
David Barnett
David Groth
Jim McBee
For Jordan and Cameron
—D.B.

For my wife, my daughter, my family, and my friends.
—D.G.

This book is dedicated to my family (Mom, Dad, sisters, cousins, and aunts). Over a distance of thousands of miles and many years, you still influence my actions every day. We are all products of our environment; mine was great!
—J.M.
Acknowledgments

I originally got involved with this book by assisting Jim McBee with the initial writing of the first edition. Sybex subsequently asked me to revise the book for both the second and third editions. I’m grateful to Jim and everyone at Sybex for providing me with this opportunity. Thanks to all.

Much of my cable knowledge was accumulated under the supervision of Dr. James S. Tyler, and I would be remiss if I didn’t acknowledge his significant contribution to my experience. Also, I would like to thank Jeanie Baer, RCDD, for her help and advice over the years and for keeping me up to date on what’s happening in the TIA Standards’ workgroups. Ron Hayes, practitioner of the black art of transmission engineering, deserves thanks and credit for suffering me as his occasional sorcerer’s apprentice. I would like to thank Rob Jewson, RCDD, friend and business partner, for his advice and assistance.

—David Barnett

This book has been a long time in the making. First and foremost, I would like to acknowledge my co-author, Jim McBee, for his excellent work on this project. He should be proud of his efforts, and it shows in the quality of this book. Also, we would like to acknowledge the other behind-the-scenes people that helped to make this book, starting with Dan Whiting of Border States Electric Supply in Fargo, ND, for all the reference material and pictures he and his company provided.

His expertise was invaluable in the making of this book. Thanks, Dan! We would also like to thank photographer Steve Sillers for taking many of the pictures throughout this book.

This book would not exist without Sybex Acquisitions Editor Maureen Adams. Thanks for bringing Jim and me together and for managing this project. Additionally, I would like to thank Developmental Editor Brianne Hope Agatep, Editor Sally Engelfried for editing this book, and Production Editor Erica Yee for managing its production. Also, I would like to recognize the rest of the Sybex staff for all their hard work on this book, including (but not limited to) Judy Fung for her work on the color insert; the proofreaders, Laurie O’Connell and Nancy Riddiough; the indexer Ted Laux; and the electronic publishing specialists at Happenstance Type-O-Rama, who spent time and effort making the book look good. Finally, I would like to recognize my wife, daughter, family, and friends, without whom I couldn’t do any of this and for whom I do this.

—David Groth
At the Spring 1999 Networld+InterOp, David Groth, Maureen Adams from Sybex, and I talked about the need for a book about network cabling that was targeted toward IT professionals and people just starting out with cabling. The first edition was a resounding success, and now you hold a brand-new third edition in your hands!

Special thanks also goes to Janice Boothe, RCDD (and her awesome www.wiring.com Web site) and Mike Holt for their knowledge of codes. Paul Lucas, RCDD, of Paul’s Cabling tolerated my nonstop questions and provided many great stories and experiences. Kudos to Matt Bridges for his assistance with components. Jeff Deckman gave his vital insight and input to the Request for Proposal (RFP) chapter; his cooperative approach to working with vendors will help many people successfully deploy telecommunications infrastructures. Charles Perkins drew from his years of field experience to help with the case studies. Others who reviewed portions of the book and provided feedback include Maureen McFerrin, Randy Williams, RD Clyde, John Poehler, and David Trachsel. Jeff Bloom and the folks at Computer Training Academy (where I teach Windows NT, TCP/IP, and Exchange courses) are always outstandingly patient when I take on a project like this. Finally, the consummate professionals at Sybex always leave me in awe of their skills, patience, and insight.

—Jim McBee
Contents at a Glance

Introduction

Part I Technology and Components

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction to Data Cabling</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Cabling Specifications and Standards</td>
<td>61</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Choosing the Correct Cabling</td>
<td>115</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Cable System and Infrastructure Constraints</td>
<td>151</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Cabling System Components</td>
<td>177</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Tools of the Trade</td>
<td>203</td>
</tr>
</tbody>
</table>

Part II Network Media and Connectors

Chapter 7	Copper Cable Media	237
Chapter 8	Wall Plates	279
Chapter 9	Connectors	299
Chapter 10	Fiber-Optic Media	325
Chapter 11	Unbounded (Wireless) Media	349

Part III Cabling Design and Installation

<p>| Chapter 12 | Cabling-System Design and Installation | 375 |
| Chapter 13 | Cable-Connector Installation | 411 |
| Chapter 14 | Cable-System Testing and Troubleshooting | 445 |
| Chapter 15 | Creating a Request for Proposal (RFP) | 481 |
| Chapter 16 | Cabling @ Work: Experience from the Field | 509 |
| Glossary | | 527 |</p>
<table>
<thead>
<tr>
<th>Part IV</th>
<th>Appendices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A:</td>
<td>Cabling Resources</td>
</tr>
<tr>
<td>Appendix B:</td>
<td>Registered Communications Distribution Designer (RCDD) Certification</td>
</tr>
<tr>
<td>Appendix C:</td>
<td>Home Cabling: Wiring Your Home for Now and the Future</td>
</tr>
<tr>
<td>Appendix D:</td>
<td>Overview of IEEE 1394 and USB Networking</td>
</tr>
<tr>
<td>Appendix E:</td>
<td>The Electronics Technicians Association, International (ETA) Certifications</td>
</tr>
</tbody>
</table>

Index 659
Contents

Introduction

xxv

Part I Technology and Components

Chapter 1 Introduction to Data Cabling

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction to Data Cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Golden Rules of Data Cabling</td>
</tr>
<tr>
<td></td>
<td>The Importance of Reliable Cabling</td>
</tr>
<tr>
<td></td>
<td>The Cost of Poor Cabling</td>
</tr>
<tr>
<td></td>
<td>Is the Cabling to Blame?</td>
</tr>
<tr>
<td></td>
<td>You’ve Come a Long Way, Baby: The Legacy of Proprietary Cabling Systems</td>
</tr>
<tr>
<td></td>
<td>Proprietary Cabling Is a Thing of the Past</td>
</tr>
<tr>
<td></td>
<td>Cabling and the Need for Speed</td>
</tr>
<tr>
<td></td>
<td>Types of Communications Media</td>
</tr>
<tr>
<td></td>
<td>Cable Design</td>
</tr>
<tr>
<td></td>
<td>Plenum</td>
</tr>
<tr>
<td></td>
<td>Riser</td>
</tr>
<tr>
<td></td>
<td>General Purpose</td>
</tr>
<tr>
<td></td>
<td>Limited Use</td>
</tr>
<tr>
<td></td>
<td>Cable Jackets</td>
</tr>
<tr>
<td></td>
<td>Wire Insulation</td>
</tr>
<tr>
<td></td>
<td>Twists</td>
</tr>
<tr>
<td></td>
<td>Solid Conductors versus Stranded Conductors</td>
</tr>
<tr>
<td></td>
<td>Data Communications 101</td>
</tr>
<tr>
<td></td>
<td>Bandwidth, Frequency, and Data Rate</td>
</tr>
<tr>
<td></td>
<td>What a Difference a dB Makes!</td>
</tr>
<tr>
<td></td>
<td>Speed Bumps: What Slows Down Your Data</td>
</tr>
<tr>
<td></td>
<td>Hindrances to High-Speed Data Transfer</td>
</tr>
<tr>
<td></td>
<td>Attenuation (Loss of Signal)</td>
</tr>
<tr>
<td></td>
<td>Noise (Signal Interference)</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk (NEXT)</td>
</tr>
</tbody>
</table>
Contents

Chapter 6 Tools of the Trade 203

Building a Cabling Tool Kit 204
Common Cabling Tools 205
 Wire Strippers 206
 Wire Cutters 209
 Cable Crimpers 210
 Punch-Down Tools 213
 Fish Tapes 216
 Voltage Meter 218
Cable Testing 218
 A Cable-Toning Tool 218
 Twisted-Pair Continuity Tester 219
 Coaxial Tester 220
 Optical-Fiber Testers 221
Cabling Supplies and Tools 223
 Cable-Pulling Tools 223
 Wire-Pulling Lubricant 228
 Cable-Marking Supplies 229
Tools That a Smart Data-Cable Technician Carries 231
A Preassembled Kit Could Be It 232

Part II Network Media and Connectors 235

Chapter 7 Copper Cable Media 237

Types of Copper Cabling 238
 Major Cable Types Found Today 238
Contents

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Wall Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>279</td>
</tr>
</tbody>
</table>

- Picking the Right Patch Cables 247
- Why Pick Copper Cabling? 249
- Best Practices for Copper Installation 250
 - Following Standards 250
 - Planning 253
 - Installing Copper Cable 255
- Copper Cable for Data Applications 260
 - 110-Blocks 260
 - Sample Data Installations 263
- Copper Cable for Voice Applications 266
 - 66-Blocks 266
 - Sample Voice Installations 270
- Testing 274
 - Tone Generators and Amplifier Probes 275
 - Continuity Testing 275
 - Wire-Map Testers 276
 - Cable Certification 276
 - Common Problems with Copper Cabling 276

- Chapter 8 Wall Plates 279
 - Wall-Plate Design and Installation Issues 280
 - Manufacturer System 280
 - Wall-Plate Location 281
 - Wall-Plate Mounting System 283
 - Fixed-Design Wall Plates 289
 - Number of Jacks 289
 - Types of Jacks 290
 - Labeling 291
 - Modular Wall Plates 291
 - Number of Jacks 292
 - Wall-Plate Jack Considerations 292
 - Labeling 296
 - Biscuit Jacks 296
 - Types of Biscuit Jacks 297
 - Advantages of Biscuit Jacks 297
 - Disadvantages of Biscuit Jacks 298
Chapter 9 Connectors 299

- Twisted-Pair Cable Connectors 300
 - Patch-Panel Terminations 300
 - Modular Jacks and Plugs 302
 - Shielded Twisted-Pair Connectors 316
- Coaxial Cable Connectors 317
 - F-Series Coaxial Connectors 318
 - N-Series Coaxial Connectors 318
 - The BNC Connector 319
- Fiber-Optic Cable Connectors 320
 - Fiber-Optic Connector Types 320
 - Installing Fiber-Optic Connectors 323

Chapter 10 Fiber-Optic Media 325

- Introduction to Fiber-Optic Transmission 326
- Advantages of Fiber-Optic Cabling 327
 - Immunity to Electromagnetic Interference (EMI) 328
 - Higher Possible Data Rates 328
 - Longer Maximum Distances 328
 - Better Security 329
- Disadvantages of Fiber-Optic Cabling 329
 - Higher Cost 329
 - Difficult to Install 330
- Types of Fiber-Optic Cables 331
 - Composition of a Fiber-Optic Cable 331
 - Additional Designations of Fiber-Optic Cables 337
- Fiber Installation Issues 342
 - Components of a Typical Installation 343
 - Fiber-Optic Performance Factors 345

Chapter 11 Unbounded (Wireless) Media 349

- Infrared Transmissions 350
 - How Infrared Transmissions Work 350
- Advantages of Infrared 354
 - Disadvantages of Infrared 355
 - Examples of Infrared Transmissions 356
Radio-Frequency (RF) Systems 357
 How RF Works 358
 Advantages of RF 363
 Disadvantages of RF 363
 Examples of RF 364
Microwave Communications 366
 How Microwave Communication Works 367
 Advantages of Microwave Communications 370
 Disadvantages of Microwave Communications 371
 Examples of Microwave Communications 371

Part III Cabling Design and Installation 373

Chapter 12 Cabling-System Design and Installation 375

Elements of a Successful Cabling Installation 376
 Proper Design 376
 Quality Materials 378
 Good Workmanship 379
Cabling Topologies 379
 Bus Topology 379
 Star Topology 380
 Ring Topology 380
 Mesh Topology 381
 Backbones and Segments 381
 Selecting the Right Topology 383
Cabling Plant Uses 383
 Telephone 384
 Television 385
 Fire-Detection and Security Cabling 385
Choice of Media 386
Telecommunications Rooms 386
 LAN Wiring 387
 Telephone Wiring 388
 Power Requirements 391
 HVAC Considerations 391
Cabling Management 392
 Physical Protection 392
 Electrical Protection (Spike Protection) 394
 Fire Protection 396
Data and Cabling Security 397
 EM (Electromagnetic) Transmission Regulation 397
 Tapping Prevention 398
Cabling Installation Procedures 398
 Design the Cabling System 398
 Schedule the Installation 399
 Install the Cabling 399
 Terminate the Cable 406
 Test the Installation 409

Chapter 13 Cable-Connector Installation 411

 Twisted-Pair Cable-Connector Installation 412
 Types of Connectors 412
 Conductor Arrangement 414
 Connector Crimping Procedures 415
 Coaxial Cable-Connector Installation 421
 Types of Connectors 421
 Connector Crimping Procedures 422
 Fiber-Optic Cable-Connector Installation 426
 Connector Types 426
 Connectorizing Methods 426
 Connector Installation Procedures 427

Chapter 14 Cable-System Testing and Troubleshooting 445

 Installation Testing 446
 Copper-Cable Tests 446
 Fiber-Optic Tests 455
 Cable-Plant Certification 458
 Creating a Testing Regimen 459
 Copper-Cable Certification 460
Fiber-Optic Certification 462
Third-Party Certification 463
Cable-Testing Tools 464
Wire-Map Testers 464
Continuity Testers 465
Tone Generators 465
Time Domain Reflectometers (TDR) 466
Fiber-Optic Power Meters 468
Fiber-Optic Test Sources 469
Optical Loss Test Sets and Test Kits 469
Optical Time Domain Reflectometers (OTDRs) 470
Fiber-Optic Inspection Microscopes 471
Visual Fault Locators 472
Multifunction Cable Scanners 472
Troubleshooting Cabling Problems 474
Establishing a Baseline 474
Locating the Problem 475
Resolving Specific Problems 476

Chapter 15 Creating a Request for Proposal (RFP) 481

What Is a Request for Proposal? 482
What Do We Want in Life? 483
Developing a Request for Proposal 484
The Needs Analysis 484
Designing the Project for the RFP 488
Writing the RFP 496
Distributing the RFP and Managing the Vendor-Selection Process 498
Distributing RFPs to Prospective Vendors 498
Vendor Selection 499
Project Administration 500
Cutover 500

Technology Network Infrastructure Request for Proposal (A Sample RFP) 501
General 502
Purpose of This RFP 502
Cable Plant 504
<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Cabling @ Work: Experience from the Field</th>
<th>509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hints and Guidelines</td>
<td>Know What You Are Doing</td>
<td>510</td>
</tr>
<tr>
<td>Plan the Installation</td>
<td>Have the Right Equipment</td>
<td>511</td>
</tr>
<tr>
<td>Test and Document</td>
<td>Train Your Crew</td>
<td>512</td>
</tr>
<tr>
<td>Work Safely</td>
<td>Make It Pretty</td>
<td>513</td>
</tr>
<tr>
<td>Look Good Yourself</td>
<td>Plan for Contingencies</td>
<td>514</td>
</tr>
<tr>
<td>Match Your Work to the Job</td>
<td>Waste Not, Want Not</td>
<td>515</td>
</tr>
<tr>
<td>Case Studies</td>
<td>A Small Job</td>
<td>516</td>
</tr>
<tr>
<td>A Large Job</td>
<td>A Peculiar Job</td>
<td>517</td>
</tr>
<tr>
<td>An Inside Job</td>
<td></td>
<td>518</td>
</tr>
</tbody>
</table>

| Glossary | 527 |

| Part IV | 605 |

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Cabling Resources</th>
<th>607</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational Internet Resources</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>wiring.com</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>comp.dcom.cabling</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>The Cabling News Group FAQ</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>Whatis</td>
<td></td>
<td>609</td>
</tr>
<tr>
<td>TIA Online</td>
<td></td>
<td>609</td>
</tr>
<tr>
<td>TechFest</td>
<td></td>
<td>609</td>
</tr>
<tr>
<td>TechEncyclopedia</td>
<td></td>
<td>609</td>
</tr>
<tr>
<td>Global Technologies, Inc.</td>
<td></td>
<td>609</td>
</tr>
<tr>
<td>cabletesting.com</td>
<td></td>
<td>609</td>
</tr>
</tbody>
</table>
National Electrical Code Internet Connection 609
Charles Spurgeon’s Ethernet Website 610
American National Standard T1.523-2001:
Glossary of Telecommunications Terms 610
Protocols.com 610
Webopedia: Online Computer Dictionary for Internet Terms and Technical Support 610
Books, Publications, and Videos 610
 Cabling Business Magazine 610
 Cabling Installation and Maintenance 611
 Cabling Installation and Maintenance Tips and Videos 611
 Newton’s Telecom Dictionary by Harry Newton 611
 Premises Network Online 611
 Building Your Own High-Tech Small Office by Robert Richardson 611
 BICSI’s Telecommunications Distribution Methods and Cabling Installation Manuals 612
 Understanding the National Electrical Code (3rd Edition) by Mike Holt and Charles Michael Holt 612
 ANSI/TIA/EIA-568-B Commercial Building Telecommunication Cabling Standard 612
Vendors and Manufacturers 612
 The Siemon Company 612
 MilesTek, Inc. 613
 IDEAL DataComm 613
 Ortronics 613
 Superior Essex 613
 Jensen Tools 613
 Labor Saving Devices, Inc. 613
 Erico 614
 Berk-Tek 614
 Microtest 614
 Fluke 614
 Panduit 614
 Anixter 614
Appendix B Registered Communications Distribution Designer (RCDD) Certification

- Apply and Be Accepted as a Candidate for the Designation of RCDD
- Successfully Pass the Stringent RCDD Exam
- Maintain Your Accreditation through Continuing Membership and Education
- Check Out BICSI and the RCDD Program for Yourself

Appendix C Home Cabling: Wiring Your Home for Now and the Future

- Home-Cabling Facts and Trends
- Structured Residential Cabling
 - Picking Cabling Equipment for Home Cabling
- Thinking Forward

Appendix D Overview of IEEE 1394 and USB Networking

- IEEE 1394
- USB
- References

Appendix E The Electronics Technicians Association, International (ETA) Certifications

- Data Cabling Installer Certification (DCIC) 2004 Competency Requirements
 - 1.0 BASIC ELECTRICITY
 - 2.0 DATA COMMUNICATIONS BASICS
 - 3.0 DEFINITIONS, SYMBOLS, AND ABBREVIATIONS
 - 4.0 CABLE CONSTRUCTION
 - 5.0 CABLE PERFORMANCE CHARACTERISTICS
 - 6.0 CABLELING STANDARDS
 - 7.0 BASIC NETWORK TOPOLOGIES
 - 8.0 BASIC NETWORK ARCHITECTURES
 - 9.0 NATIONAL ELECTRIC CODE - NEC and UL requirements
 - 10.0 CABLELING SYSTEM COMPONENTS
 - 11.0 DCIC INSTALLATION TOOLS
 - 12.0 CONNECTORS AND OUTLETS
 - 13.0 CABLELING SYSTEM DESIGN
 - 14.0 CABLELING INSTALLATION
 - 15.0 CONNECTOR INSTALLATION
11.2 Fusion Splicing 655
12.0 CABLE INSTALLATION AND HARDWARE 655
13.0 FIBER OPTIC LINK 656
14.0 OPTICAL FIBER MEASUREMENT AND TESTING 656
15.0 LINK AND CABLE TESTING 656

Index 659
Introduction

Welcome to the incredibly complex world of premises data-communications cabling. This introduction will tell you a little about how this book came about and how you can use it to your best advantage.

Not only does cabling carry the data across your network, it can also carry voice, serial communications, alarm signals, video, and audio transmissions. In the past, people took their cabling systems for granted. However, over the last decade, the information technology world began to understand the importance of a reliable and well-designed structured cabling system. This period also resulted in an explosion in the number of registered structured-cabling installers. The number of people who need to know the basics of cabling has increased dramatically.

We had a great time writing this book. In the year-long process of researching, writing, and editing it, we met many consummate professionals in the cabling business. Many distributors, manufacturers, and cabling contractors provided us with feedback, tips, and in-the-field experiences.

During the research phase of the book, we continually reviewed newsgroups, cabling FAQs, and other Internet resources, besides polling information technology managers, help-desk staff, network designers, cable installers, and system managers to find out what people want to know about their cabling system. The answers we received helped us write this book.

About This Book

This book’s topics run the gamut of cabling; they include the following:

- An introduction to data cabling
- Information on cabling standards and how to choose the correct ones
- Cable system and infrastructure constraints
- Cabling-System Components
- Tools of the trade
- Copper, fiber-optic, and unbounded media
- Wall plates and cable connectors
- Cabling-system design and installation
- Cable-connector installation
Introduction

- Cabling-system testing and troubleshooting
- Creating Request for Proposals (RFPs)
- Cabling case studies

A cabling dictionary is included at the end of the book so you can look up unfamiliar terms. Five other appendixes include resources for cabling information, tips on how to get your Registered Communications and Distribution Designer (RCDD) certification, information for the home cabler, a discussion of USB/1394 cabling, and information about ETA’s line of cabling certifications. Finally, a multipage color insert shows you what various cabling products look like in their “natural environment.”

Who Is This Book For?

If you are standing in your neighborhood bookstore browsing through this book, you may be asking yourself if you should buy it. The procedures in this book are illustrated and written in English rather than “technospeak.” That’s because we, the authors, designed this book specifically to help unlock the mysteries of the wiring closet, cable in the ceiling, wall jacks, and other components of a cabling system. Cabling can be a confusing topic; it has its own language, acronyms, and standards. We designed this book with the following types of people in mind:

- Information technology (IT) professionals who can use this book to gain a better understanding and appreciation of a structured cabling system
- IT managers who are preparing to install a new computer system
- Do-it-yourselfers who need to install a few new cabling runs in their facility and want to get it right the first time
- New cable installers who want to learn more than just what it takes to pull a cable through the ceiling and terminate it to the patch panel

How to Use This Book

To understand the way this book is put together, you must learn about a few of the special conventions we used. Following are some of the items you will commonly see.

Italicized words indicate new terms. After each italicized term, you will find a definition.

TIP Tips will be formatted like this. A tip is a special bit of information that can make your work easier or make an installation go more smoothly.
NOTE
Notes are formatted like this. When you see a note, it usually indicates some special circumstance to make note of. Notes often include out-of-the-ordinary information about working with a telecommunications infrastructure.

WARNING
Warnings are found within the text whenever a technical situation arises that may cause damage to a component or cause a system failure of some kind. Additionally, warnings are placed in the text to call particular attention to a potentially dangerous situation.

KEY TERM
Key terms are used to introduce a new word or term that you should be aware of. Just as in the worlds of networking, software, and programming, the world of cabling and telecommunications has its own language.

Sidebars
This special formatting indicates a sidebar. Sidebars are entire paragraphs of information that, although related to the topic being discussed, fit better into a standalone discussion. They are just what their name suggests: a sidebar discussion.

Cabling @ Work Sidebars
These special sidebars are used to give real-life examples of situations that actually occurred in the cabling world.

Enjoy!
Have fun reading this book—we’ve had fun writing it. We hope that it will be a valuable resource to you and will answer at least some of your questions on LAN cabling. As always, we love to hear from our readers; you can reach David Groth at dgroth@cableone.net. Jim McBee can be reached at JMcBee@cta.net. David Barnett can be contacted at barnetttdh@comcast.net.
PART I

TECHNOLOGY AND COMPONENTS

Chapter 1: Introduction to Data Cabling

Chapter 2: Cabling Specifications and Standards

Chapter 3: Choosing the Correct Cabling

Chapter 4: Cable System and Infrastructure Constraints

Chapter 5: Cabling System Components

Chapter 6: Tools of the Trade
Chapter 1

Introduction to Data Cabling

- The Golden Rules of Data Cabling
- The Importance of Reliable Cabling
- The Legacy of Proprietary Cabling Systems
- Cabling and the Need for Speed
- Cable Design
- Data Communications 101
- Speed Bumps: What Slows Down Your Data
- The Future of Cabling Performance
"Data cabling! It’s just wire. What is there to plan?" the newly promoted programmer-turned-MIS-director commented to Jim. The MIS director had been contracted to help the company move its 750-node network to a new location. During the initial conversation, the director had a couple of other “insights”:

- He said that the walls were not even up in the new location, so it was too early to be talking about data cabling.
- To save money, he wanted to pull the old Category 3 cabling and move it to the new location. (“We can run 100Base-TX on the old cable.”)
- He said not to worry about the voice cabling and the cabling for the photocopier tracking system; someone else would coordinate that.

Jim shouldn’t have been too surprised by the ridiculous nature of these comments. Too few people understand the importance of a reliable, standards-based, flexible cabling system. Fewer still understand the challenges of building a high-speed network. Some of the technical problems associated with building a cabling system to support a high-speed network are comprehended only by electrical engineers. And many believe that a separate type of cable should be in the wall for each application (PCs, printers, terminals, copiers, etc.).

Data cabling has come a long way in the past 20 years. This chapter discusses some of the basics of data cabling, including topics such as:

- The golden rules of data cabling
- The importance of reliable cabling
- The legacy of proprietary cabling systems
- The increasing demands on data cabling to support higher speeds
- Cable design and materials used to make cables
- Types of communications media
- Limitations that cabling imposes on higher-speed communications
- The future of cabling performance

You are probably thinking right now that all you really want to know is how to install cable to support a few 10Base-T workstations. Words and phrases such as *attenuation*, *crosstalk*, *twisted pair*, *modular connectors*, and *multimode optical-fiber cable* may be completely foreign to you. Just as the world of PC LANs and WANs has its own industry buzzwords, so does the cabling business. In fact, you may hear such an endless stream of buzzwords and foreign terminology that you’ll wish you had majored in electrical engineering in college. But it’s not really that mysterious and, armed with the background and information we’ll provide, you’ll soon be using cablespeak like a cabling professional.
The Importance of Reliable Cabling

The Golden Rules of Data Cabling
Listing our own golden rules of data cabling is a great way to start this chapter and the book. If your cabling is not designed and installed properly, you will have problems that you can’t even imagine. From our experience, we’ve become cabling evangelists, spreading the good news of proper cabling. What follows is our list of rules to consider when planning structured-cabling systems:

● Networks never get smaller or less complicated.
● Build one cabling system that will accommodate voice and data.
● Always install more cabling than you currently require. Those extra outlets will come in handy someday.
● Use structured-cabling standards when building a new cabling system. Avoid anything proprietary!
● Quality counts! Use high-quality cabling and cabling components. Cabling is the foundation of your network; if the cabling fails, nothing else will matter. For a given grade or category of cabling, you’ll see a range of pricing, but the highest prices don’t necessarily mean the highest quality. Buy based on the manufacturer’s reputation and proven performance, not the price.
● Don’t scrimp on installation costs. Even quality components and cable must be installed correctly; poor workmanship has trashed more than one cabling installation.
● Plan for higher speed technologies than are commonly available today. Just because 1000Base-T Ethernet seems unnecessary today does not mean it won’t be a requirement in five years.
● Documentation, although dull, is a necessary evil that should be taken care of while you’re setting up the cabling system. If you wait, more pressing concerns may cause you to ignore it.

The Importance of Reliable Cabling
We cannot stress enough the importance of reliable cabling. Two recent studies vindicated our evangelical approach to data cabling. The studies showed:

● Data cabling typically accounts for less than 10 percent of the total cost of the network infrastructure.
● The life span of the typical cabling system is upwards of 16 years. Cabling is likely the second most long-lived asset you have (the first being the shell of the building).
● Nearly 70 percent of all network-related problems are due to poor cabling techniques and cable-component problems.
Chapter 1 • Introduction to Data Cabling

TIP

If you have installed the proper Category or grade of cable, the majority of cabling problems will usually be related to patch cables, connectors, and termination techniques. The permanent portion of the cable (the part in the wall) will not likely be a problem unless it was damaged during installation.

Of course, these were facts that we already knew from our own experiences. We have spent countless hours troubleshooting cabling systems that were nonstandard, badly designed, poorly documented, and shoddily installed. We have seen many dollars wasted on the installation of additional cabling and cabling infrastructure support that should have been part of the original installation.

Regardless of how you look at it, cabling is the foundation of your network. It must be reliable!

The Cost of Poor Cabling

The costs that result from poorly planned and poorly implemented cabling systems can be staggering. One company that had recently moved into a new office space used the existing cabling, which was supposed to be Category 5 cable. Almost immediately, 100Mbps Ethernet network users reported intermittent problems.

These problems included exceptionally slow access times when reading e-mail, saving documents, and using the sales database. Other users reported that applications running under Windows 98 and Windows NT were locking up, which often caused them to have to reboot their PC.

After many months of network annoyances, the company finally had the cable runs tested. Many cables did not even meet the minimum requirements of a Category 5 installation, and other cabling runs were installed and terminated poorly.

WARNING

Often, network managers mistakenly assume that data cabling either works or it does not, with no in-between. Cabling can cause intermittent problems.

Is the Cabling to Blame?

Can faulty cabling cause the type of intermittent problems that the aforementioned company experienced? Contrary to popular opinion, it certainly can. In addition to being vulnerable to outside interference from electric motors, fluorescent lighting, elevators, cellular phones, copiers, and microwave ovens, faulty cabling can lead to intermittent problems for other reasons.

These reasons usually pertain to substandard components (patch panels, connectors, and cable) and poor installation techniques, and they can subtly cause dropped or incomplete packets. These lost packets cause the network adapters to have to time out and retransmit the data.