
Queueing Networks
and Markov Chains
Modeling and Performance Evaluation
with Computer Science Applications

Second Edition

Gunter Bolch
Stefan Greiner
Hermann de Meer
Kishor S. Trivedi

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

Queueing Networks
and Markov Chains

This Page Intentionally Left Blank

Queueing Networks
and Markov Chains
Modeling and Performance Evaluation
with Computer Science Applications

Second Edition

Gunter Bolch
Stefan Greiner
Hermann de Meer
Kishor S. Trivedi

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 ofthe 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment o f the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 1 1 River Street, Hoboken, N J
07030, (201) 748-601 I , fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and spccifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Queueing networks and Markov chains : modeling and performance evaluation with computer science
applications / Gunter Bolch . , . [et al.].-2nd rcv. and enlarged ed.

“A Wiley-lnterscience publication.”
Includes bibliographical references and index.
ISBN- I3 978-0-47 1-56525-3 (acid-free paper)
ISBN- I0 0-47 1-56525-3 (acid-free paper)
I . Markov processes. 2. Queuing theory. I. Bolch, Gunter

p. cm.

QA76.9E94Q48 2006
004.2’4015 19233-dc22 200506965

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

Contents

... Preface to the Second Edition Xlll

Preface to the First Edition xv

1 Introduction 1

1.1 Motivation . 1

1.2 Methodological Background 5

1.2.1 Problem Formulation 6

1.2.2 The Modeling Process 8
1.2.3 Evaluation . 10
1.2.4 Summary . 12

1.3 Basics of Probability and Statistics 15
1.3.1 Random Variables . 15

1.3.2 Multiple Random Variables 30
1.3.3 Transforms . 36
1.3.4 Parameter Estimation 38

1.3.5 Order Statistics . 46
1.3.6 Distribution of Sums 46

V

vi CONTENTS

2 Markov Chains 51

2.1 Markov Processes . 51

2.1.1 Stochastic and Markov Processes 51
2.1.2 Markov Chains . 53

2.2.1 A Simple Example . 71
2.2.2 Markov Reward Models 75

2.2.3 A Casestudy . 80

2.3 Generation Methods . 90

2.3.1 Petri Nets . 94

2.3.2 Generalized Stochastic Petri Nets 96
2.3.3 Stochastic Reward Nets 97

2.3.4 GSPN/SRN Analysis 101

A Larger Exanlple . 108
2.3.6 Stochastic Petri Net Extensions 113

2.3.7 Non-Markoviarl Models 115

2.3.8 Symbolic State Space Storage Techniques 120

2.2 Performance Measures . 71

2.3.5

3 Steady-State Solutions of Markov Chains 123

3.1 Solution for a Birth Death Process 125

3.2 Matrix-Geometric Method: Quasi-Birth-Death Process 127

3.2.1 The Concept . 127

3.2.2 Example: The QBD Process 128

3.3 Hessenberg Matrix: Non-Markovian Queues 140

3.3.1 Nonexporlential Servicc Times 141

3.3.2 Server with Vacations 146
3.4 Numerical Solution: Direct Methods 151

3.4.1 Gaussian Elimination 152

3.4.2 The Grassmanrl Algorithm 158
3.5 Numerical Solution: Iterative Methods 165

3.5.1 Convergence of Iterative Methods 165

3.5.2 Power Method . 166

3.5.3 Jacobi's Method . 169

3.5.4 Gauss-Seidel Method 172

3.5.5 The Method of Successive Over-Relaxation 173
3.6 Comparison of Numerical Solution Methods 177

3.6.1 Case Studies . 179

4 Steady-S tate Aggregation/Disaggregation
Methods 185

4.1 Courtois’ Approximate Method 185

4.1.1 Decomposition . 186
4.1.2 Applicability . 192

4.1.3 Analysis of the Substructures 194
4.1.4 Aggregation and Unconditioning 195

4.1.5 The Algorithm . 197
4.2 Takahashi’s Iterative Method 198

4.2.1 The Fundamental Equations 199
4.2.2 Applicability . 201

4.2.3 The Algorithm . 202
4.2.4 Application . 202
4.2.5 Final Remarks . 206

5 Transient Solution of Markov Chains 209

5.1 Transient Analysis Using Exact Methods 210

5.1.1 A Pure Birth Process 210
5.1.2 A Two-State CTMC 213

5.1.3 Solution Using Laplace Transforms 216

5.1.4 Numerical Solution Using Uniformization 216
5.1.5 Other Numerical Methods 221

5 .2 Aggregation of Stiff Markov Chains 222

5.2.1 Outline arid Basic Definitions 223

5.2.2 Aggregation of Fast Recurretit Subset. s 224
5.2.3 Aggregation of Fast Transient Subsets 227
5.2.4 Aggregation of Initial State Probabilities 228
5.2.5 Disaggregations . 229
5.2.6 The Algorithm . 230
5.2.7 An Example: Server Breakdown arid Repair 232

6 Single Station Queueing Systems 241

6.1 Notation . 242

6.1.1 Kendall’s Notation . 242
6.1.2 Performance Measures 244

6.2 Markovian Queues . 246

6.2.1 The M/M/l Queue . 246

viii CONTENTS

6.2.2 The M/M/ca Queue 249
6.2.3 The M/M/m Queue . 250
6.2.4 The M/M/ l /K Finite Capacity Queue 251
6.2.5 Machine Repairman Model 252

6.2.6 Closed Tandem Network 253
6.3 Non-Markovian Queues . 255

6.3.1 The M/G/1 Queue . 255

6.3.2 The GI/M/l Queue . 261
6.3.3 The GI/M/m Queue 265
6.3.4 The GI/G/1 Queue . 265
6.3.5 The M/G/m Queue . 267

The GI/G/m Queue . 269
6.4 Priority Queues . 272

6.4.1 Queue without Preemption 272
6.4.2 Conservation Laws . 278
6.4.3 Queur: with Preemption 279
6.4.4 Queue with Time-Dependent Priorities 280

6.5 Asymmetric Queues . 283
6.5.1 Approximate Analysis 284

6.5.2 Exact Analysis . 286
6.6 Queues with Batch Service and Batch Arrivals 295

6.6.1 Batch Service . 295
6.6.2 Batch Arrivals . 296

6.7 Retrial Queues . 299
6.7.1 M/M/1 Ret. rial Queue 300

6.7.2 M / G / l Retrial Queue 301
Special Classes of' Point Arrival Processes 302
6.8.1 Point, Renewal, and Markov Renewal Processes 303
6.8.2 MMPP . 303
6.8.3 MAP . 306
6.8.4 BMAP . 309

6.3.6

6.8

7 Queueing Networks 321

7.1 Definit. ions and Notation . 323
7.1.1 Single Class Networks 323
7.1.2 Multiclass Networks . 325

7.2 Performance Measures . 326
7.2.1 Single Class Networks 326

CONTENTS ix

7.2.2 Multiclass Networks . 330
7.3 Product-Form Queueing Networks 331

7.3.1 Global Balance . 332
7.3.2 Local Balance . 335
7.3.3 Product-Form . 340
7.3.4 Jackson Networks . 341
7.3.5 Gordon-Newel1 Networks 346
7.3.6 BCMP Networks . 353

8 Algorithms for Product-Form Networks 369

8.1 The Convolution Algorithm 371
8.1.1 Single Class Closed Networks 371
8.1.2 Multiclass Closed Networks 378

8.2 The Mean Value Analysis . 384
8.2.1 Single Class Closed Networks 385
8.2.2 Multiclass Closed Networks 393
8.2.3 Mixed Networks . 400

8.2.4 Networks with Load-Dependent Service 405
8.3 Flow Equivalent Server Method 410

8.3.1 FES Method for a Single Node 410
8.3.2 FES Method for Multiple Nodes 414

8.4 Summary . 417

9 Approximation Algorithms for Product-Form
Networks 421

9.1 Approximations Based on the MVA 422
9.1.1 Bard Schweitzer Approximation 422
9.1.2 Self-correcting Approximation Technique 427

9.2 Summation Method . 440
9.2.1 Single Class Networks 442
9.2.2 Multiclass Networks . 445

9.3 Bottapprox Method . 447
9.3.1 Initial Value of X . 447
9.3.2 Single Class Networks 447
9.3.3 Multiclass Networks . 450

9.4 Bounds Analysis . 452
9.4.1 Asymptotic Bounds Analysis 453

x CONTENTS

9.4.2 Balanced Job Bounds Analysis 456
9.5 Summary . 459

10 Algorithms for Non-Product-Form Networks 461

10.1 Nonexponential Distributions 463

10.1.1 Diffusion Approximation 463

10.1.2 Maximum Entropy Method 470

10.1.3 Decomposition for Open Networks 479
10.1.4 Methods for Closed Networks 488

10.1.5 Closing Method for Open and Mixed Networks 507
10.2 Different Service Times at FCFS Nodes 512

10.3 Priority Networks . 514

10.3.1 PRIOMVA . 514

10.3.2 The Method of Shadow Server 522

10.3.3 PRIOSUM . 537

10.4 Simultaneous Resource Possession 541
10.4.1 Memory Constraints . 541

10.4.2 1/0 Subsystems . 544

10.4.3 Method of Surrogate Delays 547
10.4.4 Serialization . 548

10.5 Programs with Internal Concurrency 549

10.6 Parallel Processing . 550

10.6.1 Asynchronous Tasks . 551

10.6.2 Fork-Join Systems . 558

10.7 Networks with Asymmetric Nodes 577

10.7.1 Closed Networks . 577

10.7.2 Open Networks . 581
10.8 Networks with Blocking . 591

10.8.1 Different Blocking Types 592

10.9 Networks with Batch Service 600
10.9.1 Open Networks with Batch Service 600

10.9.2 Closed Networks with Batch Service 602

10.8.2 Product-Form Solution for Networks with Two Nodes . 593

11 Discrete-Event Simulation 607

11.1 Introduction to Simulat. ion . 607
11.2 Simulative or Analytic Solution? 608

CONTENTS xi

11.3 Classification of Simulatiori Models 610
11.4 Classification of Tools in DES 612
11.5 The Role of Probability and Statistics in Simulation 613

11.5.1 Random Variate Generation 614
11.5.2 Generating Events from an Arrival Process 624

11.5.3 Output Analysis . 629

11.5.4 Speedup Techniques . 636
11.5.5 Summary of Output Analysis 639

11.6 Applications . 639
11.6.1 CSIM-19 . 640
11.6.2 Web Cache Example in CSIM-19 641

11.6.3 OPNET Modeler . 647
11.6.4 ns-2 . 651

11.6.5 Model Construction in ns-2 652

12 Performance Analysis Tools 657

12.1 PEPSY . 658
12.1.1 Structure of PEPSY . 659

12.1.2 Different Programs in PEPSY 660
12.1.3 Example of Using PEPSY 661

12.1.4 Graphical User Interface XPEPSY 663
12.1.5 WinPEPSY . 665

12.2 SPNP . 666
12.2.1 SPNP Features . 668

12.2.2 The CSPL Language 669

12.2.3 iSPN . 673
12.3 MOSEL-2 . 676

12.3.1 Introduction . 676

12.3.2 The MOSEL-2 Formal Description Technique 679
12.3.3 Tandem Network with Blocking after Service 683
12.3.4 A Retrial Queue . 685

12.3.5 Conclusions . 687
12.4 SHARPE . 688

12.4.1 Central-Server Queueing Network 689

12.4.2 M/M/m/K System . 691
12.4.3 M/M/I /K System with Server Failure and Repair . . . 693

12.4.4 GSPN Model of a Polling System 695

12.5 Characteristics of Some Tools 701

xii CONTENTS

13 Applications 703

13.1 Case Studies of Queueing Networks 703
13.1.1 Multiprocessor Systems 704
13.1.2 Client-Server Systems 707

13.1.3 Communication Systems 709
13.1.4 Proportional Differentiated Services 720
13.1.5 UNIX Kernel . 724
13.1.6 J2EE Applications . 733

13.1.7 Flexible Production Systems 745
13.1.8 Kanban Control . 753

13.2 Case Studies of Markov Chains 756

13.2.1 Wafer Production System 756
13.2.2 Polling Systems . 759

13.2.3 Client-Server Systems 762
13.2.4 ISDN Channel . 767
13.2.5 ATM Network IJnder Overload 775
13.2.6 UMTS Cell with Virtual Zones 782
13.2.7 Handoff Schemes in Cellular Mobile Networks 786

13.3 Case Studies of Hierarchical R4odels 793

13.3.1 A Multiprocessor with Different Cache Strategies . . . 793

13.3.2 Performability of a Multiprocessor System 803

Glossary 807

Bibliography 82 1

Index 869

Preface to the Second
Edition

Nearly eight years have passed since the publication of the first edition of
this book. In this second edition, we have thoroughly revised all the chap-
ters. Many examples and problems are updated, and many new examples and
problems have been added. A significant. addition is a new chapter on simula-
tion methods arid applications. Application to current topics such as wireless
system performance, Internet performance, J2EE applications, and Kanban
systems performance are added. New material on non-Markovian and fluid
stochastic Petri nets, along with solution techniques for Markov regenerative
processes, is added. Topics that are covered briefly include self-similarity,
large deviation theory, and diffusion approximation. The topic of hierarchical
and fixed-point iterative models is also covered briefly. Our collective research
experience and the application of these methods in practice for the past 30
years (at the time of writing) have been distilled in these chapters as much
as possible. We hope that the book will be of use as a classroom textbook
as well as of use for practicing engineers. Researchers will also find valuable
information here.

We wish to thank many of our current students and former postdoctoral
associates:

0 Dr. Jorg Barner, for his contribution of the methodological background
section in Chapter 1. He again supported us a lot in laying out the chap-
ters and producing and improving figures and plots and with intensive
proofreading.

...
X I / /

xiv PREFACE TO THE SECOND EDITION

0 Pawan Choudhary, who helped considerably with the simulation chap-
ter, Dr. Dharmaraja Selvamuthu helped with the section on SHARPE,
and Dr. Hairong Sun helped in reading several chapters.

0 Felix Engelhard, who was responsible for the new or extended sections
on distributions, parameter estimation, Petri nets, and non-Markovian
systems. He also did a thorough proofreading.

0 Patrick Wuchner, for preparing the sections on matrix-analytic and ma-
trix-geometric methods as well as the MMPP and MAP sections, and
also for intensive proofreading.

0 Dr. Michael Frank, who wrote and extended several sections: batch
system and networks, summation method, and Kanban systems.

0 Lassaad Essafi, who wrote the application section on differentiated ser-
vices in the Internet.

Thanks are also due to Dr. Samuel Kounev and Prof. Alejandro Buchmann
for allowing us to use their paper "Performance Modelling and Evaluation
of Large Scale J2EE Applications" to produce the J2EE section, which is a
shortened and adapted version of their paper.

Our special thanks are due to Prof. Helena Szczerbicka for her invaluable
contribution to Chapter 11 on simulation and to modeling methodology sec-
tion of Chapter 1. Her overall help with the second edition is also appreciated.

We also thank Val Moliere, George Telecki, Emily Simmons, and Whitney
A. Lesch from John Wiley & Sons for their patience and encouragement.

The support from the Euro-NGI (Design and Engineering of the Next Gen-
eration Internet) Network of Excellence, European Commission grant IST-
507613: is acknowledged.

Finally, a Web page has been set up for further information regarding the
second edition. The URL is h t t p : //www . net. fmi . uni-passau. de/QNMC2/

Gunter Bolch, Stefan Greiner, Hermarin de Meer, Kishor S. Trivedi

Erlangen, Passau, Durham, August 2005

Preface to the First
Edition

Queueing networks and Markov chains are commonly used for the perfor-
mance and reliability evaluation of computer, communication, and manu-
facturing systems. Although there are quite a few books on the individual
topics of queueing networks and Markov chains, we have found none that
covers both of these topics. The purpose of this book, therefore, is to offer a
detailed treatment of queueing systems, queueing networks, and continuous
and discrete-time Markov chains.

In addition to introducing the basics of these subjects, we have endeav-
ored to:

0 Provide some in-depth numerical solution algorithms.

0 Incorporate a rich set of examples that demonstrate the application of
the different paradigms and corresponding algorithms.

0 Discuss stochastic Petri nets as a high-level description language, there-
by facilitating automatic generation and solution of voluminous Markov
chains.

0 Treat in some detail approximation methods that will handle large mod-
els.

0 Describe and apply four software packages throughout the text.

0 Provide problems as exercises.

This book easily lends itself to a course on performance evaluation in the
computer science and computer engineering curricula. It can also be used for a
course 011 stochastic models in mathematics, operations research and industri-
al engineering departments. Because it incorporates a rich and comprehensive
set of numerical solution methods comparatively presented, the text may also

xv

xvi PREFACE TO THE FlRST EDlTlON

well serve practitioners in various fields of applications as a reference book for
algorithms.

With sincere appreciation to our friends, colleagues, and students who so
ably and patiently supported our manuscript project, we wish to publicly
acknowledge:

0 Jorg Barner and Stepban Kosters, for their painstaking work in keying
the text and in laying out the figures and plots.

0 Peter Bazan, who assisted both with the programming of many examples
and comprehensive proofreading.

0 Hana SevEikovg, who lent a hand in solving many of the examples and
contributed with proofreading.

0 Jdnos Sztrik, for his comprehensive proofreading.

0 Doris Ehrenreich, who wrote the first version of the section on commu-
nication systems.

0 Markus Decker, who prepared the first draft of the mixed queueing
networks sect ion.

0 Those who read parts of the manuscript and provided many useful com-
ments, including: Khalid Begain, Oliver Dusterhoft, Ricardo Fricks,
Swapna Gokhale, Thomas Hahn. Christophe Hirel, Graham Horton,
Steve Hunter, Demetres Kouvatsos, Yue Ma, Raymond Marie, Var-
sha Mainkar, Victor Nicola, Cheul Woo Ro, Helena Szczerbicka, Lorrie
Tomek, Bernd Wolfinger, Katinka Wolter, Martin Zaddach, and Henry
Zang.

Gunter Bolch and Stefan Greiner are grateful to Fridolin Hofmann, and
Hermann de Meer is grateful to Bernd Wolfinger, for their support in providing
the necessary freedom from distracting obligations.

Thanks are also due to Teubner B.G. Publishing House for allowing us to
borrow sections from the book entitled Leistungsbewertung von Rechen-
systemen (originally in German) by one of the coauthors, Gunter Bolch. In
the present book, these sections are integrated in Chapters 1 and 7 through 10.

We also thank Andrew Smith, Lisa Van Horn, and Mary Lynn of John
Wiley & Sons for their patience and encouragement.

The financial support from the SFB (Collaborative Research Centre) 182
(“Multiprocessor and Network Configurations”) of the DFG (Deutsche For-
schungsgemeinschaft) is acknowledged.

Finally, a Web page has been set up for further information regarding the
book. The URL is h t t p : //www4. cs . f au. de/QNMC/

GUNTER BOLCH, STEFAN GREINER, HERMANN DE MEER, KISHOR s. TRIVEDI

Erlangen, June 1998

Introduction

1.1 MOTIVATION

Information processing system designers need methods for the quantification
of system design factors such as performance and reliability. Modern com-
puter, communication, and production line systems process complex work-
loads with random service demands. Probabilistic and statistical methods
are commonly employed for the purpose of performance and reliability eval-
uation. The purpose of-this book is to explore major probabilistic modeling
techniques for the performance analysis of information processing systems.
Statistical methods are also of great importance but we refer the reader to
other sources [Jaingl, TrivOl] for this topic. Although we concentrate on per-
formance analysis, we occasionally consider reliability, availability, and com-
bined performance and reliability analysis. Performance measures that are
commonly of interest include throughput, resource utilization, loss probabili-
ty, and delay (or response time).

The most direct method for performance evaluation is based on actual
measurement of the system under study. However, during the design phase,
the system is not available for such experiments, and yet performance of a
given design needs to be predicted to verify that it meets design requirements
and to carry out necessary trade-offs. Hence, abstract models are necessary
for performance prediction of designs. The most popular models are based on
discrete-event simulation (DES). DES can be applied to almost all problems
of interest, and system details to the desired degree can be captured in such

1

simulation models. Furthermore, many software packages are available that
facilitate the construction and execution of DES models.

The principal drawback of DES models, however, is the time taken to run
such models for large, realistic systems, particularly when results with high
accuracy (i.e., narrow confidence intervals) are desired. A cost-effective alter-
native to DES models, analytic models can provide relatively quick answers to
“what if” questions and can provide more insight into the system being stud-
ied. However, analytic models are often plagued by unrealistic assumptions
that need to be made in order to make them tractable. Recent advances in
stochastic models and numerical solution techniques, availability of software
packages, and easy access to workstations with large computational capa-
bilities have extended the capabilities of analytic models to more complex
systems.

Analytical models can be broadly classified into state-space models and
non-state-space models. Most commonly used state-space models are Markov
chains. First introduced by A. A. Markov in 1907, Markov chains have been in
use in performance analysis since around 1950. In the past decade, consider-
able advances have been made in the numerical solution techniques, methods
of automated state-space generation, and the availability of software packages.
These advances have resulted in extensive use of Markov chains in performance
and reliability analysis. A Markov chain consists of a set of states and a set of
labeled transitions between the states. A state of the Markov chain can model
various conditions of interest in the system being studied. These could be the
number of jobs of various types waiting to use each resource. the number of
resources of each type that have failed, the number of concurrent tasks of a
given job being executed, and so on. After a sojourn in a state, the Markov
chain will make a transition to another state. Such transitions are labeled
with either probabilities of transition (in case of discrete-time Markov chains)
or rates of transition (in case of continuous-time Markov chains).

Long run (steady-state) dynamics of Markov chains can be studied using
a system of linear equations with one equation for each state. Transient (or
time dependent) behavior of a continuous-time Markov chain gives rise to
a system of first-order, linear, ordinary differential equations. Solution of
these equations results in state probabilities of the Markov chain from which
desired performance measures can be easily obtained. The number of states
in a Markov chain of a complex system can become very large, and, hence,
automated generation and efficient numerical solution methods for underlying
equations are desired. A number of concise notations (based on queueing
networks and stochastic Petri nets) have evolved, and software packages that
automatically generate the underlying state space of the Markov chain are
now available. These packages also carry out efficient solution of steady-state
and transient behavior of Markov chains. In spite of these advances, there
is a continuing need to be able to deal with larger Markov chains and much
research is being devoted to this topic.

MOTIVATION 3

If the Markov chain has nice structure, it is often possible to avoid the
generation and solution of the underlying (large) state space. For a class
of queueing networks, known as product-form queueing networks (PFQN),
it is possible to derive steady-state performance measures without resorting
to the underlying state space. Such models are therefore called non-state-
space models. Other examples of non-state-space models are directed acyclic
task precedence graphs [SaTr87] and fault-trees [STP96]. Other examples of
methods exploiting Markov chains with “nice” structure are matrix-geometric
methods [Neut81] (see Section 3.2).

Relatively large PFQN can be solved by means of a small number of sinipler
equations. However, practical queueing networks can often get so large that
approximate methods are needed to solve such PFQN. Furthermore, many
practical queueing networks (so-called non-product-form queueing networks,
NPFQN) do not satisfy restrictions implied by product form. In such cases,
it is often possible to obtain accurate approximations using variations of algo-
rithms used for PFQNs. Other approximation techniques using hierarchical
and fixed-point iterative methods are also used.

The flowchart shown in Fig. 1.1 gives the organization of this book. After a
brief treatment on methodological background (Section 1.2), Section 1.3 covers
the basics of probability and statistics. In Chapter 2, Markov chains basics
are presented together with generation methods for them. Exact steady-
state solution techniques for Markov chains are given in Chapter 3 and their
aggregation/disaggregation counterpart in Chapter 4. These aggregation/dis-
aggregation solution techniques are useful for practical Markov chain models
with very large state spaces. Transient solution techniques for Markov chains
are introduced in Chapter 5.

Chapter 6 deals with the description and coniputation of performance niea-
sures for single-station queueing systems in steady state. A general description
of queueing networks is given in Chapter 7. Exact solution methods for PFQN
are described in detail in Chapter 8 while approximate solution techniques for
PFQN are described in Chapter 9. Solution algorithms for different types
of NPFQN (such as networks with priorities, nonexponential service times,
blocking, or parallel processing) are presented in Chapter 10.

Since there are many practical problems that may not be analytically
tractable, discrete-event simulation is commonly used in this situations. We
introduce the basics of DES in Chapter 11. For the practical use of modeling
techniques described in this book, software packages (tools) are needed. Chap-
ter 12 is devoted to the introduction of a queueing network tool, a stochastic
Petri net tool, a tool based on Markov chains and a toolkit with many mod-
el types, and the facility for hierarchical modeling is also introduced. Each
tool is described in some detail together with a simple example. Throughout
the book we have provided many example applications of different algorithms
introduced in the book. Finally, Chapter 13 is devoted to several large real-life
applications of the modeling techniques presented in the book.

4 INTRODUCTION

Fig. 1.1
mance problem.

Flowchart describing how to find the appropriate chapter for a given perfor-

METHODOLOGICAL BACKGROUND 5

1.2 METHODOLOGICAL BACKGROUND

The focus of this book is the application of stochastic and probabilistic meth-
ods to obtain conclusions about performance and reliability properties of a
wide range of systems. In general, a system can be regarded as a collection
of components which are organized and interact in order to fulfill a common
task [IEEESO].

Reactive systems and nondeterminism: The real-world systems treated in this
book usually contain at least one digital component which controls the oper-
ation of other analog or digital components, and the whole system reacts to
stimuli triggered by its environment. As an example, consider a computer
communication network in which components like routers, switches, hubs,
and communication lines fulfill the common task of transferring data packets
between the various computers connected to the network. If the system of
interest is the communication network only, the connected computers can be
regarded as its environment which triggers the network by sending and receiv-
ing data packets. The behavior of the systems studied in this book can be
characterized as nondeterministic since the stimulation by the environment is
usually unpredictable. In case of a communication system like the Internet,
the workload depends largely on the number of active users. When exactly
a specific user will start to access information on the WWW via a browser
is usually riot known in advance. Another source of nondeterminism is the
potential failure of one or several system components, which in most cases
leads to an altered behavior of the complete system.

Modeling vs. Measurement: In contrast to the empirical methods of measure-
ment, i.e., the collection of output data during the observation of an executing
system, the deductive methods of model-based performance evaluation have
the advantage to be applicable in situations when the system of interest is not
yet existing. Deductive methods can thus be applied during the early design
phases of the system developnient process in order to ensure that the final
product meets its performance and reliability requirements. Although the
material presented in this book is restricted to modeling approaches, it should
be noticed that measurement as a supplementary technique can be employed
to validate that the conclusions obtained by model-based performance evalu-
ation can be translated into useful statements about the real-world system.

Another possible scenario for the application of modeling is the situation
in which measurements on an existing system would either be too dangerous
or too expensive. New policies, decision rules, or information flows can be
explored without disrupting the ongoing operation of the real system. More-
over, new hardware architectures, scheduling algorithms, routing protocols,
or reconfiguration strategies can be tested without committing resources for
their acquisition/implementation. Also, the behavior of an existing system

6 INTRODUCTION

under a variety of anticipated workloads and environments can be evaluated
very cost-effectively in advance by model-based approaches.

1.2.1 Problem Formulation

Before a meaningful model-based evaluation can commence, one should care-
fully consider what performance metric is of interest besides the nature of
the system. This initial step is indispensable since it determines what is the
appropriate formalism to be used. Most of the formalisms presented in the
following chapters are suitable for the evaluation of specific metrics but inap-
propriate for the derivation of others. In general, it is important to consider
the crucial aspects of the application domain with respect to the metrics to
be evaluated before starting with the formalization process. Here, the appli-
cation context strongly determines the kind of information that is meaningful
in a concrete modeling exercise.

As an illustrative example, consider the power outage problem of computer
systems. For a given hardware configuration, there is no ideal way to repre-
sent it without taking into consideration the software applications which run
on the hardware and which of course have to be reflected in the model. In a
real-time context, such as flight control, even the shortest power failure might
have catastrophic implications for the system being controlled. Therefore, an
appropriate reliability model of the flight control computer system has to be
very sensitive to such a (hopefully) rare event of short duration. In contrast,
the total number of jobs processed or the work accomplished by the com-
puter hardware during the duration of a flight is probably a less important
performance measure for such a safety-critical system. If the same hardware
configuration is used in a transaction processing system, however, short out-
ages are less significant for the proper system operation but the throughput
is of predominant importance. As a consequence thereof, it is not useful to
represent effects of short interruptions in the model, since they are of less
importance in this application context.

Another important aspect to consider at the beginning of a model-based
evaluation is how a reactive real-world system - as the core object of the
study - is triggered by its environment. The stimulation of the system by
its environment has to be captured in such a way during formalization so
it reflects the conditions given in the real world as accurately as possible.
Otherwise, the measures obtained during the evaluation process cannot be
meaningfully retrarisformed into statements about the specific scenario in the
application domain. In t,he context of stochastic modeling, the expression of
the environment’s influence on the system in the model is usually referred to
as workload modeling. A frequently applied technique is the characterization
of the arriving workload, e.g., the parts which enter a production line or
the arriving data packets in a communication system, as a stochastic arrival
process. Various arrival processes which are suitable in specific real-world
scenarios can be defined (see Section 6.8).

METHODOLOGICAL BACKGROUND 7

The following four categories of system properties which are within the
scope of the methods presented in this book can be identified:

Performance Properties: They are the oldest targets of performance evalua-
tion and have been calculated already for non-compiiting systems like tele-
phone switching centers [Erlal7] or patient flows in hospitals [Jack541 using
closed-form descriptions from applied probability theory. Typical properties
to be evaluated are the mean throughput of served customers, the mean wait-
ing, or response time and the utilization of the various system resources. The
IEEE standard glossary of software engineering terminology [IEEESO] con-
tains the following definition:

Definition 1.1 Performance: The degree to which a system or component
accomplishes its designated functions within given constraints, such as speed,
accuracy, or memory usage.

Reliability and Availability: Requirements of these types can be evaluated
quantitatively if the system description contains information about the fail-
ure and repair behavior of the system components. In some cases it is also
necessary to specify the conditions under which a new user cannot get access
to the service offered by the operational system. The information about the
failure behavior of system components is usually based on heuristics which are
reflected in the parameters of probability distributions. In [IEEESO], software
reliability is defined as:

Definition 1.2 Reliability: The probability that the software will not
cause the failure of the system for a specified time under specified conditions.

System reliability is a measure for the continuity of correct service, whereas
availatdity measures for a system refer to its readiness for correct service, as
stated by the following definition from [IEEESO]:

Definition 1.3 Availability: The ability of a system to perform its required
function at a stated instant or over a stated period of time. It is usually
expressed as the availability ratio, i.e., the proportion of time that the service
is actually available for use by the Customers within the agreed service hours.

Note that reliability and availability are related yet distinct system properties:
a system which - during a mission time of 100 days -~ fails on average every
two minutes but becomes operational again after a few milliseconds is not
very reliable but nevertheless highly available.

Dependability and Performability: These terms and the definitions for them
originated from the area of dependable and faul t tolerant computing. The
following definition for dependability is taken from [ALRL04]:

Definition 1.4 Dependability: The dependability of a computer system
is the ability to deliver a service that can justifiably be trusted. The service

delivered by a system is its behavior as it is perceived by its user(s); a user
is another system (physical, human) that interacts with the former at the
service interface.

This is a rather general definition which comprises the five attributes availabil-
ity, reliability, maintainabi l i ty - the systems ability to undergo modifications
or repairs, integrity - the absence of improper system alterations and safety
as a measure for the continuous delivery of service free from occurrences of
catastrophic failures. The term performabili ty was coined by J.F. MEYER
[Meye781 as a measure to assess a system’s ability to perform when perfor-
mance degrades as a consequence of faults:

Definition 1.5 Performability: The probability that the system reaches
an accomplishment level y over a utilization interval (0, t) . That is, the prob-
ability that the system does a certain amount of useful work over a mission
time t .

Subsequently, many other measures are included under performance as we
shall see in Section 2.2. Informally, the performability refers to performance
in the presence of failures/repair/recovery of components and the system.
Performability is of special interest for gracefully degrading s y s t e m s [Beau77].
In Section 2.2, a framework based on Markov reward models (MRMs) is pre-
sented which provides recipes for a selection of the right model type and the
definition of an appropriate performance measure.

1.2.2 The Modeling Process

The first step of a model-based performance evaluation consists of the formal-
ization process, during which the modeler generates a f o r m a l description of
the real-world system. Figure 1.2 illustrates the basic idea: Starting from an
informal system description, e.g. in natural language, which includes struc-
tural and functional information as well as the desired performance and reli-
ability requirements, the modeler creates a formal model of the real-world
system using a specific conceptualization. A conceptualization is an abstract,
simplzfied view of the reference reality which is represented for some purpose.
Two kinds of conceptualizations for the purpose of performance evaluation are
presented in detail in this book: If the system is to be represented as a queue-
ing network, the modeler applies a ?outed job flow” modeling paradigm in
which the real-world system is conceptualized as a set of service stations which
are connected by edges through which independent entities “ f l o ~ ” through
the network and sojourn in the queues and servers of the service stations
(see Chapter 7). In an alternative Markov chain conceptualization a “state-
transition” modeling paradigm is applied in which the possible trajectories
through the system’s global state space are represented as a graph whose
directed arcs represent the transitions between subsequent system states (see
Chapter 2). The main difference between the two conceptualizations is that

METHODOLOGICAL BACKGROUND 9

the queueing network formalism is oriented more towards the structure of the
real-world system, whereas in the Markov chain formalization the emphasis
is put on the description of the system behavior on the underlying state-
space level. A Markov chain can be regarded to “mimic” the behavior of
the executing real-world system, whereas the service stations and jobs of a
queueing network establish a one-to-one correspondence to the components of
the real-world system. As indicated in Fig. 1.2, a Markov chain serves as the
underlying semantic model of the high-level queueing network model.

Fig. 1.2 Formalization of a real-world system.

During the formalization process the following abstractions with respect to
the real-world system are applied:

0 In both conceptualizations the behavior of the real-world system is
regarded to evolve in a discrete-event fashion, even if the real-world
system contains components which exhibit continuous behavior, such as
the movements of a conveyor belt of a production line.

0 The application of the queueing network formalism abstracts away from
all synchronization mechanisms which may be present in the real-world
system. If the representation of these synchronization mechanisms is
crucial in order to obtain useful results from the evaluation, the niodeler
can resort to variants of stochastic Petri nets as an alternative descrip-
tion t,echnique (see Section 2.3 and Section 2.3.6) in which almost arbi-
trary synchronization pattcrns can be captured.

0 The corc abstractions applied during the formalization process are the
association of system activity durations with random variables and the
inclusion of branching probabilities to represent alternative system evo-
lutions. Both abstractions resolve the nondeterminisrn inherent in the

10 lNTRODUCTlON

real-world system and turn the formal queueing network or Markov
chain prototype into an “executable” specification [WingOl]. For these,
at any moment during their operation each possible future evolution has
a well-defined probability to oc(w. Depending on which kind of ran-
dom variables are used to represent the durations of the system activities
either a discrete-time interpretation using a DTMC or a continuous-time
interpretation of the system behavior based on a CTMC is achieved. It
should be noted that for systems with asynchronously evolving com-
ponents the continuous-time interpretation is more appropriate since
changes of the global system state may occur at any moment in contin-
uous time. Systems with components that evolve in a lock-step fashion
triggered by a global clock are usually interpreted in discrete-time.

1.2.3 Evaluation

The second step in the model-based system evaluation is the deduction of
performance measures by the application of appropriate solution methods.
Depending on the conceptualization chosen during the formalization process
the following solution methods are available:

Analytical Solutions: The core principle of the analytic: solution methods is
to represent the formal system description either as a single equation from
which the interesting measures can be obtained as closed-form solutions, or
as a set of system equations from which exact or approximate measures can
be calculated by appropriate algorithms from numerical mathematics.

1. Closed-form solutions are available if the system can be described as
a simple queucing system (see Chapter 6) or for simple product-form
queueing networks (PFQN) [Chhla83] (see Section 7.3) or for structured
small CTMCs. For these kind of formalizations equations can be derived
from which the mean number of jobs in the service stations can be
calculated as a closed-form solution, i.e., the solutions can be expressed
analytically in terms of a bounded number of well-known operations.
Also from certain types of Markov chains with regular structure (see
Section 3. 1), closed-form representations like the well-known Erlang-
B and Erlang-C formulae [Erlal7] can be derived. The measures can
either be computed by ad-hoc programming or with the help of computer
algebra packages such as Mathernatica [Mat05]. A big advantage of‘the
closed-form solutions is their moderate computational complexity which
enables a fast calculation of performance measures even for larger system
descriptions.

2. Numerical solutions: Many types of equations which can be derived
from a formal system description do not possess a closed-form solution,
e.g., in the case of complex systems of integro-differential equations.
In these cases, approximate solutions can be obtained by the appli-

METHODOLOGICAL BACKGROUND 11

cation of algorithms from numerical mathematics, many of which are
implemented in computer algebra packages [Mat051 or are integrated in
performance analysis tools such as SHARPE [HSZTOO], SPNP [HTTOO],
or TimeNET [ZFGHOO] (see Chapter 12). The formal system descrip-
tions can be either given as a queueing network, stochastic Petri net or
another high-level modeling formalism, from which a state-space repre-
sentation is generated manually or by the application of state-space gen-
eration algorithms. Depending on the stochastic information present in
the high-level description, various types of system state equations which
mimic the dynaniics of the modeled system can be derived and solved
by appropriate algorithms. The numerical solution of Markov models
is discussed in Chapters 3 ~ 5, numerical solution methods for queueing
networks can be found in Chapters 7 - 10. In comparison to closed-form
solution approaches, numerical solution met hods usually have a higher
computational complexity.

Simulation Solutions: For many types of models no analytic solution method
is feasible, because either a theory for the derivation of proper system equa-
tions is not known, or the computational complexity of an applicable numeri-
cal solution algorithm is too high. In this situation, solutions can be obtained
by the application of discrete-event simulation (DES), which is described in
detail in Chapter 11. Instead of solving system equations which have been
derived from the formal model, the DES algorithm “executes” the model
and collects the information about the observed behavior for the subsequent
derivation of performance measures. In order to increase the quality of the
results, the simulation outputs collected during multiple “executions” of the
model are collected and from which the interesting measures are calculated by
statistical methods. All the formalizations presented in this book, i.e., queue-
ing networks, stochastic Petri nets, or Markov chains can serve as input for
a DES, which is the most flexible and generally applicable solution method.
Since the underlying state space does not have to be generated, simulation
is not affected by the state-space explosion problem. Thus, simulation can
also be employed for the analysis of complex models for which the numerical
approaches would fail because of an exuberant number of system states.

Hybrid solutions: There exists a number of approaches in which different mod-
eling formalisms and solution methods are combined in oder to exploit their
coniplementing strengths. Examples of hybrid solution methods are mixed
simulation and analytical/numerical approaches, or the combination of fault
trees, reliability block diagrams, or reliability graphs, and Markov models
[STP96]. Also product-form queueing networks and stochastic Petri nets
or non-product-form networks and their solution methods can be combined.
More generally, this approach can be characterized as intermingling of state-
space-based and non-state-space-based methods [STP96]. A combination of
analytic and simulative solutions of connected sub-models may be employed

to combine the benefits of both solution methods [Sarg94, ShSa831. More cri-
teria for a choice between simulation and analytical/numerical solutions are
discussed in Chapter 11.

Largeness Tolerance: Many high-level specification techniques, queueing sys-
tems, generalized stochastic Petri nets (GSPNs), and stochastic reward nets
(SRNs), as the most prominent representatives, have been suggested in the
literature to automate the model generation [HaTr93]. GSPNs/SRNs that are
covered in more detail in Section 2.3, can be characterized as tolerating large-
ness of the underlying computational models and providing effective means
for generating large state spaces.

Largeness Avoidance: Another way to deal with large models is to avoid the
creation of such models from the beginning. The major largeness-avoidance
technique we discuss in this book is that of product-form queueing networks.
The main idea is, the structure of the underlying CTMC allows for an efficient
solution that obviates the need for generation, storage, and solution of the
large state space. The second method of avoiding largeness is to separate the
originally single large problem into several smaller problems and to combine
sub-model results into an overall solution. Both approximate and exact tech-
niques are known for dealing with such multilevel models. The flow of informa-
tion needed among sub-models may be acyclic, in which case a hierarchical
model [STP96] results. If the flow of needed information is non-acyclic, a
fixed-point iteration may be necessary [CiTr93]. Other well-known techniques
applicable for limiting model sizes are state truncation [BVDT88, GCS+86]
and state lumping [NicoSO].

1.2.4 Summary

Figure 1.3 summarizes the different phases and activities of the model-based
performance evaluation process. Two main scenarios are considered: In the
first one, model-based performance evaluation is applied during the early phas-
es of the system development process to predict the performance or reliability
properties of the final product. If the predicted properties do not fulfill the
given requirements, the proposed design has to be changed in order to avoid
the expected performance problems. In the second scenario, the final prod-
uct is already available and model-based performance evaluation is applied to
derive optimal system configuration parameters, to solve capacity planning
problems, or to check whether the existing system would still operate satis-
factorily after a modification of its environment. In both scenarios the first
activity in the evaluation process is to collect information about the structure
and functional behavior of an existing or planned system. The participation
of a domain expert in this initial step is very helpful and rather indispensable
for complex applications. Usually, the collected information is stated infor-
mally and stored in a document using either a textual or a combined textu-

