
Beginning SQL

Paul Wilton and John W. Colby

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iii

C1.jpg

01_577328 ffirs.qxd 1/28/05 11:22 PM Page ii

Beginning SQL

01_577328 ffirs.qxd 1/28/05 11:22 PM Page i

01_577328 ffirs.qxd 1/28/05 11:22 PM Page ii

Beginning SQL

Paul Wilton and John W. Colby

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iii

Beginning SQL
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7732-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/RW/QS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, email: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEB SITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993, or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Wilton, Paul, 1969-
Beginning sql / Paul Wilton and John W. Colby.

p. cm.
Includes bibliographical references and index.
ISBN 0-7645-7732-8 (paper/website : alk. paper)
1. SQL (Computer program language) I. Colby, John W., 1954- II. Title.
QA76.73.S67W57 2005
005.75'65--dc22

2004031057

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iv

www.wiley.com

About the Authors

Paul Wilton
After an initial start as a Visual Basic applications programmer at the Ministry of Defense in the U.K.,
Paul found himself pulled into the Net. Having joined an Internet development company, he spent the
last three years helping create Internet solutions and is currently working on an e-commerce Web site for
a major British bank.

Paul’s main skills are in developing Web front ends using DHTML, JavaScript, VBScript, and Visual
Basic and back-end solutions with ASP, Visual Basic, and SQL Server. Currently, Paul is working on a
new Web-based application that will hopefully make him millions. . . well, thousands at least!

Paul Wilton contributed Chapters 1–9 and Appendixes A, B and C to this book.

John W. Colby
John Colby is an independent consultant who has specialized in Access development since 1994. He has
designed databases for companies in the U.S., Mexico, Canada, and Ireland. John is past president and
current board member of Database Advisors, Inc. (www.databaseAdvisors.com), a not-for-profit orga-
nization dedicated to providing fellow developers with a place to discuss Access, SQL Server, Visual
Basic, and other topics relative to modern database applications development. Database Advisors also
allows developers to showcase their talents by sharing databases, wizards, and various code packages.

John lives in northwestern Connecticut with his wife and two small children. He enjoys music, travel, and
all things computers, and he dreams of working from his laptop while enjoying travel with his family.

John W. Colby contributed Chapters 10–13 to this book.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page v

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Production Editor
Felicia Robinson

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Copy Editor
Publication Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
April Farling

Graphics and Production Specialists
Lauren Goddard
Jennifer Heleine
Amanda Spagnuolo

Quality Control Technician
John Greenough
Leeann Harney
Jessica Kramer
Brian H. Walls

Proofreading and Indexing
TECHBOOKS Production Services

01_577328 ffirs.qxd 1/28/05 11:22 PM Page vi

Paul Wilton: With lots of love to my darling Beci, who, now that the book’s finished, will get
to see me for more than ten minutes a week.

John W. Colby: Dedicated to my son Robbie and my daughter Allie, who give me so much
inspiration, and to my wife Mary, a wonderful soul mate and mother.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page vii

01_577328 ffirs.qxd 1/28/05 11:22 PM Page viii

Contents

About the Authors v
Acknowledgments xvii

Introduction 1

Who This Book Is For 2
What This Book Covers 2
How This Book Is Structured 2
What You Need to Use This Book 3
Conventions 4
Source Code 4
Errata 5
p2p.wrox.com 5

Chapter 1: Introduction to SQL 7

A Brief History of Databases 7
Identifying Databases 8

Why and When to Use a Database 9
Database Management Systems Used in This Book 11

Structured Query Language (SQL) 11
Introducing SQL Queries 11
Comparing SQL to Other Programming Languages 12
Understanding SQL Standards 13

Database Creation 14
Organizing a Relational Database 14

SQL Syntax 16
Creating a Database 17
Understanding Data Types 18

Creating, Altering, and Deleting Tables 25
Creating a Table 25
Altering an Existing Table 26
Deleting an Existing Table 27

Good Database Design 28
Obtaining and Analyzing Your Data Needs 28
Dividing Data Logically 29

02_577328 ftoc.qxd 1/28/05 11:21 PM Page ix

x

Contents

Selecting Correct Data Types 32
Using a Primary Key 33

Creating the Example Database 35
Summary 39
Exercises 40

Chapter 2: Entering Information 41

Inserting New Data 41
Inserting Data into the Case Study Database 45
Updating Data 45

The WHERE Clause 47
The Logical Operators AND and OR 48

Deleting Data 49
Summary 50
Exercises 51

Chapter 3: Extracting Information 53

The SELECT Statement 53
Returning Only Distinct Rows 55
Using Aliases 56
Filtering Results with the WHERE Clause 56

Logical Operators and Operator Precedence 62
Introducing Operator Precedence 62
Using Logical Operators 65

NOT Operator 66
BETWEEN Operator 66
LIKE Operator 70
IN Operator 73

Ordering Results with ORDER BY 75
Joining Columns — Concatenation 82

MS SQL Server and MS Access 82
Oracle and IBM DB2 85
MySQL 88

Selecting Data from More Than One Table 90
Using Brackets around Inner Joins in MS Access 100
SQL Is Set-Based 102

Introducing NULL Data 113
Summary 115
Exercises 116

02_577328 ftoc.qxd 1/28/05 11:21 PM Page x

xi

Contents

Chapter 4: Advanced Database Design 117

Normalization 117
First Normal Form 118
Second Normal Form 119
Third Normal Form 121

Ensuring Data Validity with Constraints 123
NOT NULL Constraint 124
UNIQUE Constraint 125
CHECK Constraint 129
Primary Key and PRIMARY KEY Constraint 132
Foreign Key 135

Speeding Up Results with Indexes 139
Improving the Design of the Film Club Database 143

Reexamining the Film Club Database Structure 143
Improving Data Validation and Efficiency 145
Tips for Designing a Better Database 153

Summary 154
Exercises 155

Chapter 5: Manipulating Data 157

Understanding SQL Arithmetic 157
Basic Math Operators 157
Common Math Functions 159

The ABS() Function 159
The POWER() Function 160
The SQRT() Function 162
The RAND() Function 162

Rounding Numbers 163
The CEILING() Function 165
The FLOOR() Function 166
The ROUND() Function 166

Introducing String Functions 168
The SUBSTRING() Function 168
Case Conversion Functions 170
The REVERSE() Function 171
The TRIM() Functions 172
The LENGTH() Function 172
The SOUNDEX() and DIFFERENCE() Functions 175
Date Functions 178

Converting Different Data Types 179

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xi

xii

Contents

Re-examining NULL 180
NULLs and Math 180
NULLs and Strings 182
The COALESCE() Function 183

Using INSERT INTO with the SELECT Statement 185
Summary 187
Exercises 188

Chapter 6: Grouping and Aggregating Data 189

Grouping Results 189
Summarizing and Aggregating Data 191

Counting Results 192
Adding Results 196
Averaging Results 198
MAX() and MIN() in Results 200

Using the HAVING Clause with GROUP BY Statements 202
Summary 205
Exercises 205

Chapter 7: Selecting Data from Different Tables 207

Joins Revisited 207
Inner Joins: An In-Depth Look 208

Equijoins and Non-equijoins 208
Multiple Joins and Multiple Conditions 210
Cross Joins 213
Self-Joins 214

Outer Joins 218
Left Outer Join 219
Right Outer Join 221
Full Outer Join 225

Combining Results Sets with the UNION Operator 226
Summary 233
Exercises 233

Chapter 8: Queries within Queries 235

Subquery Terminology 235
Subqueries in a SELECT List 236
Subqueries in the WHERE Clause 240

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xii

xiii

Contents

Operators in Subqueries 242
Revisiting the IN Operator 242
Using the ANY, SOME, and ALL Operators 245

ANY and SOME Operators 245
ALL Operator 247

Using the EXISTS Operator 249
Using the HAVING Clause with Subqueries 252

Correlated Subquery 253
Subqueries Used with Other Statements 255

Using Subqueries with the INSERT Statement 255
Using Subqueries with the UPDATE Statement 257
Using Subqueries with the DELETE FROM Statement 259

Summary 261
Exercises 261

Chapter 9: Advanced Queries 263

Updating the Database 263
Tackling Difficult Queries 270

Work Out What You Want, What You Really, Really Want 270
Choosing the SELECT Column List 271
Creating the FROM Clause 271

Top Tips for Efficient Queries 283
Summary 285
Exercises 286

Chapter 10: Views 287

Introducing Views 287
Creating Views 288
Types of Views 290

Table Join Views 290
Base View 290
Row Views 291
Field Views 292
Filtered Windowed Views 292
Summary Views 293

Updating Views 294
Update Restrictions 295
Check Option 295

Dropping Views 298
Summary 299
Exercises 299

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xiii

xiv

Contents

Chapter 11: Transactions 301

Introducing Transactions 302
Example Data 303
ANSI Model 305

COMMIT 306
ROLLBACK 307

Transact-SQL 308
BEGIN TRANSACTION 308
COMMIT TRANSACTION 308
SAVE TRANSACTION 309
ROLLBACK TRANSACTION 310

Transaction Logs 312
Locks 313

Locking Granularity 313
Database 314
Table 314
Page 314
Row 314
Column 314

Locking Levels 314
Shared 315
Exclusive 315
Deadlocks 315

Setting Lock Parameters 316
Lock Size 316
Number of Locks 316
Escalation 316
Timeout 317

Isolation Levels 318
SET TRANSACTION 318
SERIALIZABLE 318
REPEATABLE READ 319
READ COMMITTED 319
READ UNCOMMITTED 319
Versioning 320

Problem Examples 320
The Lost Update 320
The Uncommitted Data 321
The Inconsistent Data 321
The Phantom Insert 322

Revisiting the Example Code 322
Summary 325
Exercises 325

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xiv

xv

Contents

Chapter 12: SQL Security 327

Security Concepts 327
User IDs 329

Creating User IDs 330
Alter User 330
Drop User 331

Group IDs (Roles) 332
Objects 335
Privileges 336

Extended Privileges 336
The USAGE Privilege 337
Ownership 337

Views and Security 337
Vertical and Horizontal Views 337
Grouped Views 340
Limitations on Views 341

Granting Privileges 341
Tables and Views 341
Columns 342
The GRANT OPTION Clause 343

Revoking Privileges 344
The REVOKE Statement 344
Revoking GRANT 345
The CASCADE and RESTRICT Options 346

Summary 348
Exercises 348

Chapter 13: Database Tuning 349

Tuning Hardware 349
Workstations 350
Database Files 351
Processors 351
Gigahertz Networks or Compartmentalized Networks 352
Caches 352

Processor Cache 352
Hard Disk Cache 352
Database Cache 354

Tuning SQL 355
What Does SQL Tuning Mean? 355
Why Do You Do It? 356

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xv

xvi

Contents

How Do You Do It? 357
Indexes — What Are They? 357
Indexes — When They Help, Hurt, or Don’t Matter 360
Table Scans — What Are They? 361
When Table Scans Help, Hurt, or Don’t Matter 362

Tuning Tips 363
Summary 364
Exercises 365

Appendix A: Exercise Answers 367

Appendix B: Setting Up and Using the Five Database Systems 391

Appendix C: Initial Data Setup 451

Index 475

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xvi

xvii

Acknowledgments

Paul Wilton
Many thanks to Catherine who for many years supported me and ensured that my sanity chip remained
plugged in. I’d also like to thank Brian Herrmann, who has been a great editor to work with and has
done amazing work on the book and kept his professionalism and sense of humor even when faced with
another of my “just a few more days and I’ll get the chapter to you” emails! Thanks also to Jim Minatel
for allowing me to subject the world to yet another of my books. Finally, pats and treats to my German
shepherd Katie, who does an excellent job in warding off disturbances from door-to-door salespeople.

03_577328 flast.qxd 1/28/05 11:22 PM Page xvii

03_577328 flast.qxd 1/28/05 11:22 PM Page xviii

Introduction

Data, data, data! Data is where it’s at as far as computers go, whether processing millions of calcu-
lations or keeping a record of your Aunt Maude’s birthday. When it comes to storing data, the
database is the king. In almost eight years of professional programming, every single project I’ve
worked on has involved databases somewhere along the line — that’s how essential they are to
most business applications and projects. Admittedly, some areas, such as computer games, don’t
make the same use of databases. My guess is that “Mega Doom 99: The Final Bloody Massacre”
isn’t running an Oracle database in the background!

However, I have a confession! Around 10 years ago, when I first started learning about databases,
I initially found them very confusing. I’d been programming in my spare time for a few years
and was used to using text files to store information. I decided to leap right in and start creating
databases and writing SQL, and I got very confused and odd results. Databases, their design, and
their underlying concepts are very different from storing data in simple files, and the Structured
Query Language (SQL) used to access and manipulate data in databases is very different from any
procedural language. One of my first aims with this book is to soften the blow of new concepts
and ways of doing things. To that end, I explain all the underlying concepts and theory you’ll need
to get started with databases and in programming with SQL. How to get the answers you want
from a database and all the results you get will be fully explained, as SQL can throw up some sur-
prises if you’re not forewarned.

Another of my aims in writing this book is to get you quickly and effectively to the point where
you’re able to go off on your own and design your own databases and write your own SQL code
in a practical environment. Personally, I dislike books that waffle on about every small detail and
eventuality so that it takes months to be able to stand on your own feet and create your own work.
I stick with the stuff that you’ll find is used in most database applications, keeping the fine details
and more advanced stuff for the later chapters. The first few chapters’ aim is to get you up and
running in SQL quickly, but they do not skimp on essential concepts, code, and techniques, which
are all thoroughly discussed and backed up with lots of practical examples.

Finally, I’m a hands-on, practical person, and those are the sort of computer books I like to read,
rather than books that contain lots of theory. This book reflects my “put it into action” nature and
is full of examples and places where you can get hands-on experience. I do introduce and explain
theory where it’s necessary to build a foundation of understanding, but I do this only with the

04_577328 intro.qxd 1/28/05 11:23 PM Page 1

eventual aim of putting theory into practice. I use databases and SQL most days in my programming,
and I hope to bring that real-world experience to this book.

Who This Book Is For
This book starts right from the basics with databases and SQL. Prior database or SQL knowledge is not
necessary, as this book covers everything from database design to creating your first database and
understanding how the SQL language is used with databases.

If you have some previous experience with databases and SQL, then you’ll have a head start and you
may want to just skim Chapter 1. You’ll need to follow its instructions for creating the book’s example
database, as this is used for all the examples throughout the book.

What This Book Covers
This book will look at Structured Query Language, or SQL as it’s usually abbreviated. SQL works with a
database to create the database and to insert and extract data. Therefore, it’s essential to understand the
theory and concepts behind database systems. Hence, this book also covers database theory and
database design, so that you’re equipped to create an effective database.

The SQL code in this book reflects the modern SQL standards set by organizations such as the American
National Standards Institute (ANSI) and the International Standards Organization (ISO). However,
while standards are great, what’s available for practical use is what really counts. This book, then, con-
centrates on the sort of SQL supported by most modern database systems. You should that find most of
the code runs with little or no modification on most database systems released within the last six or
seven years.

How This Book Is Structured
This book has been split into two main parts. The first part, which consists of Chapters 1–3, provides the
foundations for understanding databases and SQL. The aim in this first part is to get you up to speed on
all the essential details. These chapters take you through the following:

❑ The essentials of database theory

❑ Writing SQL code

❑ Good database design

❑ Creating a database

❑ Entering, updating, and deleting data using SQL

❑ Extracting data using SQL — more specifically, how to answer the sort of questions often posed
of databases in real-life situations

2

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 2

By the time you’ve completed Chapter 3, you’ll be ready to go out and create your own databases and
write your own SQL code to a sufficient standard for many real-life programming situations. You may
want to go and create a few databases of your own before returning to the second part of the book.

The second half of the book, Chapters 4 onward, goes into more detail and looks at more advanced top-
ics. Its aim is to provide a fairly wide and thorough grounding in many aspects of SQL programming.
The sort of topics covered include the following:

❑ Advanced database design, taking a look at the theory and practical application of normaliza-
tion, and how to improve a database’s efficiency and reliability

❑ Using and manipulating data with SQL’s built-in data manipulation and calculation functions

❑ Selecting data from lots of different tables

❑ Database security

❑ Database optimization

The book also includes three appendixes. Appendix A contains the answers to the exercise questions in
each chapter, so no peeking until you’ve given the questions a go. Appendix B covers how to download,
install, and use each of the five supported database systems used by this book. Appendix C includes the
initial data for the example database, which is available to download from www.wrox.com if you want to
avoid aching fingers!

What You Need to Use This Book
To really make use of this book and run the examples, you need to have a database system on which to
practice. This book’s code has been thoroughly tested on the following five commonly available
database systems:

❑ MySQL

❑ Microsoft SQL Server

❑ IBM DB2

❑ Microsoft Access

❑ Oracle 10g

The good news is that almost all of those can be downloaded free off the Internet as full or trial versions.
In Appendix B, you’ll learn where to download them, how to install them, and how to use them.

It’s not a problem if you’re using a different database system, because as often as possible, I’ve avoided
database system-specific code and have kept to standard SQL supported by most database systems.
Where it’s impossible to have the same code for all the database systems, I’ve listed the ways around as
well as alternative syntax. You’ll likely find that one of the variations of syntax will work on your sys-
tem, possibly with a little modification.

3

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 3

Conventions
To help you get the most from the text and keep track of what’s happening, this book uses a number of
conventions throughout.

Try It Out
The Try It Out is an exercise that you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New terms and important words are italicized as they are introduced.

❑ Keyboard strokes are shown like this: Ctrl+A.

❑ Filenames, URLs, and code within the text are shown like so: persistence.properties.

❑ Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that’s less important in the present
context or that has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book, the
ISBN is 0-7645-7732-8.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

4

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 4

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the Book Details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.
shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

5

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 5

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

6

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 6

1
Introduction to SQL

A nice, gentle introductory chapter, this chapter begins by looking at databases in terms of what
they are and why and when you want to use them. Then the chapter turns to SQL and discovers
how it links in with databases and how it can be useful. After tackling the basics of SQL and how
it works in theory, you examine how to use it to create a database. This chapter also walks you
through creating the structure of the example database used throughout the book.

By the end of the chapter, you should understand how a database enables you to efficiently orga-
nize and retrieve the information you want, as well as how to create a fully functional database, all
ready and waiting to accept add data. But before diving headlong into writing lines of SQL code,
it’s helpful to know a little bit of background about databases.

A Brief History of Databases
Modern databases emerged in the 1960s thanks to research at IBM, among other companies. The
research mainly centered around office automation, in particular automating data storage and
indexing tasks that previously required a great deal of manual labor. Computing power and stor-
age had become much cheaper, making the use of computers for data indexing and storage a
viable solution. A pioneer in the database field was Charles W. Bachman, who received the Turing
Award in 1973 for pioneering work in database technology. In 1970, an IBM researcher named
Ted Codd published the first article on relational databases.

Although IBM was a leader in database research, Honeywell Information Systems, Inc., released
a commercial product in 1976 based on the same principles as the IBM information system, but
it was designed and implemented separately from IBM’s work.

In the early 1980s, the first database systems built upon the SQL standard appeared from compa-
nies such as Oracle, with Oracle Version 2, and later SQL/DS from IBM, as well as a host of other
systems from other companies.

Now that you have a brief idea of where databases came from, you can turn to the more practical
task of what databases are and why and when to use them.

05_577328 ch01.qxd 1/28/05 11:23 PM Page 7

Identifying Databases
What is a database, you ask?

The Free On-Line Dictionary of Computing (http://foldoc.doc.ic.ac.uk) defines a database as
“one or more large structured sets of persistent data, usually associated with software to update and
query the data. A simple database might be a single file containing many records, each of which contains
the same set of fields where each field is a certain fixed width.”

Breaking this definition down into something more manageable, first it says that a database consists of
structured sets of data, which means that a database contains collections of data. For example, the
database might contain the details of Uncle Bob’s golf scores or data about all the books in a library. You
probably wouldn’t want to mix these two collections of data, or else when you want to find data about a
book you’d have to look through irrelevant data on golf scores. In short, databases help you organize
your data. A database stores its collections of data in tables, a concept explored further in Chapter 2.

The definition goes on to say that databases are usually associated with software that allows the data
to be updated and queried. Real-life examples of database software include Microsoft’s Access, Oracle’s
10g, IBM’s DB2, MySQL AB’s MySQL, and Microsoft’s SQL Server 2000. Often these programs are
referred to as databases, but strictly speaking, they are database management systems (DBMS). A
database is the sets (collections of related data) grouped into one entity. You could, for example, create an
Access database, call it MyDatabase, include various data collections inside that one database, and man-
age the whole thing with the MS Access software.

Finally, the definition states that, as with the Access database example, a simple database might be just
one file with many records with each record broken down into fields. But what are records and fields? A
field is a single item of data about a specific thing. A thing could be a person, and a single item of data
about a person could be their date of birth. Or the thing might be the address of a house and the specific
item of data might be its street. Using the book example, the year a book was published is a specific
piece of data that can be stored in a field. Another field might be the book’s title; yet another could be
the author’s name. For this book, the fields would contain 2005 for the Year Published field, Beginning
SQL for the Title field, and Paul Wilton and John Colby for the Author field. All these fields refer to one
specific thing, a book called Beginning SQL. Collectively these fields are known as a record. Each book has
its own record, and all the records are stored collectively in a database in something called a table. A sin-
gle database can contain one or more tables. If all this information is a bit too much to absorb at once,
don’t worry: I’ll be revisiting the concepts of fields and records later in this chapter.

By now, hopefully you get the idea that a database helps you store, organize, and retrieve data. One last
thing to mention is the term relational database, which is a database containing data organized and linked
(related) to each other. All records in a database are organized into tables. Related data, such as details of
sales persons, are grouped in one table. You could put the details of cars they have sold in another table
and then specify a relationship between which salesperson sold which cars — for example, salesperson X
sold car Y on date Z. Figure 1-1 shows a table from the example database. On first glance, you may
notice its resemblance to a spreadsheet with rows being your records and columns containing the fields
for the records. In Chapter 3 you discover that you really need to think in terms of sets of data.

Most database management systems these days are relational, termed relational database management
system (RDBMS). These systems make storing data and returning results easier and more efficient.
They allow different questions to be posed of the database — even questions the original designer of the
database didn’t expect to be asked.

8

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 8

Figure 1-1

Why and When to Use a Database
When there are a huge number of alternative ways to store data, why should you trouble yourself creat-
ing a database? What advantages does a database hold?

The main advantage is fast and efficient data retrieval. A database helps you to organize your data in a
logical manner. Database management systems are fine-tuned to rapidly retrieve the data you want in
the way you want it. Databases also enable you to break data into specific parts. Retrieving data from a
database is called querying. You’ll often see the term SQL query, which briefly means any SQL code that
extracts data from the database. This topic is covered in more depth later in this chapter.

Relational databases have the further advantage of allowing you to specify how different data relates to
each other, as you saw in the car sales database example. If you store sales details and salesperson data
in related databases, the question “How many cars has salesperson X sold in January?” becomes very
easy to answer. If you just shoved all the information into a large text file, you’d find it one enormous
task to question, or query, the data and find out specific answers.

Databases also allow you to set up rules that ensure that data remains consistent when you add, update,
or delete data. Imagine that your imaginary car sales company has two salespeople named Julie Smith.
You can set up a database to ensure that each salesperson has a unique ID, called a unique identifier (so
that the Julies don’t get mixed up); otherwise, telling who sold which cars would prove impossible.
Other data storage systems, such as text files or spreadsheets, don’t have these sorts of checks and quite
happily allow you to store erroneous data. In later chapters you learn how to set up other rules to limit
the risk of data becoming corrupted. For example, you might specify that an employee’s social security
number must be unique in the database. Or if a car is sold and it’s listed as being sold by the employee
with an ID of 123, you might add a check to see that full details of employee 123 are held in one of the
database tables.

A properly set-up database minimizes data redundancy. Again using the car sales example, you can
store all the details of a salesperson just once in the database and then use a unique ID to identify each
salesperson. When you have other data that relates to a particular salesperson (for example, which cars
they’ve sold), you can use the unique ID to search for the data. The unique ID is often a number that
takes up less storage space than the person’s full name.

Databases store raw data — just the facts, so to speak, and no intelligence. A car sales database might
contain the make, model, and price of each car, but you wouldn’t normally store the average number of
cars sold in a month, because you can calculate that from the car sales information, the raw data.

9

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 9

A spreadsheet, however, may contain processed data, such as averages and statistical analysis. A
database simply stores the data and generally leaves data processing to a front-end program, or the
interface the user sees. Examples of front-end programs include a Web page that draws its data from
a database or a program that hooks into the database’s data and allows the user to view it.

Sharing data is also much easier using a database. You can share data among a number of users on the
same computer or among users on different computers linked via a network or the Internet. If the exam-
ple car sales company has branches in New York, Washington, and Boston, you could set up a computer
containing a database in one location that is accessible by all of the offices via a network. This is not only
possible but also safe because databases have a clearly defined structure and also enforce rules that pro-
tect the data contained. They also allow more than one person to access the database at the same time
and change the data stored; the database management system handles simultaneous changes. Imagine
the potential chaos if you used an Excel spreadsheet, and two salespeople change data simultaneously.
You want to keep both sets of changes, but whoever saves the spreadsheet last is the person whose
changes are stored, overwriting any earlier changes.

Databases also make sharing data between different systems much easier than using proprietary data
formats — that is, a format specific to a particular program, manufacturer, or operating system. An Excel
spreadsheet, for example, is easily read on a Windows machine with MS Office, but it is more of a chal-
lenge to read on a UNIX, Macintosh, or Linux machine because those computers handle data in a differ-
ent way. Even on a Windows machine, you need to have MS Office installed. You can house a database
on a central computer, put the database management system on there, and then enable access via a local
network or the Internet.

As an alternative to databases, text files and spreadsheets have one big advantage, which is also their
weakness: flexibility. Text files have no real rules. You can insert whatever text data you like wherever
you like. To a large extent, spreadsheets are the same. You can ask users to add data in a predefined
structure, but you have no real way to enforce such a request. Using databases limits user access to just
the data and does not allow users to change the structure.

One final significant advantage of databases is security. Most database management systems allow you
to create users in order to specify various levels of security. Before someone accesses the database, he or
she must log on as a specific user. Each user has various rights and limits. Someone who maintains the
database has full ability to edit data, change the database’s structure, add and delete users, and so on.
Other users may only have the ability to view data but not change it, or you may even want to limit
what data they can view. Many database management systems provide a granular level of security, that
is, they are very specific as to what a user can do. They are not just an all-or-nothing approach in which
the user either has access or has no access.

Databases are used pretty much everywhere. Data processing played a big part in the development of
computers, and even today it is one of their main roles. Nearly every walk of life or business requires a
database somewhere along the way. Databases are commonly used on personal computers to store data
used locally, and on company networks databases store and share company-wide information. The
Internet has seen a big rise in databases used to share information; most online shops of a reasonable
size use databases. When you visit online stores of any significant size, a database usually provides all
the information on the goods being sold. Rather than every page being created by hand, large merchants
use a template for book or CD details, and SQL retrieves the book information from the database.
Imagine how much work it’d be if Amazon created every single page by hand!

10

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 10

