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PREFACE

This book originated from a few occasional discussions several years ago between the

authors on finding specific signal-processing tools for analyzing voltage disturbances.

These simple discussions have led to a number of joined publications, several Masters

of Science projects, three Ph.D. projects, and eventually this book. Looking back at

this process it seems obvious to us that much can be gained by combining the knowl-

edge in power system and signal processing and bridging the gaps between these two

areas.

This book covers two research areas: signal processing and power quality. The

intended readers also include two classes: students and researchers with a power

engineering background who wish to use signal-processing techniques for power

system applications and students and researchers with a signal-processing back-

ground who wish to extend their research applications to power system disturbance

analysis and diagnostics. This book may also serve as a general reference book

for those who work in industry and are engaged in power quality monitoring and

innovations. Especially, the more practical chapters (2, 5, 6, and 10) may appeal

to many who are currently working in the power quality field.

The first draft of this book originated in 2001 with the current structure taking

shape during the summer of 2002. Since then it took another three years for the

book to reach the state in which you find it now. The outside world did not stand

still during these years and many new things happened in power quality, both in

research and in the development of standards. Consequently, we were several

times forced to rewrite parts and to add new material. We still feel that the book

can be much more enriched but decided to leave it in its current form, considering

among others the already large number of pages. We hope that the readers will pick

up a few open subjects from the book and continue the work. The conclusion

xvii



sections in this book contain some suggestions on the remaining issues that need to

be resolved in the authors’ view.

Finally, we will be very happy to receive feedback from the readers on the

contents of this book. Our emails are m.bollen@ieee.org and i.gu@ieee.org. If

you find any mistake or unclarity or have any suggestion, please let us know.

We cannot guarantee to answer everybody but you can be assured that your

message will be read and it will mean a lot to us.

MATH H. J. BOLLEN

IRENE Y. H. GU

Ludvika, Sweden

Gothenburg, Sweden

May 2006
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The interesting discussions in a number of working groups and international

cooperation projects also contributed to the material presented in this book. The

authors especially acknowledge the contribution from fellow members in IEEE

task force P1564 and CIGRE working group C4.07 (originally 36.07).

Many thanks are due to the anonymous reviewers of this book for their valuable

suggestions. Thanks are also due to Peter Willett (University of Connecticut,

United States) for his encouragement and very useful suggestions, and to Mats

Viberg (Chalmers, Sweden) for support. A special thanks also goes to Lars Moser

(KvaLita, Sweden) for invaluable encouragement and support.

A final thanks goes to Marilyn Catis and Anthony Vengraitis at IEEE Press for

encouraging us to start writing this book and for the help through the whole

writing process.

M. H. J. B

I. Y-H. G

xx ACKNOWLEDGMENTS



CHAPTER 1

INTRODUCTION

This chapter introduces the subjects that will be discussed in more detail in the

remainder of this book: power quality events and variations, signal processing of

power quality measurements, and electromagnetic compatibility (EMC) standards.

This chapter also provides a guide for reading the remaining chapters.

1.1 MODERN VIEW OF POWER SYSTEMS

The overall structure of the electric power system as treated in most textbooks on

power systems is as shown in Figure 1.1: The electric power is generated in large

power stations at a relatively small number of locations. This power is then trans-

mitted and distributed to the end users, typically simply referred to as “loads.”

Examples of books explicitly presenting this model are [193, 211, 322].

In all industrialized countries this remains the actual structure of the power

system. A countrywide or even continentwide transmission system connects the

large generator stations. The transmission system allows the sharing of the resources

from the various generator stations over large areas. The transmission system not

only has been an important contributing factor to the high reliability of the power

supply but also has led to the low price of electricity in industrialized countries

and enabled the deregulation of the market in electrical energy.

Distribution networks transport the electrical energy from the transmission sub-

stations to the various loads. Distribution networks are typically operated radially

and power transport is from the transmission substation to the end users. This

1
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allows for easy methods of protection and operation. The disadvantage is that each

component failure will lead to an interruption for some end users.

There are no absolute criteria to distinguish between distribution and trans-

mission networks. Some countries use the term subtransmission networks or an

equivalent term to refer to the networks around big cities that have a transmission

system structure (heavily meshed) but with a power transport more or less in one

direction. Discussion of this terminology is however far outside the scope of this

book.

Due to several developments during the last several years, the model in Figure 1.1

no longer fully holds. Even though technically the changes are not yet very big, a

new way of thinking has emerged which requires a new way of looking at the

power system:

. The deregulation of the electricity industry means that the electric power

system can no longer be treated as one entity. Generation is in most countries

completely deregulated or intended to be deregulated. Also transmission and

distribution are often split into separate companies. Each company is economi-

cally independent, even where it is electrically an integral part of a much larger

system.

. The need for environmentally friendly energy has led to the introduction of

smaller generator units. This so-called embedded generation or distributed gen-

eration is often connected no longer to the transmission system but to the dis-

tribution system. Also economic driving forces, especially with combined heat

and power, may result in the building of smaller generation units.

. Higher demands on reliability and quality mean that the network operator has to

listen much closer to the demands of individual customers.

A more modern way of looking at the power system resulting from these develop-

ments is shown in Figure 1.2. The electric power network no longer transports

energy from generators to end users but instead enables the exchange of energy

between customers. Note that these customers are the customers of the network

(company), not only the end users of the electricity.

Figure 1.1 Classical structure of power system.
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The actual structure of the power system is still very much as in Figure 1.1, but

many recent developments require thinking in the structure of Figure 1.2. The power

network in Figure 1.2 could be a transmission network, a distribution network, an

industrial network, or any other network owned by a single company. For a trans-

mission network, the customers are, for example, generator stations, distribution net-

works, large industrial customers (who would be generating or consuming

electricity at different times, based on, e.g., the price of electricity at that

moment), and other transmission networks. For a distribution network, the custo-

mers are currently mainly end users that only consume electricity, but also the trans-

mission network and smaller generator stations are customers. Note that all

customers are equal, even though some may be producing energy while others are

consuming it. The aim of the network is only to transport the electrical energy, or

in economic terms, to enable transactions between customers. An example of a

transmission and a distribution network with their customers is shown in Figure 1.3.

The technical aim of the electric power networks in Figures 1.2 and 1.3 becomes

one of allowing the transport of electrical energy between the different customers,

Figure 1.2 Modern view of power system.

Figure 1.3 Customers of a transmission network (left) and a distribution network (right).
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guaranteeing an acceptable voltage, and allowing the currents taken by the custo-

mers. As we will see in Section 1.2.2 power quality concerns the interaction

between the network and its customers. This interaction takes place through voltages

and currents. The various power quality disturbances, such as harmonic distortion,

of course also appear at any other location in the power system. But disturbances

only become an issue at the interface between a network and its customers or at

the equipment terminals.

The model in Figure 1.2 should also be used when considering the integration of

renewable or other environmentally friendly sources of energy into the power

system. The power system is no longer the boundary condition that limits, for

example, the amount of wind power that can be produced at a certain location.

Instead the network’s task becomes to enable the transport of the amount of wind

power that is produced and to provide a voltage such that the wind park can

operate properly. It will be clear to the reader that the final solution will be found

in cooperation between the customer (the owner of the wind park) and the

network operator considering various technical and economic constraints.

Concerning the electricity market, the model in Figure 1.2 is the obvious one: The

customers (generators and consumers) trade electricity via the power network. The

term power pool explains rather well how electricity traders look at the power

network. The network places constraints on the free market. A much discussed

one is the limited ability of the network to transport energy, for example, between

the different European countries. Note that under this model lack of generation

capacity is not a network problem but a deficiency of the market.

1.2 POWER QUALITY

1.2.1 Interest in Power Quality

The enormous increase in the amount of activity in the power quality area can be

observed immediately from Figure 1.4. This figure gives the number of papers in

the INSPEC database [174] that use the term power quality in the title, the abstract,

or the list of keywords. Especially since 1995 interest in power quality appears to

have increased enormously. This means not that there were no papers on power

quality issues before 1990 but that since then the term power quality has become

used much more often.

There are different reasons for this enormous increase in the interest in power

quality. The main reasons are as follows:

. Equipment has become less tolerant of voltage quality disturbances, production

processes have become less tolerant of incorrect operation of equipment, and

companies have become less tolerant of production stoppages. Note that in

many discussions only the first problem is mentioned, whereas the latter two

may be at least equally important. All this leads to much higher costs than

before being associated with even a very short duration disturbance. The

4 INTRODUCTION



main perpetrators are (long and short) interruptions and voltage dips, with the

emphasis in discussions and in the literature being on voltage dips and short

interruptions. High-frequency transients do occasionally receive attention as

causes of equipment malfunction but are generally not well exposed in the lit-

erature.

. Equipment produces more current disturbances than it used to do. Both low-

and high-power equipment is more and more powered by simple power

electronic converters which produce a broad spectrum of distortion. There

are indications that the harmonic distortion in the power system is rising, but

no conclusive results are available due to the lack of large-scale surveys.

. The deregulation (liberalization, privatization) of the electricity industry has

led to an increased need for quality indicators. Customers are demanding,

and getting, more information on the voltage quality they can expect. Some

issues of the interaction between deregulation and power quality are discussed

in [9, 25].

. Embedded generation and renewable sources of energy create new power

quality problems, such as voltage variations, flicker, and waveform distortion

[325]. Most interfaces with renewable sources of energy are sensitive to

voltage disturbances, especially voltage dips. However, such interfaces may

be used to mitigate some of the existing power quality disturbances [204].

The relation between power quality and embedded generation is discussed

among others in [178, Chapter 5; 99, Chapter 9; 118, Chapter 11]. An important

upcoming issue is the immunity of embedded generation and large wind parks

to voltage dips and other wide-scale disturbances. The resulting loss of gener-

ation as a result of a fault in the transmission system becomes a system security

(stability) issue with high penetration of embedded generation.

Figure 1.4 Use of term power quality, 1968–2004.
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. Also energy-efficient equipment is an important source of power quality dis-

turbances. Adjustable-speed drives and energy-saving lamps are both important

sources of waveform distortion and are also sensitive to certain types of power

quality disturbances. When these power quality problems become a barrier for

the large-scale introduction of environmentally friendly sources and end-user

equipment, power quality becomes an environmental issue with much wider

consequences than the currently merely economic issues.

1.2.2 Definition of Power Quality

Various sources give different and sometimes conflicting definitions of power

quality. The Institute of Electrical and Electronics Engineers (IEEE) dictionary

[159, page 807] states that “power quality is the concept of powering and grounding

sensitive equipment in a matter that is suitable to the operation of that equipment.”

One could, for example, infer from this definition that harmonic current distortion is

only a power quality issue if it affects sensitive equipment. Another limitation of this

definition is that the concept cannot be applied anywhere else than toward equip-

ment performance.

The International Electrotechnical Commission (IEC) definition of power

quality, as in IEC 61000-4-30 [158, page 15], is as follows: “Characteristics

of the electricity at a given point on an electrical system, evaluated against a set

of reference technical parameters.” This definition of power quality is related

not to the performance of equipment but to the possibility of measuring and

quantifying the performance of the power system.

The definition used in this book is the same as in [33]: Power quality is the com-

bination of voltage quality and current quality. Voltage quality is concerned with

deviations of the actual voltage from the ideal voltage. Current quality is the equiv-

alent definition for the current. A discussion on what is ideal voltage could take

many pages, a similar discussion on the current even more. A simple and straight-

forward solution is to define the ideal voltage as a sinusoidal voltage waveform

with constant amplitude and constant frequency, where both amplitude and fre-

quency are equal to their nominal value. The ideal current is also of constant ampli-

tude and frequency, but additionally the current frequency and phase are the same as

the frequency and phase of the voltage. Any deviation of voltage or current from the

ideal is a power quality disturbance. A disturbance can be a voltage disturbance or a

current disturbance, but it is often not possible to distinguish between the two. Any

change in current gives a change in voltage and the other way around. Where we use

a distinction between voltage and current disturbances, we use the cause as a cri-

terion to distinguish between them: Voltage disturbances originate in the power

network and potentially affect the customers, whereas current disturbances originate

with a customer and potentially affect the network. Again this classification is due to

fail: Starting a large induction motor leads to an overcurrent. Seen from the network

this is clearly a current disturbance. However, the resulting voltage dip is a voltage

disturbance for a neighboring customer. For the network operator this is a current
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disturbance, whereas it is a voltage disturbance for the neighboring customer. The

fact that one underlying event (the motor start in this case) leads to different disturb-

ances for different customers or at different locations is very common for power

quality issues. This still often leads to confusing discussions and confirms the

need for a new view of power systems, as mentioned in Section 1.1.

This difficulty of distinguishing between voltage and current disturbances is one

of the reasons the term power quality is generally used. The term voltage quality is

reserved for cases where only the voltage at a certain location is considered. The

term current quality is sometimes used to describe the performance of power-

electronic converters connected to the power network.

Our definition of power quality includes more disturbances than those that are

normally considered part of power quality: for example, frequency variations and

non-unity power factor. The technical aspects of power quality and power quality

disturbances are not new at all. From the earliest days of electricity supply, power

system design involved maintaining the voltage at the load terminals and ensuring

the resulting load currents would not endanger the operation of the system. The

main difference with modern-day power quality issues is that customers, network

operators, and equipment all have changed. The basic engineering issues remain

the same, but the tools have changed enormously. Power-electronic-based (low-

power and high-power) equipment is behind many of the timely power quality pro-

blems. Power-electronic-based equipment is also promoted as an important mitiga-

tion tool for various power quality problems. The introduction of cheap and fast

computers enables the automatic measurement and processing of large amounts

of measurement data, thus enabling an accurate quantification of the power

quality. Those same computers are also an essential part in power-

electronic-based mitigation equipment and in many devices sensitive to power

quality disturbances.

A large number of alternative definitions of power quality are in use. Some of

these are worth mentioning either because they express the opinion of an influential

organization or because they present an interesting angle.

Our definition considers every disturbance as a power quality issue. A com-

monly used alternative is to distinguish between continuity (or reliability) and

quality. Continuity includes interruptions; quality covers all other disturbances.

Short interruptions are sometimes seen as part of continuity, sometimes as

part of quality. Following this line of reasoning, one may even consider voltage

dips as a reliability issue, which it is from a customer viewpoint. It is interesting

to note that several important early papers on voltage dips were sponsored

by the reliability subcommittee of the IEEE Industrial Applications Society [e.g.,

30, 75, 73].

The Council of European Energy Regulators [77, page 3] uses the term quality of

service in electricity supply which considers three dimensions:

. Commercial quality concerns the relationship between the network company

and the customer.

. Continuity of supply concerns long and short interruptions.
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. Voltage quality is defined through enumeration. It includes the following dis-

turbances: “frequency, voltage magnitude and its variation, voltage dips, tem-

porary and transient overvoltages, and harmonic distortion.”

It is interesting that “current quality” is nowhere explicitly mentioned. Obviously

current quality is implicitly considered where it affects the voltage quality. The

point of view here is again that adverse current quality is only a concern where it

affects the voltage quality.

A report by the Union of the Electricity Industry (Eurelectric) [226, page 2] states

that the two primary components of supply quality are as follows:

. Continuity: freedom from interruptions.

. Voltage quality: the degree to which the voltage is maintained at all times

within a specific range.

Voltage quality, according to [226], has to do with “several mostly short-term and/
or frequency related ways in which the supply voltage can vary in such a way as to

constitute a particular obstacle to the proper functioning of some utilization equip-

ment.” The concept of voltage quality, according to this definition, is especially

related to the operation of end-use equipment. Disturbances that do not affect equip-

ment would not be part of voltage quality. Since at the measurement stage it is often

not possible to know if a disturbances will affect equipment, such a definition is not

practical.

Another interesting distinction is between system quality and service quality.

System quality addresses the performance of a whole system, for example, the

average number of short-circuit faults per kilometer of circuit. This is not a value

which directly affects the customer, but as faults lead to dips and interruptions, it

can certainly be considered as a quality indicator. A regulator could decide to

limit the average number of faults per kilometer per circuit as a way of reducing

the dip frequency. Service quality addresses the voltage quality for one individual

customer or for a group of customers. In this case the number of dips per year

would be a service quality indicator. Like any definition in the power quality

area, here there are also uncertainties. The average number of dips per year for all

customers connected to the network could be seen as a service quality indicator

even though it does not refer to any specific customer. The 95% value of the

number of dips per year, on the other hand, could be referred to as a system

quality indicator. We will come back to this distinction when discussing site

indices and system indices in Chapters 5 and 10.

Reference [260] refers in this context to aggregate system service quality and

individual customer service quality. Reference [77] refers to the quality-of-supply

and the quality-of-system approach of regulation. Under the quality-of-supply

approach the quality would be guaranteed for every individual customer, whereas

under the quality-of-system approach only the performance of the whole system

would be guaranteed. An example of the quality-of-supply approach is to pay
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