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PREFACE

In simple terms, manufacturing can be defined as the process by which raw
materials are converted into finished products. The purpose of this book is to
examine in detail the methodology by which electronic materials and supplies
are converted into finished integrated circuits and electronic products in a high-
volume manufacturing environment. This subject of this book will be issues
relevant to the industrial-level manufacture of microelectronic device and circuits,
including (but not limited to) fabrication sequences, process control, experimental
design, process modeling, yield modeling, and CIM/CAM systems. The book will
include theoretical and practical descriptions of basic manufacturing concepts, as
well as some case studies, sample problems, and suggested exercises.

The book is intended for graduate students and can be used conveniently in a
semester-length course on semiconductor manufacturing. Such a course may or
may not be accompanied by a corequisite laboratory. The text can also serve as
a reference for practicing engineers and scientists in the semiconductor industry.

Chapter 1 of the book places the manufacture of integrated circuits into its
historical context, as well as provides an overview of modern semiconductor man-
ufacturing. In the Chapter 2, we provide a broad overview of the manufacturing
technology and processes flows used to produce a variety of semiconductor prod-
ucts. Various process monitoring methods, including those that focus on product
wafers and those that focus on the equipment used to produce those wafers, are
discussed in Chapter 3. As a backdrop for subsequent discussion of statistical
process control (SPC), Chapter 4 provides a review of statistical fundamentals.
Ultimately, the key metric to be used to evaluate any manufacturing process is
cost, and cost is directly impacted by yield. Yield modeling is therefore pre-
sented in Chapter 5. Chapter 6 then focuses on the use of SPC to analyze quality
issues and improve yield. Statistical experimental design, which is presented in
Chapter 7, is a powerful approach for systematically varying controllable process
conditions and determining their impact on output parameters which measure
quality. Data derived from statistical experiments can then be used to construct
process models that enable the analysis and prediction of manufacturing process
behavior. Process modeling concepts are introduced in Chapter 8. Finally, several
advanced process control topics, including run-by-run, supervisory control, and
process and equipment diagnosis, are the subject of Chapters 9 and 10.

xvii



xviii PREFACE

Each chapter begins with an introduction and a list of learning goals, and
each concludes with a summary of important concepts. Solved examples are
provided throughout, and suggested homework problems appear at the end of the
chapter. A complete set of detailed solutions to all end-of-chapter problems has
been prepared. This Instructor’s Manual is available to all adopting faculty. The
figures in the text are also available, in electronic format, from the publisher at
the web site: http://www.wiley.com/college/mayspanos.
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1
INTRODUCTION

TO SEMICONDUCTOR
MANUFACTURING

OBJECTIVES

• Place the manufacturing of integrated circuits in a historical context.
• Provide an overview of modern semiconductor manufacturing.
• Discuss manufacturing goals and objectives.
• Describe manufacturing systems at a high level as a prelude to the remainder

of the text.

INTRODUCTION

This book is concerned with the manufacturing of devices, circuits, and elec-
tronic products based on semiconductors. In simple terms, manufacturing can
be defined as the process by which raw materials are converted into finished
products. As illustrated in Figure 1.1, a manufacturing operation can be viewed
graphically as a system with raw materials and supplies serving as its inputs
and finished commercial products serving as outputs. In semiconductor man-
ufacturing, input materials include semiconductor materials, dopants, metals,
and insulators. The corresponding outputs include integrated circuits (ICs), IC
packages, printed circuit boards, and ultimately, various commercial electronic
systems and products (such as computers, cellular phones, and digital cameras).
The types of processes that arise in semiconductor manufacturing include crystal

Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

1



2 INTRODUCTION TO SEMICONDUCTOR MANUFACTURING

Manufacturing
System

Raw materials
Supplies

Finished
Products

Figure 1.1. Block diagram representation of a manufacturing system.

growth, oxidation, photolithography, etching, diffusion, ion implantation, pla-
narization, and deposition processes.

Viewed from a systems-level perspective, semiconductor manufacturing inter-
sects with nearly all other IC process technologies, including design, fabrication,
integration, assembly, and reliability. The end result is an electronic system
that meets all specified performance, quality, cost, reliability, and environmental
requirements. In this chapter, we provide an overview of semiconductor manu-
facturing, which touches on each of these intersections.

1.1. HISTORICAL EVOLUTION

Semiconductor devices constitute the foundation of the electronics industry, which
is currently (as of 2005) the largest industry in the world, with global sales over
one trillion dollars since 1998. Figure 1.2 shows the sales volume of the semi-
conductor device-based electronics industry since 1980 and projects sales to the
year 2010. Also shown are the gross world product (GWP) and the sales volumes

Figure 1.2. Gross world product (GWP) and sales volumes of various industries from 1980 to
2000 and projected to 2010 [1].
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of the automobile, steel, and semiconductor industries [1]. If current trends con-
tinue, the sales volume of the electronic industry will reach three trillion dollars
and will constitute about 10% of GWP by 2010. The semiconductor industry,
a subset of the electronics industry, will grow at an even higher rate to surpass
the steel industry in the early twenty-first century and to constitute 25% of the
electronic industry in 2010.

The multi-trillion-dollar electronics industry is fundamentally dependent on
the manufacture of semiconductor integrated circuits (ICs). The solid-state com-
puting, telecommunications, aerospace, automotive, and consumer electronics
industries all rely heavily on these devices. A brief historical review of man-
ufacturing and quality control, semiconductor processing, and their convergence
in IC manufacturing, is therefore warranted.

1.1.1. Manufacturing and Quality Control

The historical evolution of manufacturing, summarized in Table 1.1, closely par-
allels the industrialization of Western society, beginning in the nineteenth century.
It could be argued that the key early development in manufacturing was the
concept of interchangeable parts. Eli Whitney is credited with pioneering this
concept, which he used for mass assembly of the cotton gin in the early 1800s [2].
In the late 1830s, a Connecticut manufacturer began producing cheap windup
clocks by stamping out many of the parts out of sheets of brass. Similarly, in
the early 1850s, American rifle manufacturers thoroughly impressed a British
delegation by a display in which 10 muskets made in 10 different preceding
years were disassembled, had their parts mixed up in a box, and subsequently
reassembled quickly and easily. In England at that time, it would have taken a
skilled craftsman the better part of a day to assemble a single unit.

The use of interchangeable parts eliminated the labor involved in matching
individual parts in the assembly process, resulting in a tremendous time sav-
ings and increase in productivity. The adoption of this method required new
forms of technology capable of much finer tolerances in production and mea-
surement methods than those required by hand labor. Examples included the

Table 1.1. Major milestones in manufacturing history.

Year(s) Event

1800–1850 Concept of interchangeable parts introduced
1850–1860 Advances in measurement and machining operations
1875 Taylor introduces scientific management principles
1900–1930 Assembly line techniques actualized by Ford
1924 Control chart introduced by Shewhart
Late 1920s Dodge and Romig develop acceptance sampling
1950s Computer numeric control and designed experiments introduced
1970s Growth in the adoption of statistical experimental design
1980 Pervasive use of statistical methods in many industries
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vernier caliper, which allowed workers to measure machine tolerances on small
scales, and wire gauges, which were necessary in the production of clock springs.
One basic machine operation perfected around this time was mechanical drilling
using devices such as the turret lathe, which became available after 1850. Such
devices allowed a number of tedious operations (hand finishing of metal, grind-
ing, polishing, stamping, etc.) to be performed by a single piece of equipment
using a bank of tool attachments. By 1860, a good number of the basic steps
involved in shaping materials into finished products had been adapted to machine
functions.

Frederick Taylor added rigor to the manufacturing research and practice by
introducing the principles of scientific management into mass production indus-
tries around 1875 [3]. Taylor suggested dividing work into tasks so that products
could be manufactured and assembled more readily, leading to substantial produc-
tivity improvements. He also developed the concept of standardized production
and assembly methods, which resulted in improved quality of manufactured
goods. Along with the standardization of methods came similar standardization in
work operations, such as standard times to accomplish certain tasks, or a specified
number of units that must be produced in a given work period.

Interchangeable parts also paved the way for the next major contribution to
manufacturing: the assembly line. Industrial engineers had long noted how much
labor is spent in transferring materials between various production steps, com-
pared with the time spent in actually performing the steps. Henry Ford is credited
for devising the assembly line in his quest to optimize the means for producing
automobiles in the early twentieth century. However, the concept of the assembly
line had actually been devised at least a century earlier in the flour mill indus-
try by Oliver Evans in 1784 [2]. Nevertheless, it was not until the concept of
interchangeable parts was combined with technology innovations in machining
and measurement that assembly line methods were truly actualized in their ulti-
mate form. After Ford, the assembly line gradually replaced more labor-intensive
forms of production, such as custom projects or batch processing.

No matter what industry, no one working in manufacturing today can overem-
phasize the influence of the computer, which catalyzed the next major paradigm
shift manufacturing technology. The use of the computer was the impetus for
the concept of computer numeric control (CNC), introduced in the 1950s [4].
Numeric control was actually developed much earlier. The player piano is a
good example of this technique. This instrument utilizes a roll of paper with
holes punched in it to determine whether a particular note is played. The numeric
control concept was enhanced considerably by the invention of the computer in
1943. The first CNC device was a spindle milling machine developed by John
Parsons of MIT in 1952. CNC was further enhanced by the use of micropro-
cessors for control operations, beginning around 1976. This made CNC devices
sufficiently versatile that an existing tooling could be quickly reconfigured for
different processes. This idea moved into semiconductor manufacturing more
than a decade later when the machine communication standards made it possible
to have factorywide production control.
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The inherent accuracy and repeatability engendered by the use of the computer
eventually enabled the concept of statistical process control to gain a foothold
in manufacturing. However, the application of statistical methods actually had a
long prior history. In 1924, Walter Shewhart of Bell Laboratories introduced the
control chart. This is considered by many as the formal beginning of statistical
quality control. In the late 1920s, Harold Dodge and Harry Romig, both also
of Bell Labs, developed statistically based acceptance sampling as an alterna-
tive to 100% inspection. By the 1950s, rudimentary computers were available,
and designed experiments for product and process improvement were first intro-
duced in the United States. The initial applications for these techniques were
in the chemical industry. The spread of these methods to other industries was
relatively slow until the late 1970s, when their further adoption was spurred by
economic competition between Western companies and the Japanese, who had
been systematically applying designed experiments since the 1960s. Since 1980,
there has been profound and widespread growth in the use of statistical methods
worldwide, and particularly in the United States.

1.1.2. Semiconductor Processes

Many important semiconductor technologies were derived from processes inven-
ted centuries ago. Some of the key technologies are listed in Table 1.2 in chrono-
logical order. For the most part, these techniques were developed independently
from the evolution of manufacturing science and technology. For example, the
growth of metallic crystals in a furnace was pioneered by Africans living on the

Table 1.2. Major milestones in semiconductor processing history.

Year Event

1798 Lithography process invented
1855 Fick proposes basic diffusion theory
1918 Czochralski crystal growth technique invented
1925 Bridgman crystal growth technique invented
1952 Diffusion used by Pfann to alter conductivity of silicon
1957 Photoresist introduced by Andrus; oxide masking developed by Frosch

and Derrick; epitaxial growth developed by Sheftal et al.
1958 Ion implantation proposed by Shockley
1959 Kilby and Noyce invent the IC
1963 CMOS concept proposed by Wanlass and Sah
1967 DRAM invented by Dennard
1969 Self-aligned polysilicon gate process proposed by Kerwin et al.;

MOCVD developed by Manasevit and Simpson
1971 Dry etching developed by Irving et al.; MBE developed by Cho; first

microprocessor fabricated by Intel
1982 Trench isolation technology introduced by Rung et al.
1989 CMP developed by Davari et al.
1993 Copper interconnect introduced to replace aluminum by Paraszczak et al.
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western shores of Lake Victoria more than 2000 years ago [5]. This process was
used to produce carbon steel in preheated forced-draft furnaces. Another example
is the lithography process, which was invented in 1798. In this first process, the
pattern, or image, was transferred from a stone plate (lithos) [6]. The diffusion of
impurity atoms in semiconductors is also important for device processing. Basic
diffusion theory was described by Fick in 1855 [7].

In 1918, Czochralski developed a liquid–solid monocomponent growth tech-
nique used to grow most of the crystals from which silicon wafers are pro-
duced [8]. Another growth technique was developed by Bridgman in 1925 [9].
The Bridgman technique has been used extensively for the growth of gallium
arsenide and related compound semiconductors. The idea of using diffusion tech-
niques to alter the conductivity in silicon was disclosed in a patent by Pfann in
1952 [10]. In 1957, the ancient lithography process was applied to semiconductor
device fabrication by Andrus [11], who first used photoresist for pattern transfer.
Oxide masking of impurities was developed by Frosch and Derrick in 1957 [12].
In the same year, the epitaxial growth process based on chemical vapor deposition
was developed by Sheftal et al. [13]. In 1958, Shockley proposed the method of
using ion implantation to precisely control the doping of semiconductors [14].

In 1959, the first rudimentary integrated circuit was fabricated from ger-
manium by Kilby [15]. Also in 1959, Noyce proposed the monolithic IC by
fabricating all devices in a single semiconductor substrate and connecting the
devices by aluminum metallization [16]. As the complexity of the IC increased,
the semiconductor industry moved from NMOS (n-channel MOSFET) to CMOS
(complementary MOSFET) technology, which uses both NMOS and PMOS (p-
channel MOSFET) processes to form the circuit elements. The CMOS concept
was proposed by Wanlass and Sah in 1963 [17]. In 1967, the dynamic random
access memory (DRAM) was invented by Dennard [18].

To improve device reliability and reduce parasitic capacitance, the self-aligned
polysilicon gate process was proposed by Kerwin et al. in 1969 [19]. Also in
1969, the metallorganic chemical vapor deposition (MOCVD) method, an impor-
tant epitaxial growth technique for compound semiconductors, was developed by
Manasevit and Simpson [20]. As device dimensions continued to shrink, dry
etching was developed by Irving et al. in 1971 to replace wet chemical etching
for high-fidelity pattern transfer [21]. Another important technique developed in
the same year by Cho was molecular-beam epitaxy (MBE) [22]. MBE has the
advantage of near-perfect vertical control of composition and doping down to
atomic dimensions. Also in 1971, the first monolithic microprocessor was fabri-
cated by Hoff et al. at Intel [23]. Currently, microprocessors constitute the largest
segment of the industry.

Since 1980, many new technologies have been developed to meet the require-
ments of continuously shrinking minimum feature lengths. Trench technology was
introduced by Rung et al. in 1982 to isolate CMOS devices [24]. In 1989, the
chemical–mechanical polishing (CMP) method was developed by Davari et al.
for global planarization of the interlayer dielectrics [25]. Although aluminum has
been used since the early 1960s as the primary IC interconnect material, copper
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interconnect was introduced in 1993 by Paraszczak et al. to replace aluminum
for minimum feature lengths approaching 100 nm [26].

1.1.3. Integrated Circuit Manufacturing

By the beginning of the 1980s, there was deep and widening concern about the
economic well-being of the United States. Oil embargoes during the previous
decade had initiated two energy crises and caused rampant inflation. The U.S.
electronics industry was no exception to the economic downturn, as Japanese
companies such as Sony and Panasonic nearly cornered the consumer electron-
ics market. The U.S. computer industry experienced similar difficulties, with
Japanese semiconductor companies beginning to dominate the memory market
and establish microprocessors as the next target.

Then, as now, the fabrication of ICs was extremely expensive. A typical
state-of-the-art, high-volume manufacturing facility at that time cost over a mil-
lion dollars (and now costs several billion dollars) [27]. Furthermore, unlike the
manufacture of discrete parts such as appliances, where relatively little rework
is required and a yield greater than 95% on salable product is often realized, the
manufacture of integrated circuits faced unique obstacles. Semiconductor fabri-
cation processes consisted of hundreds of sequential steps, with potential yield
loss occurring at every step. Therefore, IC manufacturing processes could have
yields as low as 20–80%.

Because of rising costs, the challenge before semiconductor manufacturers
was to offset large capital investment with a greater amount of automation and
technological innovation in the fabrication process. The objective was to use the
latest developments in computer hardware and software technology to enhance
manufacturing methods. In effect, this effort in computer-integrated manufactur-
ing of integrated circuits (IC-CIM) was aimed at optimizing the cost-effectiveness
of IC manufacturing as computer-aided design (CAD) had dramatically affected
the economics of circuit design.

IC-CIM is designed to achieve several important objectives, including increas-
ing chip fabrication yield, reducing product cycle time, maintaining consistent
levels of product quality and performance, and improving the reliability of pro-
cessing equipment. Table 1.3 summarizes the results of a 1986 study by Toshiba
that analyzed the use of IC-CIM techniques in producing 256-kbyte DRAM
memory circuits [28]. This study showed that CIM techniques improved the
manufacturing process on each of the four productivity metrics investigated.

Table 1.3. Results of 1986 Toshiba study.

Productivity Metric Without CIM With CIM

Turnaround time 1.0 0.58
Integrated unit output 1.0 1.50
Average equipment uptime 1.0 1.32
Direct labor hours 1.0 0.75
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Figure 1.3. Timeline indicating convergence of manufacturing science and semiconductor
processing into IC-CIM.

In addition to the demonstration of the effectiveness of IC-CIM techniques,
economic concerns were so great in the early to mid-1980s that the Reagan
Administration took the unprecedented step of partially funding a consortium
of U.S. IC manufacturers—including IBM, Intel, Motorola, and Texas Instru-
ments—to perform cooperative research and development on semiconductor
manufacturing technologies. This consortium, SEMATECH, officially began oper-
ations in 1988 [29]. This sequence of events signaled the convergence of advances
in manufacturing science and semiconductor process technology, and also her-
alded the origin of a more systematic and scientific approach to semiconductor
manufacturing. This convergence is illustrated in Figure 1.3.

1.2. MODERN SEMICONDUCTOR MANUFACTURING

The modern semiconductor manufacturing process sequence is the most sophisti-
cated and unforgiving volume production technology that has ever been practiced
successfully. It consists of a complex series of hundreds of unit process steps
that must be performed very nearly flawlessly.

This semiconductor manufacturing process can be defined at various levels
of abstraction. For example, each process step has inputs, outputs, and spec-
ifications. Each step can also be modeled, either physically, empirically, or
both. Much can be said about the technology of each step, and more depth
in this area is provided in Chapter 2. At a higher level of abstraction, mul-
tiple process steps are linked together to form a process sequence. Between
some of these links are inspection points, which merely produce information
without changing the product. The flow and utilization of information occurs at
another level of abstraction, which consists of various control loops. Finally, the
organization of the process belongs to yet another level of abstraction, where
the objective is to maximize the efficiency of product flow while reducing
variability.


