

Edited by

Brett F. Carver

Edition first published 2009

© 2009 Wiley-Blackwell

Chapters 1, 2, 5, 6, 7, 9, 18, 20, and 22 are the work of the U.S. Government and are not subject to U.S. copyright.

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical, and Medical business to form Wiley-Blackwell.

Editorial Office

2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services, and for information about how to apply for permission to reuse the copyright material in this book, please see our website at www.wiley.com/wiley-blackwell.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Blackwell Publishing, provided that the base fee is paid directly to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee codes for users of the Transactional Reporting Service are ISBN-13: 978-0-8138-2024-8/2009.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloguing-in-Publication Data

Carver, Brett Frederick, 1958-

Wheat: science and trade / Brett F. Carver. - 1st ed.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-8138-2024-8 (alk. paper)

ISBN-10: 0-8138-2024-3 (alk. paper)

- 1. Wheat-Genetics. 2. Wheat-Diseases and pests. 3. Wheat-Breeding.
- 4. Wheat trade. I. Title. SB191.W5C355 2009

633.1'1-dc22

2008049844

A catalog record for this book is available from the U.S. Library of Congress.

Set in 10.5 on 12 pt Ehrhardt by SNP Best-set Typesetter Ltd., Hong Kong Printed and Bound in Singapore

Disclaimer

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Dedication

to

Paul Jackson, Jr., and Henry Jo Von Tungeln, for their lifetime and relentless dedication to furthering the science and trade of wheat, so all might prosper.

Foreword	xvii	The potential of wild emmer in	21
Preface	xix	wheat improvement Concluding remarks on the process	21
		of wheat evolution	22
Acknowledgements	XX1	Future perspectives	23
		References	23
Contributors	xxiii	2 Development of the	
Section I: Making of a Wheat Plant	3	wheat plant	31
1 Wheat evolution, domestication,		Summary	31
and improvement	5	Introduction	31
Summary	5	Scales of plant development	32
Introduction	5	Canopies	32
Wheat domestication and human	3	Shoots or tillers	33
civilization	6	Phytomers	33
Wheat cultivation	7	Morphological naming schemes	34
Origin, domestication, and evolution	,	Leaves	34
of wheat	8	Tillers	34
Polyploidy, a form of plant evolution		Inflorescence parts	35
Origin of the A genome	10	Roots	35
Origin of the B genome	10	Shoot development	35
Emmer and durum wheat	11	Phenology	36
Origin of Triticum turgidum	11	Shoot apex	39
Origin of Triticum dicoccoides	- 1 1	Integrating phenology, the shoot	
(wild emmer)	11	apex, and phytomers	42
Origin of hexaploid wheat	14	Environmental factors influencing	
Genome evolution and modification	16	shoot development	42
Mechanisms for chromosome evolution	18	Temperature	43
Chromosomal rearrangements		Nontemperature environmental	
and repetitive DNA	18	factors	45
Heterochromatin	18	Digital technologies for wheat	
Repetitive DNA	19	development	47
Repatterning of rDNA arrays in the		Linking molecular biology and	
wheat genome	20	functional genomics to	
Repetitive DNA and mobile elements	3	development	49
as perpetual generators of		Future perspectives	50
diversity and evolution	21	References	50

viii Contents

3 The flowering pathway in wheat	57	Section II: Making of a Wheat Crop	73
Summary	57	4 Systems-based wheat	
Overview of flowering induction		management strategies	75
in wheat	57	Summary	75
Genetic locations of flowering		Introduction	75
time genes	58	Advances in wheat management	75
Genetic loci regulating		Yield building versus yield	
vernalization response	58	protecting factors	75
VRN-1 on the long arm of		Intensive wheat management	76
homoeologous		Matching cultivar to environment	76
chromosomes 5	58	Fertility and pest management	77
VRN-A ^m 2 on chromosome 5A ^m		Timeliness and precision	78
in a genomic region		Previous crop management	78
translocated from		Limitations of the system	79
chromosome 4A ^m	59	Dual-purpose wheat	79
VRN-B3 on the short arm of		Description of the system and	
chromosome 7B	59	area of adaptation	79
Other vernalization genes		Characterizing a suitable	
in wheat	60	dual-purpose cultivar	80
Genetic loci regulating photoperiod		Fertility management	80
sensitivity	60	Grazing termination and impact	
Genetic loci regulating plant		on grain yield	81
development processes	60	No-till wheat production	82
Quantitative trait loci affecting		Why no-till has increased	82
flowering time	61	Long-term experiments	84
Epistatic interactions	61	Future perspectives	84
Positional cloning of flowering time		References	86
genes in wheat	61		
$VRN-A^m I$, an orthologue of API ,		5 Diseases which challenge	
promotes flowering	61	global wheat production—	
$VRN-A^{m}2$, a CCT-domain-containing		the wheat rusts	89
gene, represses flowering	62	Summary	89
VRN-B3, an orthologue of FT ,		Introduction	90
promotes flowering	63	Wheat leaf rust	90
Successes in positional cloning of		Distribution and epidemiology	90
vernalization genes	63	Origin and historical importance	91
Orthologues of other known		Effects on grain and flour quality	92
flowering time genes	64	Taxonomy, life cycle, and host	
Concomitant transcriptional profiles		range	93
of flowering time genes	64	Genetic variation in P. triticina	94
Comparative studies on flowering		Virulence variation	94
pathways in plants	65	Molecular variation	95
Flowering pathways in model		Leaf rust resistance in wheat	96
species	65	Race-specific resistance	96
A model for the wheat flowering		Durable leaf rust resistance	
pathway	66	in wheat	98
Future perspectives	67	Association with other disease	
References	68	resistance genes	100

Leaf rust resistance in		Symptoms and epidemiology	137
durum wheat	101	Causal organism	137
Wheat stripe rust	102	Disease management	138
Distribution and epidemiology	102	Cephalosporium stripe	139
Origin and historical importance	103	Symptoms and epidemiology	139
Taxonomy, life cycle, and		Causal organism	140
host range	104	Disease management	140
Genetic variation in Puccinia		Eyespot	141
striiformis f. sp. tritici	105	Symptoms and epidemiology	141
Virulence variation	105	Causal organisms	141
Molecular variation	106	Disease management	142
Stripe rust resistance in wheat	107	Future perspectives	142
Race-specific resistance	107	References	144
High-temperature adult-plant			
resistance	108	7 Diseases which challenge global	
Slow-rusting resistance	109	wheat production—powdery	
Wheat stem rust	109	mildew and leaf and head	
Distribution and epidemiology	109	blights	155
Origin and historical importance	110	Summary	155
Taxonomy, life cycle, and host range	112	Introduction	155
Genetic variation in <i>Puccinia</i>		Powdery mildew	156
graminis f. sp. tritici	112	Taxonomy and life history	156
Stem rust resistance in wheat	114	Identification and symptomology	156
Future perspectives	116	Distribution and losses	157
References	117	Pathogen variability	157
		Stagonospora nodorum blotch	157
6 Diseases which challenge		Taxonomy and life history	157
global wheat production—		Identification and symptomology	157
root, crown, and culm rots	125	Distribution and losses	158
Summary	125	Pathogen variability	158
Introduction	125	Septoria tritici blotch	158
Common root rot	126	Taxonomy and life history	158
Symptoms and epidemiology	126	Identification and symptomology	158
Causal organism	128	Distribution and losses	158
Disease management	129	Pathogen variability	159
Fusarium crown rot	129	Tan spot	159
Symptoms and epidemiology	129	Taxonomy and life history	159
Causal organisms	130	Identification and symptomology	159
Disease management	130	Distribution and losses	159
Pythium root rot	131	Pathogen variability	160
Symptoms and epidemiology	132	Fusarium head blight	160
Causal organisms	133	Taxonomy and life history	160
Disease management	133	Identification and symptomology	160
Rhizoctonia root rot and bare patch	134	Distribution and losses	161
Symptoms and epidemiology	134	Pathogen variability	161
Causal organisms	135	Management of residue-borne diseases	161
Disease management	136	Crop diversity	161
Take-all	136	Host-plant resistance	161

x Contents

	Powdery mildew	161	10	Temporally and spatially	
	Stagonospora nodorum blotch	162		dependent nitrogen management	t
	Septoria tritici blotch	162		for diverse environments	203
	Tan spot	163		Summary	203
	Fusarium head blight	163		Introduction	203
	Future perspectives	163		Nitrogen-use efficiency as a driver	
	References	164		of new technology	204
				Case study: What defines diverse	
8	Nematodes which challenge			environments	205
	global wheat production	171		Is nitrogen needed	206
	Summary	171		Importance of spatial variability	
	Introduction	171		on N requirement	206
	Cereal cyst nematode	172		Importance of temporal and	
	Symptoms and epidemiology	172		spatial variability combined	207
	Causal organisms	173		Nutrient deficiencies other than N	209
	Management	174		Prediction of yield potential	209
	Root-lesion nematode	177		Prediction of N responsiveness	
	Symptoms and epidemiology	177		independent of yield potential	210
	Causal organisms	178		Midseason N applications can result in	
	Management	179		maximum yields	210
	Future perspectives	182		Determination of midseason N rate	211
	References	183		"Ramp" method of determining	
				midseason N rate	212
9	Insects which challenge global			Future perspectives	213
	wheat production	189		References	213
	Summary	189			-10
	Hessian fly	189	11	Grain yield improvement in	
	Economic impact and distribution	189		water-limited environments	215
	Biology, plant damage, and control			Summary	215
	methods	190		Introduction	215
	Utilization of host-plant resistance	191		Climate and crop growth	216
	Bird cherry–oat aphid	192		Water-limited yield potential	218
	Biology, plant damage, and control			Characterizing target environments	219
	methods	192		Breeding for improved performance	
	Utilization of host-plant resistance	193		under drought	221
	Greenbug	194		Yield potential and genetic gain in	
	Economic impact and distribution	194		water-limited environments	221
	Biology, plant damage, and			Physiological breeding	223
	control methods	194		Breeding tools	224
	Utilization of host-plant			Indirect selection via correlated traits	224
	resistance	195		High-throughput phenotyping	225
	Russian wheat aphid	196		Quantitative trait loci	227
	Economic impact and distribution	196		Functional genomics and beyond	229
	Biology, plant damage, and	1,0		Defining the breeding target	231
	control methods	196		Increasing water uptake	232
	Utilization of host-plant resistance	197		Stem carbohydrate production	234
	Future perspectives	198		Tiller production	236
	References	199		Early leaf area development	238

	Transpiration efficiency	240	Variation from in vitro tissue	
	Maintenance of leaf area	242	culture	282
	Future perspectives	243	Transgenic wheat and its impact	
	References	243	on wheat breeding	282
			Methods to assess genetic variation	284
12	Cutting down on weeds to cut		Methods of selecting while inbreeding	
	a cleaner wheat crop	251	to develop a cultivar	285
	Summary	251	Pedigree selection	286
	Impact of weeds on wheat	252	Bulk selection	287
	Competition	252	Single-seed descent	289
	Nutrients	252	Doubled haploid breeding	291
	Light (shading)	252	Backcrossing	292
	Water	253	Major issues all wheat breeders face	293
	Wheat grain yield	253	Early- vs late-generation selection	293
	Wheat grain quality and		Impact of molecular markers on	
	marketability	254	wheat breeding	294
	Controlling weeds with integrated		The practice of wheat breeding	296
	weed management		Extension of the theory	296
	systems	256	Cultivar release	299
	Preventative control	256	Understanding the phenotype	299
	Cultural control	257	Breeding hybrid wheat	300
	Mechanical control by tillage	260	Importance of technology	301
	Chemical control	261	Future perspectives	301
	Biological control	263	Webliography	303
	Weed spatial variation and precision		References	304
	farming	263		
	Putting it all together: Examples of		14 State of QTL detection and	
	effective systems	264	marker-assisted selection in	
	Winter wheat in North America:		wheat improvement	309
	Winter wheat-summer		Summary	309
	crop–fallow	264	Introduction	309
	Spring wheat in North America	265	Breeding by visual selection	310
	Spring wheat in Australia	266	Complex traits and gene pyramiding	311
	Future perspectives	268	Genetic mapping	311
	References	268	Early progress and developments	313
			Genetic maps	313
~			Consensus map	314
Sec	ction III: Making of a	252	Progress in marker technology	314
	Wheat Cultivar	273	Current progress in QTL analysis and	
13	Wheat breeding: Procedures	~==	deployment of MAS	316
	and strategies	275	Single-gene traits and complex traits	316
	Summary	275	Recurrent selection	316
	Brief history of wheat breeding	276	Replicated field analysis	317
	The context of applied wheat breeding	277	Haplotype analysis	318
	Accessing genetic resources	277	Gene cloning and perfect markers	318
	Methods to generate genetic variation	279	Complex traits	319
	Hybridization	279	Future developments and uses of	220
	Mutations	280	QTL analysis and mapping	320

xii Contents

	Association mapping	320	Sequencing the gene space using	
	Gene expression analysis	321	gene-enrichment	
	Future perspectives	321	methodologies	355
	References	322	New-generation sequencing	
			technologies	357
15	Genome organization and		Future perspectives	357
	comparative genomics	327	References	359
	Summary	327		
	Mapping	328	16 Synthetic wheat—an	
	Genetic mapping	328	emerging genetic resource	369
	Deletion mapping	329	Summary	369
	Comparative genetics	330	Introduction	369
	Comparative mapping	330	Primary synthetic hexaploid wheat	371
	Triticeae tribe	330	New genetic variability for	
	Pooideae subfamily	332	tolerance to biotic stress	371
	Poaceae family	332	Rust diseases	371
	Colinearity at the DNA		Septoria diseases and tan spot	372
	sequence level	333	Karnal bunt	372
	Map-based cloning	335	Fusarium and powdery mildew	
	Disease resistance genes	336	diseases	373
	Lr21	337	Insect pests	373
	Lr10	337	Soilborne nematodes	373
	Lr1	338	New genetic variability for	
	Pm3	338	tolerance to abiotic stress	374
	Genes involved in adaptation	339	Drought	374
	VRN-1, VRN-2, and VRN-3	339	Salinity and waterlogging	374
	Q	341	Micronutrient imbalance	375
	Ph1	341	Temperature stress	375
	Physical mapping in hexaploid wheat	342	Preharvest sprouting	376
	Constructing subgenomic BAC		Grain quality attributes	376
	resources	343	Strategies for using primary synthetics	
	Advantages of subgenomic BAC		in applied wheat breeding	377
	resources	346	Performance of derived synthetics	378
	Chromosome-based approach		Resistance to biotic stress	378
	offers more than		Tolerance to abiotic stress	378
	subgenomic BAC libraries	347	Future perspectives	380
	Physical map of chromosome		References	381
	3B—a case study	348		
	Organization and evolution of the		17 Success in wheat improvement	387
	wheat genome	349	Summary	387
	Organization of genes and repeats	350	World yield gains	387
	Evolution of the wheat genome	352	Genetic component of grain yield	
	Toward sequencing the wheat genome	353	improvement	388
	Sanger sequencing	354	Empirical estimation of genetic gain	389
	Hierarchical genome sequencing	354	Grain yield	389
	Whole-genome shotgun		Yield components	391
	sequencing	354	Wheat yield gains in light of other crops	392
	Sequencing of gene-rich		Future perspectives	393
	BAC clones	354	References	394

18	Transgenic applications in		Fundamental wheat classification criteria	444
	wheat improvement	397	US system of wheat classification	444
	Summary	397	Grade factors	444
	Introduction	398	Nongrade factors	446
	Wheat transformation: Methods		Moisture content	446
	and results	398	Protein content	446
	Targets for wheat transformation	398	Wheat ash content	446
	DNA delivery methods and		Kernel weight	446
	integration	399	Grain hardness	447
	Identification of transformants	401	Falling number	447
	Regeneration of fertile plants	404	Starch viscosity	447
	Efficiency of wheat transformation	404	Wet gluten content	447
	Applications of wheat transformation	404	Dough performance	448
	Promoters	405	Product performance	449
	Applications for functional		Canadian system of classification	
	genomics	406	and marketing	449
	Applications to understand or		Australian system of classification	
	modify seed properties	408	and marketing	450
	Applications to improve pathogen		Purchasing decision making	450
	and pest resistance	412	Grain exchanges	451
	Applications to improve tolerance		Open outcry system	452
	of abiotic stress	414	Farmer to elevator	452
	Other applications	415	Elevator to world	452
	Impacts on production agriculture	416	Future perspectives	453
	Limitations of wheat transformation		References	454
	technology	418		
	Genotype	418	20 Passing the test on wheat	
	Structures of integrated		end-use quality	455
	transgenes	418	Summary	455
	Integration location	421	Introduction	455
	Inheritance anomalies	421	Characteristics of major	
	Transgene expression levels and		wheat-based foods	457
	stability	422	Essential bread requirements	457
	Unintended effects of		Straight-dough processes	457
	transformation, transgene		Sponge and dough and other	
	insertion, or expression	423	pre-ferment processes	458
	Practical considerations	424	High-volume bread types	458
	Future perspectives	424	Steamed breads	459
	References	426	Low-volume bread types	460
			Two-layered bread	460
Se	ction IV: Making of a		Single-layered bread	461
	Wheat Industry	437	Asian noodles	461
19	Overview of wheat		Soft-bite noodles	462
	classification and trade	439	Hard-bite noodles	462
	Summary	439	Soft wheat products	462
	Introduction	439	Cookies and crackers	462
	World production	439	Cakes and batters	463
	Global wheat trade	440	Durum pasta	464

xiv Contents

	Compositional analysis and		Flat bread	499
	grain testing	465	Yellow alkaline noodles	500
	Moisture	465	White salted noodles	500
	Protein content	466	Cookies (biscuits) and cakes	500
	Kernel texture	466	Chinese steamed bread	500
	Grain soundness and α-amylase	468	Starch-gluten manufacture	500
	Polyphenol oxidase	469	Pasta	500
	Test milling	470	Protein composition and wheat	
	Grain and flour ash	470	quality	500
	Flour color	471	Dough quality and functional	
	Speckiness	472	proteins	501
	Starch and flour properties	472	Dough quality and polypeptide	
	Total starch content	472	composition	502
	Starch damage	472	Grain hardness	505
	Starch and flour paste viscosity		Starch pasting properties	505
	and swelling power	472	Protein composition and genotype	
	Solvent retention		identification	505
	capacity	475	Application of principles: Defects	
	Dough testing and		explained	505
	prediction of dough		Lipid composition and wheat	
	properties	476	quality	506
	SDS sedimentation volume	476	Lipid composition and distribution	506
	Recording dough mixers	477	Interaction with gluten proteins	508
	Measuring extensional properties		The role of flour lipids in baking	508
	of developed doughs	479	Dough structure and gas cell	
	Uniaxial extension	479	stabilization	509
	Biaxial extension	479	Starch composition	
	Other dough rheology tests	482	and wheat quality	509
	End-product testing	482	Amylose content	510
	Emerging opportunities	483	Starch granules	510
	Spectroscopy	483	Gelatinization temperature	511
	Cultivar identification	485	Viscosity of starch	511
	Future perpectives	485	Swelling power	512
	References	486	Nonstarch polysaccharide	
			composition and	
21	The biochemical and molecular		wheat quality	512
	basis of wheat quality	495	Flour color and wheat quality	513
	Summary	495	Enzymes and wheat quality	514
	Introduction	496	Lipase and lipoxygenase	514
	Diversity of wheat utilization	496	Polyphenol oxidase	515
	The range of uses of wheat—		Peroxidase	515
	western foods	496	Enzymes in sprouted or	
	The range of uses of wheat—		LMA-affected grain	515
	"exotic" foods	497	Proteases	516
	Industrial uses of wheat	497	Selection for wheat quality in	
	Processing specifications for wheat		breeding	516
	utilization	499	Future perspectives	516
	Pan bread	499	References	517

22 New uses for wheat and		New market for wheat in ethanol	
modified wheat products	521	industry	539
Summary	521	Soft and waxy wheat for ethanol	
Introduction	521	production	541
White wheat	523	Feedstock criteria for ethanol	
White wheat breeding	523	production	541
Hard white wheat—consumer		Evaluation techniques for	
markets	525	feedstock and co-product	
Low polyphenol oxidase wheat	526	quality	542
Altered starch	527	Recent advances in technology	542
Altered starch breeding	527	Fermentation technology	542
Waxy (amylose-free) wheat	527	Processing technology	543
High-amylose wheat	527	Future perspectives	543
Sweet wheat	528	References	544
Altered starch characteristics	528		
Unique waxy wheat flour			
properties	528	23 US wheat marketing system and	d
Waxy wheat starch structure		price discovery	551
and properties	529	Summary	551
High-amylose wheat	531	Introduction	551
Wheat phytochemicals	532	Marketing system	551
Phenolics	532	Price discovery and determination	552
Carotenoids	533	Commodity futures exchanges	553
Vitamin E	534	Hedges	554
Lignans	534	Cash price relationships	555
β-Glucan	535	Physical flow of wheat	555
Phytosterols	535	Cash prices	555
Dietary fiber, inulin, and resistar	nt	Quality discounts and	
starch	536	premiums	556
Betaine	537	Future perspectives	556
Industrial wheat	538	Reference	556
Breeding wheat for nonfood uses	538		
Wheat conversion to ethanol	539	Index	557

Foreword

"No one can be a statesman who is entirely ignorant of the problems of wheat." This statement from Socrates carries as much impact now, as when it was first uttered over two thousand years ago. Indeed just as the system of government of ancient Greece has become globalized, so too has their staple cereal. At around 680 million tonnes from 224 million hectares in 2008–2009, wheat is the world's greatest source of food calories from the biggest crop area; it is the most widely consumed grain across all its diverse products, and the agricultural commodity most traded internationally (124 million tonnes).

When wheat price more than doubled in the vear up to March 2008, alarm bells were ringing for politicians; eight months later it has fallen back to where it was, which although an alarming fall for farmers, marks a return to around the smoothed long-term trend price. This price in real terms is as low as wheat has ever been, resulting from the steady decline in the real price over the last 60 years, a huge bonus for consumers and world development, and a reflection of productivity growth based on science and technology. Reasonable wheat prices are vital for poor consumers; only productivity gains can deliver this and at the same time allow wheat farming to remain economically viable. Whether researchers can continue to achieve these gains-while doing so sustainably, including avoiding expansion of the world's wheat area, and delivering better wheat products—is the subject of this book.

While cost reductions through input efficiencies per ton of grain are important, wheat productivity gains over the last 60 years largely reflect yield increase: world wheat yield has risen from 1.0 to 3.0 t ha⁻¹ in this period, and continues to

advance at about 1% per annum. Wheat occupies a very broad range of agroecologies, from favorable irrigated and high-rainfall environments to unfavorable, semiarid environments, yet generally similar relative progress, beginning in the developed world, has now been seen under almost all these circumstances. Underpinning this is a huge international research effort, spanning all aspects of genetic improvement and crop management.

At the beginning, this was based entirely in the public sector: the last 30 years has seen a significant shift to private-sector research, not just in agricultural chemicals and machinery, but also in variety delivery. For many obvious reasons yield must continue to grow, and to do so at better than the current 1%. While rural extension and yield gap closing are important in achieving this, vital will be wheat research investments at an intensity (research costs per value of product) at least as high as in the past, along with gains in research efficiency. Close communication and sharing of ideas and materials among wheat researchers, as is so evident in the chapters of this book, should engender efficiency gains, since the challenges are daunting for individual research teams and are often common around the world; achieving efficient private-public complementation remains another important goal.

Also evident is the fact that environmental issues and the industrial and nutritional quality of grain have become increasingly important for researchers and farmers alike. In the former area, progress has been made through yield increase itself, and through the gradual adoption of conservation tillage and more efficient input delivery to the crop. It is not helped by misguided notions

xviii Foreword

of low-input farming nor, at the other extreme, input subsidies and excessive price support. Driven by intense market competition, wheat industrial quality in major wheat exporting nations has probably been improved in the last 30 years as significantly as has yield itself. In developing countries, nutritional quality could assume greater importance as consumers have less opportunity to favorably supplement high-wheat diets. Many quality improvements are foreshadowed herein.

It is not clear how much yield could increase with better pest, nematode, disease, and weed control because modern agriculture invests heavily to keep these losses low (probably <10%); but losses could be higher in neglected parts of the developing world. Either way, the whole world needs less costly control methods, especially easy-to-incorporate and more durable host-plant resistance, which is probably the most fruitful field for transgene deployment. Although modern wheat fields are often deplored because of their apparent uniformity, the researcher knows that it is the underlying hidden genetic diversity, in the face of biotic and abiotic stresses, and the diversity of the management and cropping system,

which is the diversity that really counts. At the same time, the researcher must remain always vigilant against evolving biotic stress organisms. Over 25% of the book is devoted to biotic stresses of wheat.

Wheat is currently the premier food grain of the world, because of its versatility in production and use, and because of the huge body of research knowledge underpinning modern wheat production and marketing which can be seen here. Wheat is the grain crop par excellence of the vast temperate semiarid and subhumid regions of the world, regions which will grow in importance as water and land competition elsewhere intensifies. Because of these advantages, wheat should remain the premier food grain through to peak world population and beyond. The world needs this to be the case, but continuing research across all of the diverse fields affecting wheat productivity and utilization that are described herein will be essential.

> R.A. (Tony) Fischer, CSIRO Plant Industry, Canberra, Australia December 2008

Preface

Wheat is the cosmopolite of edible plants. It can be used in worldly ways and grown in worldly places. Its sphere of influence is global. Scientists marvel at its genetic complexity, but its complexity is perfectly fitting for such a versatile and planetary crop plant.

Much of what the world's agricultural society produces in food derives from wheat and other cereal crops. Hence to no surprise, a critical and nutritious part of the human diet comes from wheat—indeed no other grain crop can produce as many types of food. Calling it a staple may be a bland understatement, when wheat can dominate the ingredient list of appetizer to dessert, with versatility beyond what the mill can generate. Wheat farmers do not simply produce a wheat crop; they produce a food ingredient, and it is this distinction on which *Wheat: Science and Trade* is based.

In a specialized and highly focused era of scientific discovery, our literary base can easily become highly fragmented. This tendency applies no less to the literature for wheat. Whether the subject addresses soil management, epidemiology of a various array of pathogens, or genetic approaches to improving wheat productivity, one can find a significant piece of literature devoted entirely to that subject area within the past 30 years. This book represents a concerted attempt to swing the literary pendulum back to center. This is a book about wheat and the products derived from it—not strictly about bread wheat, not about wheat breeding, and not only about wheat quality, but all of that, and more. Consider it a drill-to-mill treatise of the current knowledge base and futuristic visions for wheat to flourish in a global environment and in a world market.

Wheat: Science and Trade was designed as a hub for directing students, practitioners, and scientists into four knowledge centers, or sections. The primary intended audience includes a wide spectrum of agricultural scientists working in the general research areas of crop science and soil science, and more specifically in weed science, plant pathology, entomology, genetics, cultivar development, physiology, taxonomy, cereal chemistry, food processing, and agribusiness. Another principal use of this book should include the classroom for advanced undergraduate students and graduate students studying crop production and utilization. Vocational agricultural teachers and practitioners, and the clientele they serve, will also find this book to be a critical resource. No matter the audience, the reader will likely reach equilibrium with the information provided herein and that which is extensively cited in a multitude of references.

The four sections approach wheat science and trade from the making of a wheat plant, to the making of a wheat crop, to the making of a wheat cultivar, and finally to the making of a wheat industry. The various sections provide the following: (i) fresh perspectives on classic tenets that define the evolutionary and phenological development of wheat (Section I, Chapters 1–3); (ii) a comprehensive view of some of the primary pathogens, pests, and abiotic stress factors that must be overcome to ensure a viable and marketable product, and the practices that can be adopted to maximize profitability (Section II, Chapters 4–12); (iii) the genetic components that define wheat improvement and cultivar development, from dissection of a myriad of traits critical to the total wheat industry to the development of novel

xx Preface

genetic resources critical to its continued world-wide production (Section III, Chapters 13–18); and (iv) a contemporary look at the functional properties that allow wheat products to appear from one end of the grocery store to the other, and the forces that drive wheat from family farm to river barge (Section IV, Chapters 19–23).

Chapters 20 to 22 provide a three-dimensional perspective on what determines wheat quality and how wheat quality can be manipulated to benefit humankind, even beyond the natural power of wheat's flour. Each of these chapters begins from a common base to which most might consider the one and only product of wheat—milled flour. Each chapter extends from that base to take the subject of wheat quality to very different levels, whether to describe the techniques used to predict quality from an end-use perspective, or to reveal

the basic biochemical components which may lay the foundation for end use, or to consider areas which newly define wheat quality. Finally, we are reminded that certain uses of wheat demand different pricing structures, but more determines wheat price than the wheat itself.

Excellence reflected in this book emanates from the talented panel of authoritative contributors with whom I have had the honor to work. My sincerest appreciation is extended to all of them. I trust you will be equally rewarded by their insight as I.

Brett F. Carver, PhD
Editor, Regents Professor
Department of Plant and Soil Sciences
Oklahoma State University
Stillwater, OK
September 2008

Acknowledgements

I must first give tribute to the honor of simply having the opportunity to study the science and trade of wheat in one of the most intensive areas of wheat production, wheat research, and wheat marketing in the world—the US Great Plains. Twenty-five years of participation in the wheat improvement community of this region laid a firm foundation and provided a fertile environment to edit a text on the very subject of wheat science and trade. Initial formulation of some of its content leaned on the expertise of a few persons to whom I am most grateful: Mark Hodges, John Oades, Carl Griffey, and Brad Seabourn.

The authors and I acknowledge several colleagues who reviewed substantial parts of the manuscript draft: Bob Hunger, Gary Muehlbauer, Phil Bregitzer, Liuling Yan, Brad Seabourn, Perry Gustafson, Elizabeth Ross, and Surjani Uthayakumaran. Perry Gustafson and coauthors of Chapter 1 extend their thanks to Kathleen Ross for her careful editing of the manuscript and the reference list. Greg Rebetzke and coauthors (Chapter 11) acknowledge the use of data and figures kindly provided by Drs. David Bonnett, Marc Ellis, and Xavier Sirault. Stephen Baenziger and Ron DePauw (Chapter 13) wish to extend their special thanks to C. Davidson and F.R. Clarke for their comments and review, to Aidan Beaubier for literature acquisitions and grammar critique, and to D. Schott, S. Inwood, and R. Lamberts for their assistance with figures and plates. Katrien Devos and coauthors of Chapter 15 wish to thank colleagues Jeff Bennetzen, Alicia Massa, Etienne Paux, Pierre Sourdille,

Pavla Suchánková, Wolfgang Spielmeyer, Jan Šafář, Hana Šimková, and Xiangyang Xu for sharing unpublished data.

The staff at Wiley-Blackwell could not have been more accommodating and understanding, and for that I extend my deepest appreciation to Shelby Hayes Allen, Erica Judisch, and commissioning editor Justin Jeffryes.

I am grateful to my academic home, Oklahoma State University, for allowing the time and resources to focus intensively on editorial responsibilities. Certain key individuals are recognized for piloting the Oklahoma State University wheat breeding program during my repeated grounding, including a very capable wheat breeder for 25-plus years, Wayne Whitmore, and three dedicated graduate students, Rima Thapa, Jana Morris, and Shuwen Wang.

My thanks go to Jessica Evans, who as an undergraduate student at Oklahoma State University devoted countless hours perusing the reference lists and each text citation for accuracy and synchrony. Travis Collins, another OSU undergraduate student, provided expert support upon Jessica's graduation. Melanie Bayles, a cotton geneticist, supplied much appreciated expertise in assembly of the index. Thanks also go to Debbie Porter and Vickie Brake, who provided computer support in the final organization and production of figures, plates, and tables. I am especially grateful for the extended patience and understanding of my wife, Terri, who eloquently coined a new term with an old word, *LAB*—life after book.

Brett F. Carver

Contributors

Kim B. Anderson, PhD

Professor and Crop Marketing Specialist

Charles A. Breedlove Professor in Agribusiness

Department of Agricultural Economics

Oklahoma State University

Stillwater, OK

USA

Robert Asenstorfer, PhD

Research Fellow

University of Adelaide

School of Agriculture Food and Wine

Waite Campus Glen Osmond Australia

David Backhouse, PhD

Senior Lecturer in Plant Pathology

University of New England Armidale, New South Wales

Australia

P. Stephen Baenziger

Eugene W. Price Distinguished Professor Department of Agronomy and Horticulture

University of Nebraska

Lincoln, NE

USA

Ian Batey, PhD, MRACI Honorary Research Fellow

Food Science Australia and Wheat CRC

North Ryde (Sydney)

Australia

Arthur D. Bettge USDA-ARS

Western Wheat Quality Lab

Pullman, WA

USA

Robert E. Blackshaw, PhD

Weed Scientist

Agriculture and Agri-Food Canada Research

Center

Lethbridge, Alberta

Canada

Ann E. Blechl, PhD Research Geneticist

USDA-ARS

Western Regional Research Center

Albany, CA USA

B. Wade Brorsen, PhD

Regents Professor and Jean & Patsy Neustadt Chair

Department of Agricultural Economics

Oklahoma State University

Stillwater, OK

USA

Scott C. Chapman, PhD Crop Adaptation Scientist CSIRO Plant Industry

Brisbane Australia

Xianming Chen, PhD Research Plant Pathologist

USDA-ARS

Wheat Genetics, Quality, Physiology and

Disease Research Unit

Pullman, WA

USA

Anthony G. Condon, PhD

Crop Physiologist CSIRO Plant Industry

Canberra Australia xxiv Contributors

Geoffrey Cornish, BSc, Grad Dip Teaching, Assoc Dip Appl Chem, MRACI Leader Wheat Quality Research Grain Quality Research Laboratory South Australian Research and Development Institute Adelaide Australia

Li Day, PhD Senior Research Scientist Food Science Australia Werribee Australia

Ronald M. DePauw, CM, SOM, FAIC, FCSA, BA, Msc, PhD Senior Principal Wheat Breeder SemiArid Prairie Agricultural Research Centre Agriculture and Agri-Food Canada Swift Current, Saskatchewan Canada

Katrien M. Devos, PhD Professor Department of Crop and Soil Sciences, and Department of Plant Biology University of Georgia Athens, GA USA

Jaroslav Doležel, PhD Principal Investigator and Research Group Leader Laboratory of Molecular Cytogenetics and Cytometry Institute of Experimental Botany Olomouc Czech Republic

Jeffrey T. Edwards, PhD Small Grains Extension Specialist Oklahoma State University Stillwater, OK USA Catherine Feuillet, PhD
Research Director
Structure, Function and Evolution of the Wheat
Genomes Laboratory
INRA—Genetics, Diversity and Ecophysiology
of Cereals Unit
Clermont-Ferrand
France

Mark E. Fowler Director of Technical Services International Grains Program Kansas State University Manhattan, KS USA

Gurjeet S. Gill, PhD Associate Professor School of Agriculture, Food and Wine University of Adelaide South Australia Australia

Robert A. Graybosch, PhD Research Geneticist USDA-ARS-GFBU University of Nebraska Lincoln, NE USA

Perry Gustafson, PhD Research Geneticist USDA-ARS University of Missouri Columbia, MO USA

Marion O. Harris, PhD Department of Entomology North Dakota State University Fargo, ND USA

Louis S. Hesler, PhD Research Entomologist North Central Agricultural Research Laboratory USDA-ARS Brookings, SD USA Contributors xxv

Gavin Humphreys, PhD Research Scientist

Agriculture and Agri-Food Canada

Cereal Research Centre

Winnipeg Canada

Yue Jin, PhD

Research Plant Pathologist

USDA-ARS

Cereal Disease Laboratory

St. Paul, MN

USA

Huw D. Jones, PhD, FIBiol

Principal Investigator and Research Group

Leader

Cereal Transformation Laboratory

Plant Science Department

Rothamsted Research Harpenden

United Kingdom

James Kolmer, PhD Research Plant Pathologist

USDA-ARS

Cereal Disease Laboratory

St. Paul, MN

USA

Rui Hai Liu, MD, PhD Associate Professor

Department of Food Science

Cornell University

Ithaca, NY

USA

Philippe Lucas

Directeur de Recherche

Institut National de la Recherche

Agronomique Le Rheu France

Drew J. Lyon, PhD

Dryland Cropping Systems Specialist University of Nebraska-Lincoln Panhandle Research and Extension

Center

Scottsbluff, NE

USA

XueFeng Ma, PhD Senior Scientist Ceres, Inc.

Thousand Oaks, CA

USA

Ronald L. Madl, PhD

Director, Bioprocessing and Industrial Value

Added Program

Co-director, Center for Sustainable Energy

Grain Science Department, Kansas State University

Manhattan, KS

USA

Daryl Mares, PhD Senior Research Fellow University of Adelaide

School of Agriculture Food and Wine

Waite Campus Glen Osmond Australia

David Marshall, PhD

Research Leader and Professor

USDA-ARS

Department of Plant Pathology North Carolina State University

Raleigh, NC

USA

Kendall L. McFall

Senior Vice President and Chief Operating Officer

Engrain, LLC

Adjunct Instructor

Department of Grain Science

Kansas State University Manhattan, Kansas

USA

C. Lynne McIntyre, PhD

Research Geneticist

CSIRO Plant Industry

Brisbane Australia

Gregory S. McMaster, PhD

USDA-ARS, Agricultural Systems Research

Unit

Fort Collins, CO

USA

xxvi Contributors

Kolumbina Mrva, PhD Senior Research Fellow University of Adelaide School of Agriculture Food and Wine Waite Campus Glen Osmond Australia

Eviatar Nevo, PhD Professor of Evolutionary Biology Director International Graduate Center of Evolution Institute of Evolution University of Haifa Mount Carmel, Haifa Israel

Julie M. Nicol, PhD Senior Soil Borne Wheat Pathologist ICARDA-CIMMYT Wheat Improvement Program CIMMYT Global Wheat Program Ankara Turkey

Ivan Ortiz-Monasterio, PhD Agronomist and Wheat Harvest Coordinator CIMMYT Global Wheat Program Mexico, D.F. Mexico

Timothy C. Paulitz, PhD
Research Plant Pathologist
USDA–ARS
Root Disease and Biological Control Research
Unit
Washington State University
Pullman, WA
USA

David R. Porter, PhD Professor and Head Plant and Soil Sciences Oklahoma State University Stillwater, OK USA Gary J. Puterka, PhD USDA–ARS Plant Science Research Laboratory Stillwater, OK USA

Olga Raskina, PhD Senior Scientist Institute of Evolution University of Haifa Mount Carmel, Haifa Israel

William R. Raun, PhD Regents Professor Plant and Soil Sciences Oklahoma State University Stillwater, OK USA

Greg J. Rebetzke, PhD Research Geneticist CSIRO Plant Industry Canberra Australia

Richard A. Richards, PhD Research Program Leader CSIRO Plant Industry Canberra Australia

Andrew S. Ross, PhD Associate Professor Department of Crop and Soil Science Oregon State University Corvallis, OR USA

Jackie C. Rudd, PhD Texas AgriLife Research Texas A&M System Amarillo, TX USA

Yong-Cheng Shi, PhD Professor Department of Grain Science and Industry Kansas State University Manhattan, KS USA Contributors xxvii

Richard W. Smiley, PhD Professor of Plant Pathology Oregon State University Pendleton, OR USA

John B. Solie, PhD Biosystems and Agricultural Engineering Oklahoma State University Stillwater, OK USA

Daryl J. Somers, PhD Research Chair Molecular Breeding and Biotechnology Vineland Research and Innovation Centre Vineland Station, Ontario Canada

Richard M. Trethowan, PhD Professor of Plant Breeding University of Sydney Plant Breeding Institute Camden, New South Wales Australia

Maarten van Ginkel, PhD, Ir Deputy Director General—Research ICARDA Aleppo Syria

Anthony F. van Herwaarden, PhD Crop Agronomist CSIRO Plant Industry Brisbane Australia Donghai Wang, PhD Associate Professor Department of Biological and Agricultural Engineering Kansas State University Manhattan, KS USA

Michelle Watt, PhD Research Scientist CSIRO Plant Industry Canberra Australia

Colin Wrigley, MSc, PhD, FRACI Honorary Research Fellow Food Science Australia and Wheat CRC North Ryde (Sydney) Australia

Xiaorong Wu, PhD Research Associate Department of Biological and Agricultural Engineering Kansas State University Manhattan, KS USA

Liuling Yan, PhD Assistant Professor Plant and Soil Sciences Oklahoma State University Stillwater, OK USA