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Preface to  the First 
Edition 

Queueing networks and Markov chains are commonly used for the perfor- 
mance and reliability evaluation of computer, communication, and manu- 
facturing systems. Although there are quite a few books on the individual 
topics of queueing networks and Markov chains, we have found none that 
covers both of these topics. The purpose of this book, therefore, is to offer a 
detailed treatment of queueing systems, queueing networks, and continuous 
and discrete-time Markov chains. 

In addition to introducing the basics of these subjects, we have endeav- 
ored to: 

0 Provide some in-depth numerical solution algorithms. 

0 Incorporate a rich set of examples that demonstrate the application of 
the different paradigms and corresponding algorithms. 

0 Discuss stochastic Petri nets as a high-level description language, there- 
by facilitating automatic generation and solution of voluminous Markov 
chains. 

0 Treat in some detail approximation methods that will handle large mod- 
els. 

0 Describe and apply four software packages throughout the text. 

0 Provide problems as exercises. 

This book easily lends itself to a course on performance evaluation in the 
computer science and computer engineering curricula. It can also be used for a 
course 011 stochastic models in mathematics, operations research and industri- 
al engineering departments. Because it incorporates a rich and comprehensive 
set of numerical solution methods comparatively presented, the text may also 
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Introduction 

1.1 MOTIVATION 

Information processing system designers need methods for the quantification 
of system design factors such as performance and reliability. Modern com- 
puter, communication, and production line systems process complex work- 
loads with random service demands. Probabilistic and statistical methods 
are commonly employed for the purpose of performance and reliability eval- 
uation. The purpose of-this book is to explore major probabilistic modeling 
techniques for the performance analysis of information processing systems. 
Statistical methods are also of great importance but we refer the reader to 
other sources [Jaingl, TrivOl] for this topic. Although we concentrate on per- 
formance analysis, we occasionally consider reliability, availability, and com- 
bined performance and reliability analysis. Performance measures that are 
commonly of interest include throughput, resource utilization, loss probabili- 
ty, and delay (or response time). 

The most direct method for performance evaluation is based on actual 
measurement of the system under study. However, during the design phase, 
the system is not available for such experiments, and yet performance of a 
given design needs to be predicted to verify that it meets design requirements 
and to carry out necessary trade-offs. Hence, abstract models are necessary 
for performance prediction of designs. The most popular models are based on 
discrete-event simulation (DES). DES can be applied to almost all problems 
of interest, and system details to the desired degree can be captured in such 
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simulation models. Furthermore, many software packages are available that 
facilitate the construction and execution of DES models. 

The principal drawback of DES models, however, is the time taken to run 
such models for large, realistic systems, particularly when results with high 
accuracy (i.e., narrow confidence intervals) are desired. A cost-effective alter- 
native to DES models, analytic models can provide relatively quick answers to 
“what if” questions and can provide more insight into the system being stud- 
ied. However, analytic models are often plagued by unrealistic assumptions 
that need to be made in order to make them tractable. Recent advances in 
stochastic models and numerical solution techniques, availability of software 
packages, and easy access to workstations with large computational capa- 
bilities have extended the capabilities of analytic models to more complex 
systems. 

Analytical models can be broadly classified into state-space models and 
non-state-space models. Most commonly used state-space models are Markov 
chains. First introduced by A. A. Markov in 1907, Markov chains have been in 
use in performance analysis since around 1950. In the past decade, consider- 
able advances have been made in the numerical solution techniques, methods 
of automated state-space generation, and the availability of software packages. 
These advances have resulted in extensive use of Markov chains in performance 
and reliability analysis. A Markov chain consists of a set of states and a set of 
labeled transitions between the states. A state of the Markov chain can model 
various conditions of interest in the system being studied. These could be the 
number of jobs of various types waiting to use each resource. the number of 
resources of each type that have failed, the number of concurrent tasks of a 
given job being executed, and so on. After a sojourn in a state, the Markov 
chain will make a transition to another state. Such transitions are labeled 
with either probabilities of transition (in case of discrete-time Markov chains) 
or rates of transition (in case of continuous-time Markov chains). 

Long run (steady-state) dynamics of Markov chains can be studied using 
a system of linear equations with one equation for each state. Transient (or 
time dependent) behavior of a continuous-time Markov chain gives rise to 
a system of first-order, linear, ordinary differential equations. Solution of 
these equations results in state probabilities of the Markov chain from which 
desired performance measures can be easily obtained. The number of states 
in a Markov chain of a complex system can become very large, and, hence, 
automated generation and efficient numerical solution methods for underlying 
equations are desired. A number of concise notations (based on queueing 
networks and stochastic Petri nets) have evolved, and software packages that 
automatically generate the underlying state space of the Markov chain are 
now available. These packages also carry out efficient solution of steady-state 
and transient behavior of Markov chains. In spite of these advances, there 
is a continuing need to be able to deal with larger Markov chains and much 
research is being devoted to this topic. 
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If the Markov chain has nice structure, it is often possible to avoid the 
generation and solution of the underlying (large) state space. For a class 
of queueing networks, known as product-form queueing networks (PFQN), 
it is possible to derive steady-state performance measures without resorting 
to the underlying state space. Such models are therefore called non-state- 
space models. Other examples of non-state-space models are directed acyclic 
task precedence graphs [SaTr87] and fault-trees [STP96]. Other examples of 
methods exploiting Markov chains with “nice” structure are matrix-geometric 
methods [Neut81] (see Section 3.2). 

Relatively large PFQN can be solved by means of a small number of sinipler 
equations. However, practical queueing networks can often get so large that 
approximate methods are needed to solve such PFQN. Furthermore, many 
practical queueing networks (so-called non-product-form queueing networks, 
NPFQN) do not satisfy restrictions implied by product form. In such cases, 
it is often possible to obtain accurate approximations using variations of algo- 
rithms used for PFQNs. Other approximation techniques using hierarchical 
and fixed-point iterative methods are also used. 

The flowchart shown in Fig. 1.1 gives the organization of this book. After a 
brief treatment on methodological background (Section 1.2), Section 1.3 covers 
the basics of probability and statistics. In Chapter 2, Markov chains basics 
are presented together with generation methods for them. Exact steady- 
state solution techniques for Markov chains are given in Chapter 3 and their 
aggregation/disaggregation counterpart in Chapter 4. These aggregation/dis- 
aggregation solution techniques are useful for practical Markov chain models 
with very large state spaces. Transient solution techniques for Markov chains 
are introduced in Chapter 5. 

Chapter 6 deals with the description and coniputation of performance niea- 
sures for single-station queueing systems in steady state. A general description 
of queueing networks is given in Chapter 7. Exact solution methods for PFQN 
are described in detail in Chapter 8 while approximate solution techniques for 
PFQN are described in Chapter 9. Solution algorithms for different types 
of NPFQN (such as networks with priorities, nonexponential service times, 
blocking, or parallel processing) are presented in Chapter 10. 

Since there are many practical problems that may not be analytically 
tractable, discrete-event simulation is commonly used in this situations. We 
introduce the basics of DES in Chapter 11. For the practical use of modeling 
techniques described in this book, software packages (tools) are needed. Chap- 
ter 12 is devoted to the introduction of a queueing network tool, a stochastic 
Petri net tool, a tool based on Markov chains and a toolkit with many mod- 
el types, and the facility for hierarchical modeling is also introduced. Each 
tool is described in some detail together with a simple example. Throughout 
the book we have provided many example applications of different algorithms 
introduced in the book. Finally, Chapter 13 is devoted to several large real-life 
applications of the modeling techniques presented in the book. 
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Fig. 1.1 
mance problem. 

Flowchart describing how to find the appropriate chapter for a given perfor- 
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1.2 METHODOLOGICAL BACKGROUND 

The focus of this book is the application of stochastic and probabilistic meth- 
ods to obtain conclusions about performance and reliability properties of a 
wide range of systems. In general, a system can be regarded as a collection 
of components which are organized and interact in order to fulfill a common 
task [IEEESO]. 

Reactive systems and nondeterminism: The real-world systems treated in this 
book usually contain at  least one digital component which controls the oper- 
ation of other analog or digital components, and the whole system reacts to 
stimuli triggered by its environment. As an example, consider a computer 
communication network in which components like routers, switches, hubs, 
and communication lines fulfill the common task of transferring data packets 
between the various computers connected to the network. If the system of 
interest is the communication network only, the connected computers can be 
regarded as its environment which triggers the network by sending and receiv- 
ing data packets. The behavior of the systems studied in this book can be 
characterized as nondeterministic since the stimulation by the environment is 
usually unpredictable. In case of a communication system like the Internet, 
the workload depends largely on the number of active users. When exactly 
a specific user will start to access information on the WWW via a browser 
is usually riot known in advance. Another source of nondeterminism is the 
potential failure of one or several system components, which in most cases 
leads to an altered behavior of the complete system. 

Modeling vs. Measurement: In contrast to the empirical methods of measure- 
ment, i.e., the collection of output data during the observation of an executing 
system, the deductive methods of model-based performance evaluation have 
the advantage to be applicable in situations when the system of interest is not 
yet existing. Deductive methods can thus be applied during the early design 
phases of the system developnient process in order to ensure that the final 
product meets its performance and reliability requirements. Although the 
material presented in this book is restricted to modeling approaches, it should 
be noticed that measurement as a supplementary technique can be employed 
to validate that the conclusions obtained by model-based performance evalu- 
ation can be translated into useful statements about the real-world system. 

Another possible scenario for the application of modeling is the situation 
in which measurements on an existing system would either be too dangerous 
or too expensive. New policies, decision rules, or information flows can be 
explored without disrupting the ongoing operation of the real system. More- 
over, new hardware architectures, scheduling algorithms, routing protocols, 
or reconfiguration strategies can be tested without committing resources for 
their acquisition/implementation. Also, the behavior of an existing system 
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under a variety of anticipated workloads and environments can be evaluated 
very cost-effectively in advance by model-based approaches. 

1.2.1 Problem Formulation 

Before a meaningful model-based evaluation can commence, one should care- 
fully consider what performance metric is of interest besides the nature of 
the system. This initial step is indispensable since it determines what is the 
appropriate formalism to be used. Most of the formalisms presented in the 
following chapters are suitable for the evaluation of specific metrics but inap- 
propriate for the derivation of others. In general, it is important to consider 
the crucial aspects of the application domain with respect to the metrics to 
be evaluated before starting with the formalization process. Here, the appli- 
cation context strongly determines the kind of information that is meaningful 
in a concrete modeling exercise. 

As an illustrative example, consider the power outage problem of computer 
systems. For a given hardware configuration, there is no ideal way to repre- 
sent it without taking into consideration the software applications which run 
on the hardware and which of course have to be reflected in the model. In a 
real-time context, such as flight control, even the shortest power failure might 
have catastrophic implications for the system being controlled. Therefore, an 
appropriate reliability model of the flight control computer system has to be 
very sensitive to such a (hopefully) rare event of short duration. In contrast, 
the total number of jobs processed or the work accomplished by the com- 
puter hardware during the duration of a flight is probably a less important 
performance measure for such a safety-critical system. If the same hardware 
configuration is used in a transaction processing system, however, short out- 
ages are less significant for the proper system operation but the throughput 
is of predominant importance. As a consequence thereof, it is not useful to 
represent effects of short interruptions in the model, since they are of less 
importance in this application context. 

Another important aspect to consider at  the beginning of a model-based 
evaluation is how a reactive real-world system - as the core object of the 
study - is triggered by its environment. The stimulation of the system by 
its environment has to be captured in such a way during formalization so 
it reflects the conditions given in the real world as accurately as possible. 
Otherwise, the measures obtained during the evaluation process cannot be 
meaningfully retrarisformed into statements about the specific scenario in the 
application domain. In t,he context of stochastic modeling, the expression of 
the environment’s influence on the system in the model is usually referred to 
as workload modeling. A frequently applied technique is the characterization 
of the arriving workload, e.g., the parts which enter a production line or 
the arriving data packets in a communication system, as a stochastic arrival 
process. Various arrival processes which are suitable in specific real-world 
scenarios can be defined (see Section 6.8). 
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The following four categories of system properties which are within the 
scope of the methods presented in this book can be identified: 

Performance Properties: They are the oldest targets of performance evalua- 
tion and have been calculated already for non-compiiting systems like tele- 
phone switching centers [Erlal7] or patient flows in hospitals [Jack541 using 
closed-form descriptions from applied probability theory. Typical properties 
to be evaluated are the mean throughput of served customers, the mean wait- 
ing, or response time and the utilization of the various system resources. The 
IEEE standard glossary of software engineering terminology [IEEESO] con- 
tains the following definition: 

Definition 1.1 Performance: The degree to which a system or component 
accomplishes its designated functions within given constraints, such as speed, 
accuracy, or memory usage. 

Reliability and Availability: Requirements of these types can be evaluated 
quantitatively if the system description contains information about the fail- 
ure and repair behavior of the system components. In some cases it is also 
necessary to specify the conditions under which a new user cannot get access 
to the service offered by the operational system. The information about the 
failure behavior of system components is usually based on heuristics which are 
reflected in the parameters of probability distributions. In [IEEESO], software 
reliability is defined as: 

Definition 1.2 Reliability: The probability that the software will not 
cause the failure of the system for a specified time under specified conditions. 

System reliability is a measure for the continuity of correct service, whereas 
availatdity measures for a system refer to its readiness for correct service, as 
stated by the following definition from [IEEESO]: 

Definition 1.3 Availability: The ability of a system to perform its required 
function at  a stated instant or over a stated period of time. It is usually 
expressed as the availability ratio, i.e., the proportion of time that the service 
is actually available for use by the Customers within the agreed service hours. 

Note that reliability and availability are related yet distinct system properties: 
a system which - during a mission time of 100 days -~ fails on average every 
two minutes but becomes operational again after a few milliseconds is not 
very reliable but nevertheless highly available. 

Dependability and Performability: These terms and the definitions for them 
originated from the area of dependable and faul t  tolerant computing. The 
following definition for dependability is taken from [ALRL04]: 

Definition 1.4 Dependability: The dependability of a computer system 
is the ability to deliver a service that can justifiably be trusted. The service 



delivered by a system is its behavior as it is perceived by its user(s); a user 
is another system (physical, human) that interacts with the former at  the 
service interface. 

This is a rather general definition which comprises the five attributes availabil- 
ity, reliability, maintainabi l i ty  - the systems ability to undergo modifications 
or repairs, integrity - the absence of improper system alterations and safety  
as a measure for the continuous delivery of service free from occurrences of 
catastrophic failures. The term performabili ty was coined by J.F. MEYER 
[Meye781 as a measure to assess a system’s ability to perform when perfor- 
mance degrades as a consequence of faults: 

Definition 1.5 Performability: The probability that the system reaches 
an accomplishment level y over a utilization interval (0, t ) .  That is, the prob- 
ability that the system does a certain amount of useful work over a mission 
time t .  

Subsequently, many other measures are included under performance as we 
shall see in Section 2.2. Informally, the performability refers to performance 
in the presence of failures/repair/recovery of components and the system. 
Performability is of special interest for gracefully degrading s y s t e m s  [Beau77]. 
In Section 2.2, a framework based on Markov  reward models  (MRMs) is pre- 
sented which provides recipes for a selection of the right model type and the 
definition of an appropriate performance measure. 

1.2.2 The Modeling Process 

The first step of a model-based performance evaluation consists of the formal- 
ization process, during which the modeler generates a f o r m a l  description of 
the real-world system. Figure 1.2 illustrates the basic idea: Starting from an 
informal system description, e.g. in natural language, which includes struc- 
tural and functional information as well as the desired performance and reli- 
ability requirements, the modeler creates a formal model of the real-world 
system using a specific conceptualization. A conceptualization is an abstract, 
simplzfied view of the reference reality which is represented for some purpose. 
Two kinds of conceptualizations for the purpose of performance evaluation are 
presented in detail in this book: If the system is to be represented as a queue- 
ing network, the modeler applies a ?outed job flow” modeling paradigm in 
which the real-world system is conceptualized as a set of service stations which 
are connected by edges through which independent entities “ f l o ~ ”  through 
the network and sojourn in the queues and servers of the service stations 
(see Chapter 7). In an alternative Markov chain conceptualization a “state- 
transition” modeling paradigm is applied in which the possible trajectories 
through the system’s global state space are represented as a graph whose 
directed arcs represent the transitions between subsequent system states (see 
Chapter 2). The main difference between the two conceptualizations is that 
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the queueing network formalism is oriented more towards the structure of the 
real-world system, whereas in the Markov chain formalization the emphasis 
is put on the description of the system behavior on the underlying state- 
space level. A Markov chain can be regarded to “mimic” the behavior of 
the executing real-world system, whereas the service stations and jobs of a 
queueing network establish a one-to-one correspondence to the components of 
the real-world system. As indicated in Fig. 1.2, a Markov chain serves as the 
underlying semantic model of the high-level queueing network model. 

Fig. 1.2 Formalization of a real-world system. 

During the formalization process the following abstractions with respect to 
the real-world system are applied: 

0 In both conceptualizations the behavior of the real-world system is 
regarded to evolve in a discrete-event fashion, even if the real-world 
system contains components which exhibit continuous behavior, such as 
the movements of a conveyor belt of a production line. 

0 The application of the queueing network formalism abstracts away from 
all synchronization mechanisms which may be present in the real-world 
system. If the representation of these synchronization mechanisms is 
crucial in order to obtain useful results from the evaluation, the niodeler 
can resort to variants of stochastic Petri nets as an alternative descrip- 
tion t,echnique (see Section 2.3 and Section 2.3.6) in which almost arbi- 
trary synchronization pattcrns can be captured. 

0 The corc abstractions applied during the formalization process are the 
association of system activity durations with random variables and the 
inclusion of branching probabilities to represent alternative system evo- 
lutions. Both abstractions resolve the nondeterminisrn inherent in the 
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real-world system and turn the formal queueing network or Markov 
chain prototype into an “executable” specification [WingOl]. For these, 
at  any moment during their operation each possible future evolution has 
a well-defined probability to oc(w.  Depending on which kind of ran- 
dom variables are used to represent the durations of the system activities 
either a discrete-time interpretation using a DTMC or a continuous-time 
interpretation of the system behavior based on a CTMC is achieved. It 
should be noted that for systems with asynchronously evolving com- 
ponents the continuous-time interpretation is more appropriate since 
changes of the global system state may occur at  any moment in contin- 
uous time. Systems with components that evolve in a lock-step fashion 
triggered by a global clock are usually interpreted in discrete-time. 

1.2.3 Evaluation 

The second step in the model-based system evaluation is the deduction of 
performance measures by the application of appropriate solution methods. 
Depending on the conceptualization chosen during the formalization process 
the following solution methods are available: 

Analytical Solutions: The core principle of the analytic: solution methods is 
to represent the formal system description either as a single equation from 
which the interesting measures can be obtained as closed-form solutions, or 
as a set of system equations from which exact or approximate measures can 
be calculated by appropriate algorithms from numerical mathematics. 

1. Closed-form solutions are available if the system can be described as 
a simple queucing system (see Chapter 6) or for simple product-form 
queueing networks (PFQN) [Chhla83] (see Section 7.3)  or for structured 
small CTMCs. For these kind of formalizations equations can be derived 
from which the mean number of jobs in the service stations can be 
calculated as a closed-form solution, i.e., the solutions can be expressed 
analytically in terms of a bounded number of well-known operations. 
Also from certain types of Markov chains with regular structure (see 
Section 3. 1), closed-form representations like the well-known Erlang- 
B and Erlang-C formulae [Erlal7] can be derived. The measures can 
either be computed by ad-hoc programming or with the help of computer 
algebra packages such as Mathernatica [Mat05]. A big advantage of‘the 
closed-form solutions is their moderate computational complexity which 
enables a fast calculation of performance measures even for larger system 
descriptions. 

2. Numerical solutions: Many types of equations which can be derived 
from a formal system description do not possess a closed-form solution, 
e.g., in the case of complex systems of integro-differential equations. 
In these cases, approximate solutions can be obtained by the appli- 
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cation of algorithms from numerical mathematics, many of which are 
implemented in computer algebra packages [Mat051 or are integrated in 
performance analysis tools such as SHARPE [HSZTOO], SPNP [HTTOO], 
or TimeNET [ZFGHOO] (see Chapter 12). The formal system descrip- 
tions can be either given as a queueing network, stochastic Petri net or 
another high-level modeling formalism, from which a state-space repre- 
sentation is generated manually or by the application of state-space gen- 
eration algorithms. Depending on the stochastic information present in 
the high-level description, various types of system state equations which 
mimic the dynaniics of the modeled system can be derived and solved 
by appropriate algorithms. The numerical solution of Markov models 
is discussed in Chapters 3 ~ 5, numerical solution methods for queueing 
networks can be found in Chapters 7 - 10. In comparison to closed-form 
solution approaches, numerical solution met hods usually have a higher 
computational complexity. 

Simulation Solutions: For many types of models no analytic solution method 
is feasible, because either a theory for the derivation of proper system equa- 
tions is not known, or the computational complexity of an applicable numeri- 
cal solution algorithm is too high. In this situation, solutions can be obtained 
by the application of discrete-event simulation (DES), which is described in 
detail in Chapter 11. Instead of solving system equations which have been 
derived from the formal model, the DES algorithm “executes” the model 
and collects the information about the observed behavior for the subsequent 
derivation of performance measures. In order to increase the quality of the 
results, the simulation outputs collected during multiple “executions” of the 
model are collected and from which the interesting measures are calculated by 
statistical methods. All the formalizations presented in this book, i.e., queue- 
ing networks, stochastic Petri nets, or Markov chains can serve as input for 
a DES, which is the most flexible and generally applicable solution method. 
Since the underlying state space does not have to be generated, simulation 
is not affected by the state-space explosion problem. Thus, simulation can 
also be employed for the analysis of complex models for which the numerical 
approaches would fail because of an exuberant number of system states. 

Hybrid solutions: There exists a number of approaches in which different mod- 
eling formalisms and solution methods are combined in oder to exploit their 
coniplementing strengths. Examples of hybrid solution methods are mixed 
simulation and analytical/numerical approaches, or the combination of fault 
trees, reliability block diagrams, or reliability graphs, and Markov models 
[STP96]. Also product-form queueing networks and stochastic Petri nets 
or non-product-form networks and their solution methods can be combined. 
More generally, this approach can be characterized as intermingling of state- 
space-based and non-state-space-based methods [STP96]. A combination of 
analytic and simulative solutions of connected sub-models may be employed 



to combine the benefits of both solution methods [Sarg94, ShSa831. More cri- 
teria for a choice between simulation and analytical/numerical solutions are 
discussed in Chapter 11. 

Largeness Tolerance: Many high-level specification techniques, queueing sys- 
tems, generalized stochastic Petri nets (GSPNs), and stochastic reward nets 
(SRNs), as the most prominent representatives, have been suggested in the 
literature to automate the model generation [HaTr93]. GSPNs/SRNs that are 
covered in more detail in Section 2.3, can be characterized as tolerating large- 
ness of the underlying computational models and providing effective means 
for generating large state spaces. 

Largeness Avoidance: Another way to deal with large models is to  avoid the 
creation of such models from the beginning. The major largeness-avoidance 
technique we discuss in this book is that of product-form queueing networks. 
The main idea is, the structure of the underlying CTMC allows for an efficient 
solution that obviates the need for generation, storage, and solution of the 
large state space. The second method of avoiding largeness is to separate the 
originally single large problem into several smaller problems and to combine 
sub-model results into an overall solution. Both approximate and exact tech- 
niques are known for dealing with such multilevel models. The flow of informa- 
tion needed among sub-models may be acyclic, in which case a hierarchical 
model [STP96] results. If the flow of needed information is non-acyclic, a 
fixed-point iteration may be necessary [CiTr93]. Other well-known techniques 
applicable for limiting model sizes are state truncation [BVDT88, GCS+86] 
and state lumping [NicoSO]. 

1.2.4 Summary 

Figure 1.3 summarizes the different phases and activities of the model-based 
performance evaluation process. Two main scenarios are considered: In the 
first one, model-based performance evaluation is applied during the early phas- 
es of the system development process to predict the performance or reliability 
properties of the final product. If the predicted properties do not fulfill the 
given requirements, the proposed design has to be changed in order to avoid 
the expected performance problems. In the second scenario, the final prod- 
uct is already available and model-based performance evaluation is applied to 
derive optimal system configuration parameters, to solve capacity planning 
problems, or to check whether the existing system would still operate satis- 
factorily after a modification of its environment. In both scenarios the first 
activity in the evaluation process is to collect information about the structure 
and functional behavior of an existing or planned system. The participation 
of a domain expert in this initial step is very helpful and rather indispensable 
for complex applications. Usually, the collected information is stated infor- 
mally and stored in a document using either a textual or a combined textu- 


