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PREFACE

This book attempts to encompass “all things magnesia.” Although the mag-

nesia industry is similar in many respects to the much larger lime industry,

there is to my knowledge no text concentrating solely on magnesia. There

are, however, several excellent texts covering the lime industry. Unfortu-

nately, in these books magnesia is practically a footnote. Although lime

and limestone production far exceeds that of the magnesia industry (total

lime production in the United States in 2004 was 20.4 million metric

tonnes, compared with a total magnesia production of 280,000 metric

tonnes), magnesia is still an important chemical and maintains many niche

applications. By far, the largest consumer of magnesia worldwide is the

refractory industry, which consumed about 56% of the magnesia in the

United States in 2004, the remaining 44% being used in agricultural,

chemical, construction, environmental, and other industrial applications.

This text starts with the geological occurrences of magnesite and brucite,

followed by the processing of magnesite to the end product magnesium

oxide. The production of magnesium hydroxide and magnesium oxide by

precipitation from seawater and brine sources is also introduced, along

with details on the wide range of applications in which magnesia is utilized.

These applications span animal feed to wastewater treatment, catalyst

support and fertilizers to the production of pulp and paper.

Like many industries, a certain amount of jargon arises as the industry

matures, and the magnesia industry is no exception to this. However, there

may be some confusion as to which compound magnesia really applies.

xv



My definition is that the term magnesia is a generalization for magnesium

oxide, whether it is derived from natural magnesite or extracted from

seawater or brine. The term magnesite, in the strictest sense, refers to the

mineral consisting of magnesium carbonate, but the same term is often

used for the oxide, that is, dead-burned magnesite, the term even being

used when the oxide has been produced from seawater or brine sources.

The major products produced by the magnesia industry are magnesium

carbonate (magnesite); magnesium hydroxide, both natural (brucite) and

that derived from seawater and brine; magnesium oxide, which in itself

has a number of categories, namely, light-burned or caustic-calcined MgO,

hard-burn MgO, and dead-burn MgO, or as it is otherwise known, periclase;

and the last category, fused magnesia.

Light-burn or caustic-calcined MgO refers to a product that has been cal-

cined at the lower end of the temperature spectrum, typically 1500–17008F.
This product typically has the highest reactivity and greatest specific surface

area of the entire magnesium oxide category. Hard-burn MgO is calcined at

a higher temperature, 2400–28008F, and has a correspondingly lower

reactivity and surface area. Dead-burn MgO, or periclase, is produced at

temperatures above 28008F, which having a very small surface area,

makes it unreactive. Finally, fused magnesia, produced at temperatures

above the fusion point of magnesium oxide (28008C), is the least reactive.
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1
HISTORY OF MAGNESIA

1.1 HISTORY OF MAGNESIA

Magnesia alba, otherwise known to alchemists as white magnesia or mild

magnesian earth, is known today as magnesite or magnesium carbonate,

MgCO3. Magnesia nigra, however, refers to black manganese oxide,

MnO2. Both of these names are derived from Magnesia, Mágvh́sıá,

which is a prefecture in Thessaly, Greece. Manganese and magnesium, as

well as iron, are abundant in the form of oxides and carbonates in this

region, and these minerals were referred to as “stones from Magnesia.”

The iron oxides present in magnesia were in the form of magnetic magnetite

or lodestone, and both magnesia alba and magnesia nigra contain large

amounts of magnetite, thus making them magnetic. This explains why

magnesium and magnet are both derived from the place name Magnesia.

In alchemical terms, magnesia meant “a stone shining like silver” and was

purported to be an ingredient of the philosopher’s stone. In the more modern

sense of the word, it is thought to have originated from magnes carneus,

which means flesh magnet from the way it stuck strongly to the lips.

Bergman’s essay (Bergman et al. 1784–1791) “De Magnesia” claimed

that the Roman Count di Palma prepared a white powder that he claimed

was a panacea for all diseases. The white powder was called “magnesia

alba,” or Count Palma’s powder, and its origin was a closely guarded secret.

The Chemistry and Technology of Magnesia, by Mark A. Shand
Copyright # 2006 John Wiley & Sons, Inc.
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In 1701 M.B. Valentini (Valentini, 1707) prepared magnesia alba by the

calcination of the residue remaining after evaporating the mother liquor to

dryness from the preparation of niter or potassium nitrate. To add even

more to the confusion, it is apparent that at least three minerals of different

chemical composition were called magnesia: (1) magnesius lapis, which

referred to magnetic magnetite, (2) magnesia nigra, which refers to pyrolu-

site (MnO2), and (3) a silver-white mineral that was probably steatite or talc.

At the beginning of the eighteenth century the term manganes was

employed for the manganese mineral and magnesia for the white mineral.

However, the difference between magnesia nigra and magnesius lapis was

not demonstrated until the middle of the eighteenth century. Hoffman

(Hoffman, 1729) was the first to recognize the differences between magnesia

and lime. He stated that an alkaline earth prepared by the reaction of a bitter

salt (Epsom salts) with a fixed alkali differed from lime. Whereas lime gave a

sparingly soluble salt with sulfuric acid that was nearly without taste, mag-

nesia alba gave a bitter soluble salt.

However, it was not until 1754 that magnesia was finally distinguished

from lime by Joseph Black. Black was the first person to recognize that

magnesium was an element. Black, a prominent professor of anatomy and

chemistry at Edinburgh, showed that magnesia alba (magnesium carbonate),

when heated, evolved “fixed air” (carbon dioxide). The residue from this

heating, calcined magnesia (magnesium oxide), was lighter and more alka-

line than the basic carbonate. Limestone (calcium carbonate) was found to

behave in the same manner. Black also demonstrated that magnesia alba

produced a soluble sulfate in contrast to lime. He gave the alkaline earth

the name magnesia. Black’s thesis (Black, 1777) presented in June 1754,

“On the Acid Humour Arising from Food and Magnesia Alba” dealt primar-

ily with the value of magnesia as an antacid.

In 1808 Humphrey Davy (Davy, 1808) proved definitively that magnesia is

the oxide of a metal, which he named magnium. At this juncture, the term

magnesium was being used by some to define metallic manganese. Davy’s

technique involved mixing moistened alkaline-earth oxide with mercuric

sulfide (cinnabar) and placing the paste onto a platinum plate. A drop of

mercury was dropped into a depression made in the paste and the whole

covered with naphtha. The platinum plate and drop of mercury were then con-

nected to the poles of a voltaic pile. The resultant amalgam that formed on the

mercury pole was then transferred to a glass tube and the mercury distilled off.

Davy described the characteristics of magnesium as follows (Davy, 1808)

The metal from magnesia appears to react with the glass, especially before all

the mercury has distilled off. In one experiment, in which I interrupted the dis-

tillation before the mercury had been completely removed, the metal appeared
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as a solid body, which exhibited the same white color and the same luster as

the other metals of the alkalide-earths. It immediately sank to the bottom of the

water although surrounded by gas bubbles, formed magnesia. It changed

quickly in the atmosphere, a white crust forming, and finally it disintegrated

into a white powder, which proved to be magnesia.

Eventually, much to the consternation of Davy, the name magnesium was

adopted for the metal in magnesia alba and manganese for the metal in

pyrolusite. Michael Faraday produced magnesium metal in 1833 by the

electrolysis of fused anhydrous magnesium chloride.

Themineralogical termmagnesitewas first applied to a series ofmagnesium

salts (carbonate, sulfate, nitrate, and chloride) by J.C. Delaméthrie (Delamé-

thrie, 1795) in 1795. The same term was also being applied to magnesium

carbonates and silicates by A. Brongniart (Brongniart, 1807). Deposits of

natural magnesium carbonate were discovered at Hrubschütz in Moravia,

which is now Hrubšice in the Czech Republic, and named Kohlensaurer

Talkerde by W.A. Lampadius in 1800 (Lampadius, 1800). C.F. Ludwig

described these minerals as talcum carbonatum in 1803. The use of the term

magnesite was first restricted to the carbonate minerals by D.L.G. Karsten in

1808 (Karsten, 1808). The name magnesite gradually grew in acceptance.

Deposits of magnesite were found in Austria and Greece during the later

half of the nineteenth century, and around the same time magnesite mines

were opened in Canada. In 1886 magnesite was discovered in California

and commercial mining commenced around 1900, and in 1913 production

of magnesia commenced in Pennsylvania. The development of the magnesite

industry was accelerated in 1914 by the outbreak of World War I as supplies

from Austria and Greece were cut-off by the blockade of central European

powers. Magnesite was found in Stevens County, Washington, in 1916

and mining started in 1917. During World War I, California magnesite

came from small deposits in the Porterville district, which were operated

in a crude fashion by small owners or contractors. The deposits situated at

Magnesite, California, which is a short distance from Portersville, were

developed in a more systematic manner, and after the war formed the

nucleus of a sound mining and production operation. However, much of

the early magnesite technology was developed in the Portersville district,

such as the mechanical beneficiation of magnesite and the calcining of

magnesite to develop a product with specific and controllable characteristics.

It was also at Portersville that the first high-purity crystalline magnesium

oxide was produced in a rotary kiln. Commercial production of refractory-

grade magnesia was also in operation in the Livermore district of California

by Western Mine and the Bald Eagle mine operation by Westvaco Chlorine

products in Stanislaus County, California.
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An immense deposit of medium- to low-quality magnesite exists in Steven

County, Washington, which was exploited by the Northwest Magnesite

Company during World War I. Operations were centered on the towns

of Chewelah and Valley. It was here that the first use of froth flotation to

beneficiate magnesite was employed to reduce silica and lime content.

A very large deposit of dolomite, magnesite, and brucite in the Paradise

Range, Nye County, Nevada, has been known since about 1927 when

brucite was discovered by Harry Springer. Drilling by U.S. Brucite in 1930

and 1931 revealed the presence of considerable quantities of magnesite

adjacent to the brucite. From 1931 to 1933, the U.S. Geological Survey

mapped the deposit and estimated that there were 71 million tons of magnesite

and brucite bearing rock. Both magnesite and brucite were mined by Basic

Ores, Inc., and the Sierra Magnesite Company. Currently, the only magnesite

deposit being exploited in the United States is the one at Gabbs, Nevada.
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2
FORMATION AND OCCURRENCE
OF MAGNESITE AND BRUCITE

2.1 INTRODUCTION

Magnesium is the eighth most abundant element in the solar system and

constitutes about 2% of Earth’s crust. It is also the third most abundant

element in solution in seawater, with a concentration of about 1300 ppm.

The element magnesium is composed of three stable isotopes: 24Mg

(78.6%), 25Mg (10.1%), and 26Mg (11.3%), with an average atomic weight

of 24.31. More than 60 magnesium-containing minerals are known. The

most important rock-forming minerals containing magnesium are the chlor-

ites, the pyroxene and amphibole group minerals, dolomite, and magnesium

calcite (calcite with some of the Ca replaced by Mg). Magnesium is also

present in magnesite (MgCO3), and the hydrated carbonates such as nesque-

honite (MgCO3
.3H2O) and lansfordite (MgCO3

.5H2O) as well in brucite

[Mg(OH)2]. In addition there is a series of basic magnesium carbonates

having the empirical formula xMgCO3
.yMg(OH)2.zH2O. These include

hydromagnesite [4MgCO3
.Mg(OH)2.4H2O] and artinite [MgCO3

.

Mg(OH)2.3H2O]. Magnesium also occurs in salt deposits such as carnallite

(KMgCl3.6H2O), epsomite (MgSO4
.7H2O), and kieserite (MgSO4

.H2O).

It has been estimated that the total mass of the sedimentary layer in Earth’s

crust is 1.4 � 1018 tonnes (Wedephol, 1968). Magnesium is present in the

sediment mainly in dolomite and phyllosilicates, such as chlorite and
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glauconite. Carbonate rocks constitute about 8 wt% of the total sediments

(Goldschmidt, 1954). Dolomite makes up about 30 wt% of the carbonates

in the sedimentary layer and contains 4.6 � 1015 tonnes Mg.

Magnesite is the magnesium end member of an isomorphous series of

carbonates. An increase in calcium content results first in dolomite and

then calcite as the Ca end member. Since the difference between the ionic

diameters of Mg2þ and Fe2þ (Mg2þ ¼ 0.65 Å, Fe2þ ¼ 0.79 Å), is not as

great as that between Ca2þ (0.99 Å) and Mg2þ, Fe and Mg substitute

for each other and form the isomorphic series from magnesite through

breunnerite (5–30% FeCO3) to siderite (FeCO3), and from dolomite to

CaCO3
.FeCO3; see Figure 2.1.

This isomorphic miscibility results in the presence of both calcite and

dolomite in magnesite deposits as mechanical admixtures. However, iron

is bound within the magnesite crystal lattice. Pure magnesite is rarely

found, and the natural mineral tends to occur part way along an isomorphic

series.

Four main types of magnesite deposits have been described to date:

1. Magnesite as a sedimentary rock

2. Magnesite as an alteration of serpentine

3. Magnesite as a vein filling

4. Magnesite as a replacement of limestone and dolomite

Figure 2.1 Isomorphic series substitution of Fe for Mg to form brunnerite.
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There are two physical forms of magnesite: cryptocrystalline or amorphous

magnesite and crystalline, macrocrystalline, or bone magnesite.

2.2 SEDIMENTARY MAGNESITE—BASIS FOR
CARBONATE DEPOSITION

Carbonate compounds are relatively insoluble, and Table 2.1 lists the

solubility constants for a number of geologically important carbonates.

Since these minerals are relatively insoluble, carbonates are precipitated at

relatively low carbonate and counterion concentrations. As an example, a

solution containing 1024 M Ca2þ will be precipitated by a concentration

of CO3
2- in excess of 1024.32 M. This occurs because the product of the

two ionic concentrations exceeds the solubility constant for calcium

carbonate; see Equation (2.1):

½Ca2þ�½CO2
3� ¼ Ksp ¼ 10�8:32 (2:1)

Since the solubility of calcium carbonate is considerably less than that of

magnesium carbonate, evaporation and concentration of salt lakes and

lagoons must have produced calcium carbonate deposits initially. The

brine would gradually be depleted of calcium ion and enriched with mag-

nesium. Eventually, a condition would be reached where the brine concen-

tration of the magnesium ion and carbonate exceeds the solubility constant

of magnesite, and precipitation would proceed; see Equation (2.2):

½Mg2þ�½CO2�
3 � ¼ Ksp ¼ 10�5 (2:2)

Sedimentary deposits of cryptocrystalline magnesite occur either in lagoons,

salt lakes, or freshwater lakes (lacustrine). The genesis of magnesite in

saltwater requires specific conditions for it to occur: a reducing alkaline

environment, a high concentration of magnesium sulfate, and a concentration

TABLE 2.1 Solubility Constants of Geologically Important

Carbonates

Compound (Ksp) Ref.

CaCO3 1028.32 Latimer and Hildebrand (1942)

MgCO3
.3H2O 1025 Latimer and Hildebrand (1942)

MgCO3 1024.59 Weast and Astle (1982)

CaMg(CO3)2 10216.7 Stumm and Morgan (1981)

Source: Adapted from H. L. Lutz, Geomicrobiology, Marcel Dekker,

New York, 2002, p. 191.
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of CO2 above 380 mg/L, a low Ca content (below 50 mg/L), and the pre-

sence of H2S, ammonia, or organic salts, along with an elevated temperature.

It is thought that magnesium precipitates as the hydroxide first [Mg(OH)2],

which is subsequently altered by reaction with carbonate ion to form

MgCO3
.xH2O. Dehydration then follows to form MgCO3. Massive magne-

site formation in freshwater lacustrine environments proceeds from mag-

nesium derived from either hot solutions emanating from magma or from

weathering of ultrabasic rock or serpentinites.

2.2.1 Secondary Nodular Magnesite

A variation of the sedimentary process occurs when the host ultrabasic rock

is weathered by water, the eroded material being transported and deposited in

a distant lacustrine environment. Here, magnesite was precipitated as con-

cretions along with impurities in a mud matrix. The recrystallization of the

magnesite would then have occurred through additional uptake of carbon

dioxide from the atmosphere. Wave movement on the lake during crystalli-

zation carried away noncrystallized impurities such as SiO2, Fe2O3, Al2O3,

and CaO from the newly formed magnesite nodules. These impurities are

then deposited on the exterior and in the pores of the magnesite nodule.

The resultant sand–clay matrix with embedded magnesite nodules is

covered with soil and compacted, and over time a silica-rich encrustation

forms over the nodule. The percolation of bicarbonate-rich subsurface

waters through the deposit results in raising the magnesite density

(Schmid, 1987).

2.2.2 Biogenic Carbonate

A significant portion of the insoluble carbonate deposits at Earth’s surface is

of biogenic origin, while the remainder is the result of magmatic and meta-

morphic activity. The biological fixation of carbon as carbonate involves

bacteria, fungi, and algae, and the carbonate can be deposited both extra-

and intracellular. A part of magnesium present in the oceans is withdrawn

by marine CaCO3-secreting organisms, and this Mg replaces a part of the

Ca in the hard parts of the organism. The quantity of Ca replaced depends

upon the phylogenic position of the organism. Algae have the highest

(5wt%) and barnacles the lowest Mg concentration (0.9 wt%) (Chave,

1954).

Sedimentary deposits of magnesite have been described as having either a

biogenic origin or a chemical route via direct precipitation. These deposits

are cryptocrystalline in form. Actinomycetes bacteria, which belong to the

genus Streptomyces, are thought to have played a role in the formation of

8 FORMATION AND OCCURRENCE OF MAGNESITE AND BRUCITE


