Expert One-on-One™
J2EE™ Development without EJB™

Rod Johnson
with Juergen Hoeller

Wiley Publishing, Inc.

C1.jpg

Expert One-on-One™
J2EE™ Development without EJB™

Expert One-on-One™
J2EE™ Development without EJB™

Rod Johnson
with Juergen Hoeller

Wiley Publishing, Inc.

Expert One-on-One
J2EE™ Development without EJB™

Copyright © 2004 by Rod Johnson and Juergen Hoeller. All rights reserved.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests
to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOT THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, Expert
One-on-One, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates. J2EE and EJB are trademarks of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Johnson, Rod, Ph.D.

Expert one-on-one J2EE development without EJB / Rod Johnson, Juergen Hoeller.

.cm.

Includes bibliographical references and index.

ISBN 0-7645-5831-5 (paper/website)

1. Java (Computer program language) 2. Computer software—Development. 1. Hoeller, Juergen, 1975-1I.
Title.

QA76.73.]38]62 2004

005.13'3—dc22

2004005516

ISBN: 0-7645-5831-5
Printed in the United States of America
109 87 654321

About the Authors

Rod Johnson is an enterprise Java architect with extensive experience in the insurance, dot-com, and
financial industries. He was the J2EE architect of one of Europe’s largest web portals, and he has worked
as a consultant on a wide range of projects.

Rod has an arts degree majoring in music and computer science from the University of Sydney. He
obtained a Ph.D. in musicology before returning to software development. With a background in C and
C++, he has been working with both Java and J2EE since their release. He is actively involved in the Java
Community Process as a member of the JSR-154 (Servlet 2.4) and JDO 2.0 Expert Groups. He is the
author of the best-selling Expert One-on-One J2EE Design and Development (Wrox, 2002) and has con-
tributed to several other books on J2EE since 2000.

Rod is prominent in the open source community as co-founder of the Spring Framework open source
project (www . springframework.org), which grew out of code published with Expert One-on-One J2EE
Design and Development. He speaks frequently at leading industry conferences. He is currently based in
London.

Rod can be contacted at expert@interface2l.com.

I'd like to thank my wife, Kerry, for her continuing love and support. Of those who’ve given practical
help, I'm grateful for contributions from Gary Watson, Andrew Smith, and Jason Carreira for their
thorough review of the entire manuscript; Alef Arendsen (reviewing and valuable performance bench-
marking); Peter den Haan (thorough review of several chapters); Renaud Pawlak (rigorous review of the
AOP material); and Steve Jefferson, Thomas Risberg, and Dmitriy Kopylenko (reviewing).

I'm also grateful to the many developers and architects who have shared their experiences of J2EE devel-
opment with me, in person and via e-mail.

As always, working with Juergen has been a pleasure.

Juergen Hoeller is a Senior Systems architect and Consultant at werk3AT, a company that delivers com-
plex web solutions and provides J2EE-based consulting in Austria.

Juergen has a masters degree in Computer Science from the University of Linz, specializing in Java, OO
modeling, and software engineering. He has worked on a wide range of projects with numerous J2EE
application servers, ranging from enterprise application integration to web-based data visualization.
Juergen has particular experience in developing J2EE web applications, O/R mapping, and transaction
management.

Juergen is co-lead of the Spring Framework and active in many community forums, including
TheServerSide.

Most of all, I'd like to thank my spouse, Eva, for her boundless love and support, and for her under-
standing of my constant lack of time.

Special thanks to my colleagues at werk3AT and in particular to Werner Loibl for respecting all of my
activities, and for giving valuable input to Spring and this book.

I'm grateful to Thomas Risberg and Alef Arendsen for their thorough reviews and valuable input, and
to all developers who helped sharpen the arguments, both within and outside the Spring team.

It has been a particular pleasure to work with Rod on both Spring and this book.Introduction

Richard Swadley

Vice President and Executive Publisher

Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Executive Editor
Robert Elliott

Editorial Manager
Kathryn A. Malm

Development Editor
Adaobi Obi Tulton

Credits

Vice President and Executive Group Publisher

Technical Editors
Gary Watson
Andrew Smith
Jason Carreira

Production Editors
Felicia Robinson
Eric Newman

Copy Editors
C. M. Jones
Michael Koch

Media Development Specialist
Kit Malone

Text Design & Composition
Wiley Composition Services

Contents

About the Authors v
Introduction xvii
Chapter 1: Why “J2EE without EJB”? 1
EJB Under the Spotlight 1
What'’s Left of J2EE? 3
J2EE at a Crossroads 4
The Way Forward 5
Themes 5
Lightweight Frameworks and Containers 10
Should We Ever Use EJB? 11
Summary 12
Chapter 2: Goals 13
Productivity 13
The Problem 14

The Traditional J2EE Approach to Productivity Issues 15
Better Solutions for Higher Productivity 20

00 26
The Importance of Business Requirements 28
The Importance of an Empirical Process 28
Summary 29
Chapter 3: Architectures 31
Architectural Building Blocks 31
The Business Services Layer 31
Exposing Business Objects to the World 35

Data Access Layer, or EIS Tier 40
J2EE Architectures 42
EJB Architectures 42
Non-EJB Architectures 47

Vii

Contents

J2EE Architectures in Practice 54
“Classic” J2EE Remote EJB Architectures 54
Local EJB Architectures 57
Ad hoc Non-EJB Architectures 59
“Lightweight Container” Architecture: The Sample Application 61

Deciding Whether an Application Needs

an Application Server 62

Summary 63

Chapter 4: The Simplicity Dividend 65

The Cost of Complexity 65

Causes of Complexity in J2EE Applications 66
Architectural Causes of Complexity 66
Cultural Causes of Complexity: The Complexity Industry 71

How Much Complexity Is too Much Complexity? 75
Simple or Naive? 75
Just Good Enough? 77
The Winds of Change 77

Summary 78

Chapter 5: EJB, Five Years On 81

Hype and Experience 81
EJB and the J2EE Industry 82
EJB in Practice 82

An Aging Component Model 82
Java Language Improvements 83
The .NET Challenge 83
Web Services 85
The Rise of Agile Methodologies 86
Confusion Regarding the Aims of EJB 86
The Component Market That Didn’t Eventuate 88
The New Paradigm on the Block: The Emergence of AOP 88

What Do We Really Want from EJB, or Why Stateless Session Beans

Are So Popular 89
Declarative Transaction Management 20
Remoting 92
Clustering 92
Thread Management 94
EJB Instance Pooling 94
Resource Pooling 95
Security 95

viii

Contents

Business Object Management 96
EJB Services Summary 97
What Don’t We Want from EJB? 97
The Monolithic, Distinct Container Problem 98
Inelegance and the Proliferation of Classes 98
Deployment Descriptor Hell 100
Class Loader Hell 100
Testing 100
EJB Overdose 102
Complex Programming Model 102
Simple Things Can Be Hard 103

Is the Goal of Enabling Developers to Ignore the Complexity
of Enterprise Applications Even Desirable? 103
Loss of Productivity 104
Portability Problems 104
Can EJB Reinvent Itself? 104
Tool Support 104
EJB 3.0 105
Myths and Fallacies 105
J2EE == EJB 106
Questionable Arguments for Using EJB 106
Moving Forward 107
Choosing Whether to Use EJB 107
Conventional Wisdom 107
Making a Choice Today 108
The Emerging Post-EJB Consensus 109
Standards, Innovation, and Open Source 112
Summary 118
Chapter 6: Lightweight Containers and Inversion of Control 121
Lightweight Containers 122
What Is a Lightweight Container? 122
Why Do We Need a Container at All? 124
Lightweight Containers versus EJB 125
Managing Business Objects 126
Interface-implementation Separation 126
EJB: Only a Partial Solution 127
Inversion of Control 127
loC Implementation Strategies 128
loC Containers 135
Portability between IoC Containers 137

Contents

Implications for Coding Style, Testing, and Development Process 138
Coding Style 138
Testability 139
Development Process 139

Applying Enterprise Services 139

Summary 141

Chapter 7: Introducing the Spring Framework 143

History and Motivation 143

A Layered Application Framework 144
Basic Building Blocks 145
Spring on J2EE 146
Spring for Web Applications 147

The Core Bean Factory 149
Fundamental Interfaces 149
Populating Beans via XML 151
Non-XML Bean Definition Formats 154
Wiring up Application Objects 155
Autowire and Dependency Checks 159
Constructor Resolution 160
Lifecycle Callbacks 162
Complex Property Values 164

Resource Setup 165
Classic Java and J2EE Resource Access 166
Resource Definitions in a Bean Container 168
Factory Beans 171

The Spring Application Context 175
Lifecycle Callbacks 177
Message Source 178
File Resources 180
Bean Factory Post-processing 182

Summary 184

Chapter 8: Declarative Middleware Using AOP Concepts 187

AOP 101 188
Motivation 188
AOP in J2EE 190
Definitions 191
History 194

Contents

EJB as a Subset of AOP
AOP Implementation Strategies
Dynamic Proxies
Dynamic Byte Code Generation
Java Code Generation
Use of a Custom Class Loader
Language Extensions
AOP Implementations
Aspect)
AspectWerkz
JBoss 4
Spring
Nanning
The AOP Alliance
AOP Design Issues
Dangers of AOP
AOP Design Recommendations
J2EE a la carte
AOP in Practice with Spring
Using the ProxyFactoryBean
Convenience Factory Beans
“Autoproxying”
Programmatic Usage

Using Source-level Metadata to Provide
an Abstraction above AOP

.NET Example
Aside: Conceptual Versus Implementation-level Metadata
Programmatic Access to Context Information
Spring Example
EJB 3.0
Implications for Programming Style
Consistent Naming Conventions
Avoiding Reliance on the AOP Infrastructure
Checked Exceptions and Advice
References
Books
Papers
Articles and Online Resources
Summary

195
197
197
198
198
198
198
199
199
201
201
203
207
207
207
207
210
211
212
213
217
218
219

220
220
221
222
222
225
225
225
226
227
227
227
227
227
228

Xi

Contents

Chapter 9: Transaction Management 231
High-level Transaction Management 231
Classic J2EE Transaction Management 232

The J2EE Container as Transaction Coordinator 233
Everybody Loves CMT 234
Direct Use of JTA 236
Interlude: Remote Transaction Propagation 237
Lightweight Transaction Infrastructure 238
Transaction Management with the Spring Framework 239
Transaction Definition 240
Programmatic Transaction Demarcation 243
Declarative Transaction Demarcation 246
Transaction Management Strategies 251
Implications for J2EE Server Choice 257
Summary 258

Chapter 10: Persistence 261

Common Persistence Strategies 262
An Overview of Persistence Patterns 262
Popular J2EE Data Access Solutions 263
Choosing a Persistence Strategy 265
Transparent Persistence and Behavior in Domain Objects 268

A Brief History of Java Persistence Technologies 268
The Slow Rise of Java O/R Mapping Solutions 269
The Failure of Entity Beans 271

Data Access Technologies in Practice 271
Resource Handling 272
JDBC 273
iBATIS SQL Maps 275
JDO 278
Hibernate 281

The Data Access Object Pattern 285
Business Objects and Data Access Objects 285
DAOs and Transparent Persistence 287
Types of Data Access Objects 288
DAO Design Issues 289
DAO Infrastructure Issues 292

Data Access with the Spring Framework 293
Generic Data Access Exceptions 293
Business Objects and Data Access Objects Revisited 295

Xii

Contents

JDBC 298
iBATIS SQL Maps 301
JDO 302
Hibernate 304
Summary 307
Chapter 11: Remoting 309
Classic J2SE Remoting: RMI 310
Accessing and Exporting RMI Services 311
RMI Invoker for Transparent Remoting 315
Classic J2EE Remoting: EJB 316
Wire Protocols 317
State Management 318
Accessing Remote EJBs 319
Deploying Remote EJBs 324
WSDL-based Web Services: JAX-RPC 325
Accessing Web Services 327
Servlet and EJB Endpoints 332
Lightweight Remoting: Hessian and Burlap 335
Accessing and Exporting Hessian and Burlap Services 336
Summary 339
Chaper 12: Replacing Other EJB Services 341
Thread Management 342
Threading Myths 342
The EJB Threading Model 345
EJB Instance Pooling 346
When Is Pooling Required? 347
The Case Against Instance Pooling 347
Alternatives to EJB Threading and Pooling 349
Threading Models 349
Instance Pooling Summary 358
Declarative Security 359
The EJB Model 359
Flaws in the EJB Model 359
Declarative Security via AOP 359
JMS and Message-driven Beans 360
Summary 360

Xiii

Contents

Chapter 13: Web Tier Design 363
Goals and Architectural Issues 364
Web Tier Design Goals 365
Ad hoc MVC via Servlets and JSPs 366
Integration into Overall Application Architecture 368
Request-driven Web MVC Frameworks 374
Struts 1.1 375
WebWork?2 381
Web MVC with the Spring Framework 388
Appropriate View Technologies 401
Alternative Approaches to Web MVC 403
Portals and Portlets 403
Event-driven Web MVC Frameworks 404

A Word on ASENET 409
Summary 410
Chapter 14: Unit Testing and Testability 411
Why Testing Matters 412
Goals of Unit Testing 414
Ensuring Testability 415
Programming Style 415
How to Make Your Code Hard to Test 416
Standard Library Challenges 420
Techniques for Improving Testability 421
Inversion of Control 425
AOP 425
Unit Testing Techniques 425
Stubs 425
Mock Objects 426
Writing Effective Tests 430
Test-driven Development (TDD) 433
Benefits 433
Arguments against TDD 434
Practicing TDD 436
Learning TDD 436
Case Study: The Spring Experience 437
Testing Spring Applications 440
Testing POJOs 440
Benefiting from Spring Abstractions 440
When You Do Need to Depend on Spring APls 441
Testing with an Alternate Configuration 442

Xiv

Chapter Title

Coverage Analysis and Other Test Tools 443
Test Generators 444
Coverage Tools 444
Mutation Testing Tools 447

Resources 448

Summary 449

Chapter 15: Performance and Scalability 451

Definitions 452

Setting Clear Goals 453

Architectural Choices: The Key to Performance and Scalability 454
Object Distribution, Clusters, and Farms 455
Data Access 461
Other Architectural Issues 462

Implementation Choices 463
The Performance Implications of Dispensing with EJB Service Provision 463
Caching and Code Optimization 471

Tuning and Deployment 476
JVM 476
Application Server 476
Framework Configuration 477
Database Configuration 477

An Evidence-based Approach to Performance 478
Benchmarking 479
Profiling 480
Diagnostics 484

Resources 485

Summary 485

Chapter 16: The Sample Application 489

Pet Store Requirements 490

The iBATIS JPetStore 3.1 490
Middle Tier 491
Remoting 493
Room for Improvement 494

Spring JPetStore 494
Middle Tier 496
Data Access Tier 499
Web Tier 502
Remoting 510

XV

Contents

Build and Deployment 516
WAR Deployment Issues 516
Deploying the Spring JPetStore 519

Summary 520

Chapter 17: Conclusion 521

Looking Back 521

Moving Forward 523
Choosing the Best Architecture for Your Application 524
The Lightweight Container Architecture 524
Standards 526
Is Spring the Only Alternative to EJB? 527
Key Messages 529

Guidelines 530
Architecture 531
Programming Style 532
Inversion of Control (IoC) and Dependency Injection 532
AOP 533
Testing 534

Last words 535

Index 537

XVi

Introduction

This is a fairly short book, given its scope, because its subject is less complex than you've been led to
believe.

J2EE orthodoxy makes heavy work of many simple problems. Indeed it sometimes seems that the J2EE
industry is committed to the belief that there are no simple problems.

Many—probably most—]J2EE applications are over-engineered, with unnecessarily complex architec-
tures. Over-engineering can be very costly. J2EE developers tend to assume that increased cost up front
will be more than balanced by reductions in future costs. Unfortunately, karma doesn’t apply to software
engineering, and this is often a fallacy. Greater complexity up front means more code to write and main-
tain, more potential for bugs, more delay in demonstrating functionality to users: ultimately, greater
chance of failure, and at greater cost.

J2EE over-engineering usually involves EJB. As I pointed out in Expert One-on-One J2EE Design and
Development, EJB is often used inappropriately. This is a real problem, because EJB can introduce more
complexity than it conceals. Some services provided by EJB are also overrated. For example, few experi-
enced developers or architects who have worked with entity E]Bs to access relational data want to repeat
the experience—at least, given the alternatives of JDO, Hibernate, and other transparent persistence
technologies.

Critiques of EJB have become commonplace since late 2002. It’s easy enough to pick the flaws in an
imperfect existing technology, without suggesting alternatives. This book breaks new ground in describ-
ing and illustrating better approaches for the majority of J2EE applications that derive no benefit from
EJB. This book is no mere theoretical discussion, but a practical guide to designing and implementing
high-performance J2EE applications on time and budget. Our suggested architectures are backed up by
extensive experience, a realistic sample application, and comprehensive open source solutions that meet
typical infrastructure needs.

Despite the significant problems that have emerged with EJB, it continues to be adopted too often largely
because of fashion and fear. Fashion because even nontechnical managers have heard of EJB and because
many books on J2EE architecture barely mention alternatives to E]JB for delivering enterprise services,
even where excellent alternatives exist. Fear that the alternatives are worse: for example, that without
EJB developers will be left to handle complex issues such as transaction management without the train-
ing wheels of the EJB container. This book aims to show that these fears are largely unfounded. Where
the potential complexity is real, it shows that there are alternatives that do a better job than EJB at
addressing the problems concerned.

This book demonstrates a much simpler approach to developing typical J2EE appli-
cations than the “classic” J2EE blueprints approach exemplified by the original Java
Pet Store. Our approach leads to reduced cost, shorter time to market, greater main-

tainability, and better performance.

Introduction

The architectural approach described in this book is part of a growing movement towards simpler, more
rational J2EE architectures. It’s suitable for use with agile methodologies. It draws on recently developed
technologies such as Aspect Oriented Programming, and borrows where appropriate from alternative
platforms to J2EE such as .NET.

I aim to help you build the simplest possible applications that meet your requirements—and hence, also
the cheapest, most maintainable and testable.

The merits of EJB have become a surprisingly emotive issue in the J2EE community. There seems to be a
stark polarization between those would never use EJB unless compelled and those who believe that the
EJB skeptics are lazy, ignorant heretics, with little middle ground.

As you may suspect, I'm not a fan of EJB. However, I have developed many applications with EJB and
speak from experience and intimate knowledge of the EJB specification. I'll also strive to justify my position
throughout this book. My goal is to help you develop effective applications, not to combat the use of EJB.

After reading this book, you should be able to assess the value proposition of EJB for each application. If,
with a strong understanding of EJB and the alternatives, you believe that your requirements are best
addressed by EJB, use EJB. The message of this book is not a black-and-white “don’t use EJB.”

Who This Book Is For

This book is for J2EE architects and developers who have a solid grasp of the technology and want to
use it more productively. It’s a book about the why and how of enterprise applications, rather than the
what. So you won't find API listings here, and you won't find yet another introduction to basic J2EE ser-
vices such as JNDI and JTA. There are many good books and articles that address these topics.

The material in this book is particularly relevant to those working on web applications. However, most
J2EE developers will find something of value. You may well read this book and decide that EJB is the

correct choice for your particular application; even in this case, by applying the criteria set out in this
book, you'll know exactly why you are using E]JB and what value it is providing.

Aims of This Book

This book aims to help you solve practical problems. It aims to demonstrate a simpler and more produc-
tive approach to J2EE development than the traditional J2EE approach exemplified in Sun blueprints
and based on the use of EJB to manage business logic.

You might end up having a lot more fun, as well.

What This Book Covers

This book covers:

0 Problems with EJB and received wisdom in J2EE architecture

O Key values for successful J2EE projects

xviii

Introduction

Effective architectures for J2EE applications, especially for web applications
Common mistakes in J2EE architecture and implementation

How to find the simplest and most maintainable architecture for your application

U 0 0 U

Inversion of Control and Aspect-Oriented Programming: two important new technologies that have
recently become important to J2EE development.

Chapters 6 through 12 cover replacing EJB services with lighter-weight, more testable alternatives. We
emphasize:

U Transaction management. This is an essential of enterprise applications, and a popular motivation for
using EJB. We'll ook at alternative means of transaction management, discussing both declarative
and programmatic transaction management.

QO Data access in J2EE applications: another central problem that—in contrast to transaction manage-
ment—E]JB addresses very badly.

O How AOP can be used to solve many common problems in enterprise software development.
We'll also talk about:

QO Web tier design, and the place of the web tier in a well-designed J2EE application
QO Testing and test-driven development, and how to test J2EE applications effectively

QO Performance and scalability
Specific technologies considered include:

U Data access with JDBC, Hibernate, and JDO
QO Web tier technologies such as Struts, WebWork, Spring MVC, and JSP

O Using open source products to develop a strong application infrastructure, and minimize the amount
of code you'll have to develop, test, and maintain in house. Most problems of J2EE infrastructure
have been solved by leading open source products; I'll help you focus on tackling those unique to
your applications.

Assumed Knowledge

This is not a primer on EJB or J2EE.

We assume knowledge of core J2EE APIs and services such as JNDI, JTA, and database connection
pooling.

We assume sound knowledge of J2SE, including reflection, inner classes, dynamic proxies, JDBC, JAXP,
and JNDI.

We assume good working knowledge of OO design.

Xix

Introduction

You won't need detailed knowledge of EJB, as this book is about alternatives to E]JB, but it will help if you
are familiar with EJB. If you want to get up to speed, try Ed Roman’s Mastering Enterprise JavaBeans,
Second Edition (Wiley, 2001).

You will need to understand the basic middleware concepts behind EJB, such as resource pooling,
remoting, and transaction management; the basic motivation for adopting n-tier rather than client-server
architectures.

You'll need to understand the basic concepts of web interfaces, and the MVC architectural pattern as
used in J2EE web applications.

Don’t worry if you aren’t already familiar with AOP; in Chapter 8 I provide an introduction that enables
you to start implementing AOP-enabled applications, and includes a reading list to help you gain deeper
knowledge.

Recommended Reading

XX

This book is the sequel to Expert One-on-One J2EE Design and Development (Wrox, 2002). You can read this
book on its own, but you may want to refer to that book. In particular, it describes in detail many pro-
gramming practices that are mentioned more briefly here. Chapters 4, 9, and 11-13 are particularly rele-
vant as background to this book.

I also highly recommend Martin Fowler’s Patterns of Enterprise Application Architecture (Addison-Wesley,
2002): a wise discussion of many problems in enterprise software, with a healthy distance from imple-
mentation technologies such as J2EE. Martin Fowler is one of my favorite writers, and he’s always worth
reading. Fowler’s First Law of Distributed Objects (“Don’t distribute your objects”) is worth the price
alone. This book also introduces the term POJO (Plain Old Java Object), coined by Fowler to give plain
Java objects buzzword compliance. I'll use it throughout this book.

As I believe that J2EE applications should be OO applications, I highly recommend the classic OO text,
Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson, and Vlissides,
Addison-Wesley, 1995). The 23 patterns listed in this book are still the most valuable in J2EE applica-
tions—more valuable than technology-centric “J2EE” patterns.

The second edition of Core J2EE Patterns (Alur, Crupi, and Malks, 2003) is important reading, partly
because it defines a standard naming for J2EE patterns. I'll refer to several patterns from this book, such
as Service Locator, Business Delegate, and Front Controller, and it will be helpful if you already under-
stand them. Core J2EE Patterns exemplifies more traditional thinking on J2EE architecture (although the
second edition is a worthwhile update), but is nonetheless a very useful resource.

I recommend you keep up to date on current J2EE topics. Some of my favorite J2EE websites are:

O TheServersSide. The major J2EE portal, this is a great place to keep up to date with developments in
J2EE. You'll find discussions on many J2EE issues, and valuable resources such as articles and book
chapters and product reviews.

O Artima.com (www.artima.com). Java/J2EE-oriented software site, run by Bill Venners.

U Core J2EE Patterns web site (www.corej2eepatterns.com/index.htm).

Introduction

Q Various blogs. Some very important ideas have been explored and discussed amongst Java bloggers.
www . javablogs . comis a good starting point for exploring this important information channel.
Significant bloggers include Rickard Oberg, Ted Neward, Gavin King, Bob Lee (“Crazy Bob”), and
Jon Tirsen.

It’s useful to keep up to date on middleware in general, not just J2EE. .NET has a similar overall architec-
ture to J2EE, and the growing patterns literature on .NET is relevant to J2EE. Useful resources include:

O MSDN home (http://msdn.microsoft.com/)

0 “Enterprise Solution Patterns Using Microsoft NET” website
(http://msdn.microsoft.com/architecture/patterns/Esp/default.aspx)

What You Need to Use This Book

To run the sample application and examples, you'll need:

O AJ2EE web container or/and application server. For examples using a single database, without the
need for JTA, we used Tomcat 5.0.16. For examples using JTA, we used WebLogic 8.1 Express. All the
code in this book runs unchanged on most other application servers (an incidental benefit of avoiding
EJB!), so feel free to deploy the code onto your favorite application server. Please see the release notes
with the sample application for information on which application servers it has been tested on.

O Arelational database and the appropriate JDBC drivers. We used HSQLDB
(http://hsgldb.sourceforge.net/) for the examples, but only minor changes should be neces-
sary to use any other transactional database.

Q The Spring Framework, available from www . springframework. org. This site contains many fur-
ther resources for developing with Spring. The sample application was written for Spring 1.0 final,
but should run unchanged on later versions of Spring.

QO The Hibernate 2.1 object-relational mapping product, available from www.hibernate.org/.

O Jakarta Ant 1.5.3, the standard Java build tool. While you may prefer to build your projects with
Maven (a more complex and powerful build tool) you should certainly understand Ant and the
importance of script-driven, repeatable project build steps.

QO Various third-party libraries, including Jakarta Commons Logging and Jakarta Commons Attributes.
The necessary jar files are included with the full Spring distribution; see documentation with Spring
and the sample application for details.

All this software is open source or free for developer use.

The Sample Application

An innovative feature of this book is that it uses an open source sample application. Authors have lim-
ited time; for most of us, writing is a hindrance to earning a living. Thus in many books, the sample
application is a poor second to completion of the text. Expert One-on-One J2EE Design and Development
was no exception in this regard, although it did offer unusually sophisticated infrastructure code.

XXi

Introduction

An open source sample application can be more realistic than would be possible through the authors’

effort alone. This has the great advantage of avoiding the simplifications often seen in sample applica-
tions. In J2EE applications, the devil is in the detail, and the value of the overall approach is measured
by its ability to address problems of real-world complexity, rather than over-simplified examples.

The sample application is an implementation of the familiar Java pet store. The pet store has simple,
well-understood requirements, meaning that we don’t need to describe the problem domain in detail.

The code base was originally based on Clinton Begin’s JPetStore, available from www.ibatis.com: a
valuable example in its own right. Our sample application enhances the JPetStore to use the architecture
we advocate, introducing greater use of interfaces, use of an Inversion of Control container, and AOP-
enabled declarative transaction management. We believe that the result is simpler and more flexible and
extensible than the original JPetStore. We also invite you to compare it with the original Sun Java Pet
Store to see how much simpler our approach is in comparison to the J2EE blueprints approach, and how
it replaces E]B services with lighter-weight alternatives.

The sample application illustrates the following points discussed in the text:

O A well-defined business interface layer

Q The Lightweight Container architecture, discussed in Chapter 3, built on an Inversion of Control
container

O The use of AOP to provide declarative transaction management to POJOs. The underlying transac-
tion-management technology can be switched between JTA, JDBC, or another technology without any
change to Java code.

O Use of an MVC web layer, using either Spring MVC or Struts 1.1. The sample includes both alterna-
tive implementations of the web tier, accessing the same business interface layer.

Q Use of the Data Access Object pattern to decouple business logic from database schema and technol-
ogy for accessing persistent data

O The use of source-level metadata attributes to simplify the programming model, especially for trans-
action management

0 Remoting support for multiple protocols, built on the business interface layer.
The sample application is available online at www . wrox. com. Once at the site, simply locate the book’s

title (either by using the Search box or by using one of the title lists) and click the Download Code link
on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; the ISBN for this book is
0-7645-5831-5.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you

can go to the main Wrox code download page at www . wrox.com/dynamic/books/download. aspx to
see the code available for this book and for all other Wrox books.

xxii

Introduction

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly rele-
vant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italic like this.
As for styles in the text:

Q We highlight in italic important words when we introduce them.
O We show keyboard strokes like this: Ctrl+A.

O We show file names, URLs, and code within the text in a monospaced font, like so:
persistence.properties.

O We present code in two different ways:

In code examples we highlight new and important code with a gray background.
The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect,
and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty piece of
code, we would be very grateful for your feedback. By sending in errata you may save another reader hours
of frustration and at the same time you will be helping us provide even higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to

www . wrox.com/contact/techsupport.shtml and complete the form there to send us the error you
have found. We’ll check the information and, if appropriate, post a message to the book’s errata page
and fix the problem in subsequent editions of the book.

XXiii

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at http: //p2p.wrox. com. The forums are a web-
based system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of inter-
est of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers participate in these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Gotohttp://p2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to provide
and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as to many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXiv

Why “J2EE Without EJB”?

The traditional approach to J2EE architecture has often produced disappointing results: applica-
tions that are more complex than their business requirements warrant, show disappointing perfor-
mance, are hard to test, and cost too much to develop and maintain.

It doesn’t need to be so hard. There is a better way for most applications. In this book, we'll
describe a simpler, yet powerful architectural approach, building on experience with J2EE and
newer technologies such as Inversion of Control and AOP. Replacing EJB with lighter-weight,
more flexible, infrastructure typically produces significant benefits. We and many others have
used this approach in many production applications, with better results than are usually produced
from traditional architectures.

Let’s begin with a quick tour of the topics we’ll examine in more detail in later chapters.

EJB Under the Spotlight

Like most of my colleagues, I was excited by the promise of EJB when it first appeared. I believed
it was the way forward for enterprise middleware. However, I've since revised my opinions, in the
light of my experiences and those of many colleagues.

Much has changed since the E]B specification was conceived:

Q Parts of the specification’s design now seem dated. For example, dynamic proxies, intro-
duced in J2SE 1.3, call into question the container code generation envisaged in the EJB
specification and the multiple source files needed to implement every EJB.

QO The traditional link between EJB and RMI remoting is looking dated, because of the emer-
gence of web services and the recognition that EJBs sometimes need only local interfaces.
EJB is a heavyweight model for objects that don’t need to offer remote access.

Chapter 1

a

Q

This is a special case of the fact that basing typical applications around distributed business
objects—the architectural choice EJB implements best—has proved problematic.

Usage of E]B indicates its strengths and weaknesses. Most developers and architects have
restricted their use of EJB to stateless session beans and (if asynchronous calls are needed)
message-driven beans. The relative simplicity of the services provided by the EJB container to
support SLSBs means that the overhead of an EJB container is hard to justify in such applications.

Although EJB has been around for five years, and its use is a given in many J2EE projects, it has
become apparent that its complexity means that many developers still don’t understand it. For
example, many developer candidates I interview can’t correctly describe how EJB containers
handle exceptions and how this relates to transaction management.

The EJB specification is becoming more and more complex in an attempt to address problems
with EJB. It’s now so long and complex that few developers or architects will have time to
read and understand it. With specifications, as with applications, the need for continual
workarounds and constantly growing complexity suggests fundamental problems.

The complexity of EJB means that productivity in EJB applications is relatively poor. A number
of tools try to address this, from “Enterprise” IDEs to XDoclet and other code generation tools,
but the complexity still lurks under the surface and imposes ongoing costs.

Rigorous unit testing and test driven development have become increasingly, and deservedly,
popular. It’s become clear that applications making heavy use of EJB are hard to test.
Developing EJB applications test first requires a lot of fancy footwork; essentially, minimization
of the dependence of application code on the EJB container.

The emergence of Aspect Oriented Programming (AOP) points the way to more powerful—yet
potentially simpler—approaches to the middleware problems addressed by EJB. AOP can be
viewed in part as a more general application of the central EJB concepts, although of course it’s
much more than a potential replacement to E]JB.

Source level metadata attributes, as used in .NET, suggest a superior alternative in many cases
to the verbose XML-based deployment descriptors used since EJB 1.1. EJB 3.0 looks like it’s
heading down that road as well, but it's a way off and will carry a lot of baggage.

Experience has also shown EJB to incur greater cost and deliver fewer benefits than were initially pre-
dicted. Developers have encountered intractable problems that weren’t apparent when E]JB first
appeared. Experience has shown that EJB fails to deliver in several areas:

a
a
a

It doesn’t necessarily reduce complexity. It introduces a lot of complexity.
The entity bean experiment for persistence has largely failed.

Applications using EJB tend to be less portable between application servers than applications
using other J2EE technologies, such as servlets.

Despite the promises that EJB would prove the key to scalability, EJB systems often perform
poorly and don’t necessarily scale up well. Although statistics are hard to come by, anecdotal
evidence suggests that the overhead of excessive use of EJB necessitates re-architecture or
causes outright failure in a significant number of projects.

EJB can make simple things hard. For example, the Singleton design pattern (or alternatives) is
hard to implement in EJB.

Why “J2EE Without EJB”?

All of these issues suggest that it’s wise to analyze exactly what the value proposition is before using
EJB. I hope to equip you with the tools to do this effectively and dispassionately.

In Chapter 5, we’ll talk more about EJB and its problems. In the meantime, let’s look at where J2EE is
today, where I feel it’s going, and how this book will help you deliver real solutions on time and budget.

What’s Left of J2EE?

You may be wondering, “What'’s left of J2EE without EJB?”

The answer is: a great deal. J2EE is much more than EJB. Many J2EE developers believe otherwise, and
will tell you so when they see this book on your desk, but a dispassionate analysis of what EJB does, and
what J2EE does overall, shows that E]B is only a part of a much bigger and more important picture.

J2EE is essentially about standardizing a range of enterprise services, such as naming and directory ser-
vices (JNDI), transaction management offering a standard API potentially spanning disparate transac-
tional resources (JTS and JTA), connection to legacy systems (JCA), resource pooling, and thread
management. The true power of J2EE lies in these services, and this standardization has done great
service to the industry.

EJB, on the other hand, is merely one way of leveraging those valuable services, through a particular
component model.

We can still access JNDI, JTA, JCA, resource pooling, and other core J2EE services without using EJB. We
can do this by writing code that uses them directly (not as hair-raising as it may seem) or—better—using
proven libraries and frameworks that abstract their use without imposing the complexity of EJB.

Only a few E]JB container services are unique to EJB, and there are good alternatives to those. For example:

Q Entity beans are the only dedicated data access components in J2EE. However, they're also the
most questionable part of J2EE, and there are much better non-J2EE alternatives, such as
Hibernate and JDO. In some applications, JDBC is a better option.

Q Container Managed Transactions (CMT): EJBs are the only part of J2EE to enjoy declarative
transaction management. This is a valuable service, but as we’ll see in Chapters 8 and 9 we can
also achieve declarative transaction management using AOP. CMT is a relatively thin layer over
the underlying J2EE JTA service. It would be hard (and foolhardy to attempt) to replace an
application server’s global transaction management, but it’s not so hard to access it to develop
an alternative form of CMT.

Q Thread pooling for business objects: We usually don’t need this if we’'re supporting only web
clients (or web services clients going through a servlet engine), because a web container pro-
vides thread pooling and there’s no need to duplicate it in the business object tier. We do need
thread pooling to support remote clients over RMI/IIOP, one case in which EJB remains a good,
simple technology choice.

Chapter 1

QO (Related) Thread management for business objects: the ability to implement E]Bs as though
they are single-threaded. In my experience this is overrated for stateless service objects (the
most useful kinds of EJB). EJB can’t eliminate all threading complexity anyway, as problems can
remain with objects used by EJB facades. There are good alternatives to EJB thread manage-
ment, discussed in Chapter 12.

Only in the area of remoting is EJB the only way to implement such functionality in standard J2EE. As
we’ll see, only in RMI/IIOP remoting is EJB clearly an outstanding remoting technology; there are better
alternatives for web services remoting.

There’s a strong argument that EJB attempts to address a lot of issues it shouldn’t. Take O/R mapping.
This is a complex problem to which EJB provides a complex yet under-specified solution (entity beans)
that simply ignores some of the central problems, such as mapping objects with an inheritance hierarchy
to relational database tables. It would have been better for the designers of the EJB specification to leave
this problem to those with much more experience of the issues around object persistence.

J2EE is much more than EJB. Using J2EE without EJB, we don’t have to reinvent the
wheel. We don’t need to reimplement J2EE services, just consider alternative ways of
tapping into them.

J2EE at a Crossroads

J2EE is at a fascinating point in its evolution. In many respects it’s a great success. It has succeeded in
bringing standardization where none existed; it has introduced a welcome openness into enterprise soft-
ware. It has achieved fantastic industry and developer buy-in.

On the other hand, I feel it has come up short on a number of measures. J2EE applications are usually
too expensive to develop. J2EE application projects are at least as prone to failure as pre-J2EE projects.
(Which means that the failure rate is unacceptably high; developing software is far too hit-and-miss an
affair.) In the areas where J2EE has failed, EJB has usually played a significant part.

J2EE has significant issues with ease of development. As I've said, J2EE applications tend to be unneces-
sarily complex. This is especially true of J2EE web applications, which, like the Sun Java Pet Store, are
often absurdly over-engineered.

J2EE is still a relatively young technology. It’s not surprising that it’s imperfect. It’s time to take stock of
where it’s worked, and where it hasn’t worked so well, so that we can eliminate the negatives and enjoy
the positives. Because J2EE contains a lot, this essentially means identifying the subset of J2EE that deliv-
ers most value, along with some supplementary infrastructure we need to harness it most effectively.

There is a growing movement in the J2EE community toward simpler solutions and less use of EJB. My
previous book, Expert One-on-One J2EE Design and Development (2002), was a step in the growth of that
movement, but was part of a broader trend. I believe this book represents the next step in defining and
popularizing such solutions, but it’s important to note that I'm by no means alone. Fellow pioneers
include Rickard Oberg and Jon Tirsen (of Nanning Aspects), who have helped to demonstrate the power

