the covariance and factored filters. Usefulness

of the square-root information filter (SRIF) data equation

concept as a general approach to estimation is explained,



and a hydrological flow problem with soft spatial continuity

constraints on hydraulic conductivity demonstrates

application of the data equation to two-dimensional and

three-dimensional spatial problems.

Chapter 11 presents several advanced topics. It shows

how properties of the filter innovations (one-step filter

measurement residuals) allow model jump detection/

estimation, and calculation of the log likelihood function.

The log likelihood is useful when determining which of

several models is best, and in determining the “best” values

of model dynamic parameters and magnitudes of process

and measurement noise. Adaptive filtering techniques such

as jump detection and multiple-model approaches are

discussed. Other topics include constrained estimation,

robust estimation, and newer nonlinear filtering approaches

(unscented and particle filters).

Chapter 12 discusses empirical model development in

cases where it is not possible to develop a complete model

from first principles. It may seem odd that this chapter

appears at the end of the book, but the methods used for

exploratory analysis of stochastic time series data depend

on model concepts discussed in Chapter 2, and on least-

squares techniques presented in Chapters 4 through 6. Use

of spectral analysis for determining model dynamics and

order is explained, and methods for computing parameters

of autoregressive (AR) or autoregressive moving average

(ARMA) models are presented. Accurate determination of

the model order and states is discussed. The theory is

presented at a level where the reader can understand the

implications of assumptions and limitations of the methods.

Applications of the theory for real-world examples are

mentioned, and the performance of the different methods is

demonstrated using data generated from a fourth-order

autoregressive moving average with exogenous input

(ARMAX) model.



Most of the advanced methods presented in this book

have appeared in previous literature. Unfortunately some

methods are rarely used in practice because of difficulty in

implementing flexible general-purpose algorithms that can

be applied to different problems. Chapter 13 presents a

framework for doing this and also describes software for

that purpose. The goal is to structure code so that

alternative models can be easily compared and

enhancements can easily be implemented. Many algorithms

and high-level drivers are available as Fortran 90/95 code

(compatible with Fortran 2003), downloadable from the web

site ftp://ftp.wiley.com/public/sci_tech_med/least_squares/.

Software used for many examples described in various

chapters, and drivers for advanced algorithms are also

included. The various algorithms are implemented in

software that I have used successfully for many years.

Where the original code was written in Fortran 77, it has

been upgraded to Fortran 90/95 usage and standards. In

some cases the library functions and subroutines are

enhanced versions of codes written by others. In particular,

some modules for factorized estimation are an

enhancement of Estimation Subroutine Package or Library

subroutines written by Dr. G. Bierman and associates. (The

original software is still available on the web at sources

listed in Chapter 13.) Other libraries and algorithms are

used by some drivers. One particularly useful library is the

Linear Algebra PACKage (LAPACK). Others packages

implement the LSQR and NL2SOL algorithms.

There were several reasons for choosing Fortran

90/95/2003—these are very different languages than the

Fortran 77 familiar to many. The Fortran 90 enhancements

most relevant to estimation problems are the matrix/vector

notation used in MATLAB® (registered trademark of The

Mathworks, Inc.), and inclusion of matrix/vector operators

such as multiply, dot product, and element-by-element

ftp://ftp.wiley.com/public/sci_tech_med/least_squares/


operations. Other important enhancements include dynamic

array allocation, code modules (encapsulation), limited

variable scope, argument usage validation, and flexible

string handling. Fortran 90 compilers can validate usage of

variables and catch many bugs that would have previously

been caught at execution time. Fortran 95 extends the

capabilities and Fortran 2003 adds many object oriented

capabilities. Fortran 90/95/2003 is a much more suitable

language than C or C++ for linear algebra applications. Use

of MATLAB was also considered, but rejected because it

does not easily integrate into some production applications,

and many previous estimation books have included MATLAB

code. The reader should have little difficulty in converting

Fortran 90/95 code to MATLAB because vector/matrix syntax

is similar. Use of global variables and module features in the

supplied software was deliberately limited so that code

could be more easily ported to MATLAB.

After reading this book you may get the impression that

development of “good” estimation models and algorithms is

less of a science than expected—in some respects it is an

art. Creation of universal “rules” for developing models and

implementing estimation algorithms is a desirable, but

probably unreachable, goal. After four decades of trying to

find such rules, I have come to the conclusion that the best

one can hope for is a set of “guidelines” rather than rules. A

highly respected colleague once announced that “after

years of trying to find rules for characterizing the effects of

model errors on the estimation,” he came to the conclusion

that there are no rules. Every time he discovered a possible

rule, he eventually discovered an exception. Mis-modeling in

the estimation will, of course, usually increase estimation

errors, but it is also possible that model errors can partially

offset the effects of a particular noise sequence, and hence

reduce errors in serendipitous cases. To determine bounds

on estimation errors due to particular types of model errors,



it is usually necessary to simulate both the estimation

algorithm and the true system. This can be done using

Monte Carlo or covariance methods, both of which are time-

consuming.

With regard to algorithm accuracy, numerical analysts

have extensively studied the growth of truncation and

round-off errors (due to finite computer word length) for

various algorithms, and certain algorithms have been

identified as more stable than others. Convergence

properties of iterative algorithms (for nonlinear problems)

have also been studied and some algorithms have been

found to converge faster or more reliably than others for

most problems. However, there are always exceptions.

Sometimes the algorithm that works best on a simple

problem does not work well on a large-scale problem. One

fault of many estimation books is the tendency to present

“simple” low-order examples, leaving the reader with the

impression that the described behavior is a general

characteristic. My suggestion is to implement as many

“reasonable” algorithms as you can, and to then test them

thoroughly on simulated and real data. For example, try to

include a “factorized” estimation algorithm (U-D or SRIF)

option when a covariance formulation is the prime algorithm

because you never know when numerical errors will cause

problems. Also try to implement models and algorithms in

multiple ways so that results can be compared. If it is

important to develop an estimation algorithm that meets

requirements under all possible conditions, expect much

hard work—there are few shortcuts.

You may be tempted to give up and turn over

development to “experts” in the field. I do not want to

discourage potential consulting business, but please do not

get discouraged. The estimation field needs new bright

engineers, scientists, and mathematicians. One goal of this



book is to pass on the lessons learned over several decades

to a new generation of practitioners.

To provide feedback on the book or associated software, or

to report errors, please send email to bgibbs00@ieee.org.
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CHAPTER 1

INTRODUCTION

Applications of estimation theory were limited primarily to

astronomy, geodesy, and regression analysis up to the first

four decades of the twentieth century. However, during

World War II and in the following decades, there was an

explosive growth in the number and types of estimation

applications. At least four reasons were responsible for this

growth. First, development of the new radar, sonar, and

communication technology greatly expanded the interest in

signal processing theory. Second, development of digital

computers provided a means to implement complex math-

based algorithms. Third, the start of space exploration and

associated expansion in military technology provided a

critical need for estimation and control, and also increased

interest in state-space approaches. Finally, papers by

Kalman (1960, 1961), Kalman and Bucy (1961), and others

provided practical algorithms that were sufficiently general

to handle a wide variety of problems, and that could be

easily implemented on digital computers.

Today applications of least-squares estimation and Kalman

filtering techniques can be found everywhere. Nearly every

branch of science or engineering uses estimation theory for

some purpose. Space and military applications are

numerous, and implementations are even found in common

consumer products such as Global Positioning System (GPS)

receivers and automotive electronics. In fact, the GPS

system could not function properly without the Kalman filter.

Internet searches for “least squares” produce millions of

links, and searches for “Kalman filter” produce nearly a



million at the time of this writing. Kalman filters are found in

applications as diverse as process control, surveying,

earthquake prediction, communications, economic

modeling, groundwater flow and contaminant transport

modeling, transportation planning, and biomedical research.

Least-squares estimation and Kalman filtering can also be

used as the basis for other analysis, such as error budgeting

and risk assessment. Finally, the Kalman filter can be used

as a unit Jacobian transformation that enables maximum

likelihood system parameter identification.

With all this interest in estimation, it is hard to believe that

a truly new material could be written on the subject. This

book presents the theory, but sometimes limits detailed

derivations. It emphasizes the various methods used to

support batch and recursive estimation, practical

approaches for implementing designs that meet

requirements, and methods for evaluating performance. It

focuses on model development, since it is generally the

most difficult part of estimator design. Much of this material

has been previously published in various papers and books,

but it has not all been collected in a form that is particularly

helpful to engineers, scientists, or mathematicians

responsible for implementing practical algorithms.

Before presenting details, we start with a general

explanation of the estimation problem and a brief history of

estimation theory.

1.1 THE FORWARD AND

INVERSE MODELING PROBLEM

Modeling of physical systems is often referred to as either

forward modeling or inverse modeling. In forward modeling

a set of known parameters and external inputs are used to

model (predict) the measured output of a system. A forward



model is one that can be used for simulation purposes. In

inverse modeling (a term used by Gauss) a set of measured

values are used to infer (estimate) the model states that

best approximate the measured behavior of the true

system. Hence “inverse modeling” is a good description of

the estimation process.

Figure 1.1 shows a generic forward model: a set of j

constant parameters p, a deterministic time-varying set of l

input variables u(τ) defined over the time interval t0 ≤ τ ≤

t, and an unknown set of k random process inputs q(τ)—

also defined over the time interval t0 ≤ τ ≤ t—are operated

on by a linear or nonlinear operator ft(p,u,q,t) to compute

the set of n states x(t) at each measurement time t. (Bold

lower case letters are used to represent vectors, for

example, p = [p1 p2 ··· pj]
T. Bold upper case letters are

used later to denote matrices. The subscript “t” on f

denotes that it is a “truth” model.) The states included in

vector x(t) are assumed to completely define the system at

the given time. In control applications u(t) is often referred

to as a control input, while in biological systems it is referred

to as an exogenous input.

FIGURE 1.1: Generic forward model.

Noise-free measurements of the system output, yt(t), are

obtained from a linear or nonlinear transformation on the

state x(t). Finally it is assumed that the actual

measurements are corrupted by additive random noise r(t),



although measurement noise is often not considered part of

the forward model.

A polynomial in time is a simple example of a forward

model. For example, the linear position of an object might

be modeled as x(t) = p1 + p2t + p3t2 where t represents

the time difference from a fixed epoch. A sensor may record

the position of the object as a function of time and random

noise may corrupt the measurements, that is, y(t) = x(t) +

r(t). This is a one-dimensional example where neither

process noise (q) nor forcing inputs (u) affect the

measurements. The state will be multidimensional for most

real-world problems.

The inputs p, u, q, and r may not exist in all models. If the

random inputs represented by q(t) are present, the model is

called stochastic; otherwise it is deterministic. In some

cases q(t) may not be considered part of the forward model

since it is unknown to us. Although the model of Figure 1.1

is shown to be a function of time, some models are time-

invariant or are a function of one, two, or three spatial

dimensions. These special cases will be discussed in later

chapters. It is generally assumed in this book that the

problem is time-dependent.

Figure 1.2 graphically shows the inverse modeling problem

for a deterministic model. We are given the time series (or

possibly a spatially distributed set) of “noisy” measurements

y(t), known system inputs u(t), and models (time evolution

and measurement) of the system. These models, fm(p,u,t)

and hm(x), are unlikely to exactly match the true system

behavior (represented by ft(p,u,t) and ht(x)), which are

generally unknown to us. To perform the estimation, actual

measurements y(t) are differenced with model-based

predictions of the measurements ym(t) to compute

measurement residuals. The set of measurement residuals

for the entire data span is processed by an optimization



algorithm to compute a new set of parameter values that

minimize some function of the measurement residuals. In

least-squares estimation the “cost” or “loss” function to be

minimized is the sum-of-squares, possibly weighted, of all

residuals. Other optimization criteria will be discussed later.

The new parameter values are passed to the time evolution

and measurement models to compute another set of model-

based predicted measurements. A new set of measurement

residuals is computed for the entire data span and a new

cost function is computed. If the models are linear, only one

iteration is normally required to converge on parameters

that minimize the cost function. If the models are nonlinear,

multiple iterations will be required to compute the optimum.

FIGURE 1.2: Deterministic inverse modeling.

The optimization process may update the estimates of p

after each new measurement is received. This is called

recursive estimation and is particularly useful when process

noise q(t) is present in the system. This topic is discussed in

Chapter 8 (Kalman filtering) and later chapters.

This inverse modeling summary was intended as a high-

level description of estimation. It intentionally avoided

mathematical rigor so that readers unfamiliar with

estimation theory could understand the concepts before

being swamped with mathematics. Those readers with



significant estimation experience should not be

discouraged: the math will quickly follow.

1.2 A BRIEF HISTORY OF

ESTIMATION

Estimation theory started with the least-squares method,

and earliest applications modeled motion of the moon,

planets, and comets. Work by Johannes Kepler (1619)

established the geometric laws governing motion of

heavenly bodies, and Sir Isaac Newton (1687) demonstrated

that universal gravitation caused these bodies to move in

conic sections. However, determination of orbits using

astronomical observations required long spans of data and

results were not as accurate as desired—particularly for

comets. In the mid-1700s it was recognized that

measurement errors and hypothetical assumptions about

orbits were partly responsible for the problem. Carl Friedrich

Gauss claims to have first used the least-squares technique

in 1795, when he was only 18, but he did not initially

consider it very important. Gauss achieved wide recognition

in 1801 when his predicted return of the asteroid Ceres

proved to be much more accurate than the predictions of

others. Several astronomers urged him to publish the

methods employed in these calculations, but Gauss felt that

more development was needed. Furthermore, he had “other

occupations.” Although Gauss’s notes on the Ceres

calculations appear contradictory, he probably employed an

early version of the least-squares method. Adrien-Marie

Legendre independently invented the method—also for

modeling planetary motion—and published the first

description of the technique in a book printed in 1806.

Gauss continued to refine the method, and in 1809

published a book (Theoria Motus) on orbit determination

that included a detailed description of least squares. He


