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Preface 

In recent times, there has been an explosion in the development of comprehensive, 
high-throughput methods for molecular biology experimentation. An example is the 
advent in DNA microarray technologies, such as cDNA arrays and oligonucleotide 
arrays, that provide means for measuring tens of thousands of genes simultaneously. 
These technologies benefit biological research greatly and further our understanding 
of biological processes by drawing together researchers in biology and quantitative 
fields including statistics, mathematics, computer science, and physics. In addition to 
the enormous scientific potential of microarrays to help in understanding gene regula- 
tion and interactions, microarrays have very important applications in pharmaceutical 
and clinical research. 

This book has been written with two types of readers in mind: biologists who 
will undertake the statistical analyses of their own experimental microarray data, and 
biostatisticians entering the field of microarray gene expression data analysis. The 
primary focus of the book is on data analysis methods for this field; however, the 
biology and technology behind gene expression microarray experiments, as well as 
cleaning and normalization of the data, will be briefly covered. 

Although biological experiments vary considerably in their design, the data gen- 
erated by microarray experiments can be viewed as a matrix of expression levels, 
organized by genes versus tissue samples. In the case where a tissue sample cor- 
responds to a single microarray experiments, we can represent the output from M 
experiments in the form of a N x M array (matrix). Each column of the matrix (the 
expression signature vector) contains the expression levels on the N genes monitored 
in the microarrays, while each row (the expression profile) contains the expression 
levels of a gene as it varies over the M tissue samples. Outside this matrix of expres- 
sion levels, we may have covariate information for samples, genes, or both. The goal 
of microarray data analysis is to make inferences among samples, genes, and their 
expression levels and covariates. 

xv 



XVi  PREFACE 

The actual measurement of the expression levels raises several statistical issues 
in experimental design, image processing, outlier detection, transformations, and 
nonlinear modeling. We consider some of these issues (which are still ongoing as 
we complete this book) in the first two chapters. The rest of the book then consid- 
ers the analysis of the microarray data, assuming that they have been appropriately 
preprocessed. 

This analysis is centered on methods for the detection of differential expression, 
for cluster analysis (unsupervised classification), and for discriminant analysis (su- 
pervised classification) of microarray data. 

An important and common question in microarray experiments is the detection of 
genes that are differentially expressed in tissue samples across a number of specified 
classes. These classes may correspond to tissues (cells) that are at different stages in 
some process, in distinct pathological states, or under different experimental condi- 
tions. A plethora of methods to detect differential gene expression are presented. 

Cluster analyses have demonstrated their utility in the elucidation of unknown 
gene function, the validation of gene discoveries, and the interpretation of biological 
processes. Discriminant analysis is playing an ever-increasing role in predicting gene 
function classes and cancer classification. 

There are two distinct clustering problems with microarray data. One problem 
concerns the clustering of the tissues on the basis of the genes. The clusters of 
tissues can play a useful role in the discovery and understanding of new subclasses 
of diseases. The second problem concerns the clustering of the genes on the basis of 
the tissues. The clusters of genes obtained can be used to search for genetic pathways 
or groups of genes that might be regulated together. Also, in the first problem above, 
we may wish first to summarize the information in the very large number of genes by 
clustering them into groups, which can be represented by some metagenes. We can 
then carry out the clustering of the tissues in terms of these metagenes. 

In both the clustering of the tissues and the genes, hierarchical (agglomerative) 
clustering has been the most widely used method for the analysis of patterns of gene 
expression. It produces a representation of the data with the shape of a binary tree, in 
which the most similar patterns are clustered in a hierarchy of nested subsets. Never- 
theless, classical hierarchical clustering presents drawbacks when dealing with data 
containing a non-negligible amount of noise, as is the present case. Also, there is no 
reason why the clusters of tissues or genes should belong to a hierarchy such as in 
the evolution of species. In this book, the emphasis is on a model-based approach to 
clustering. An advantage of model-based clustering is that it provides a sound math- 
ematical framework for clustering. In particular, it provides a principled statistical 
approach to the practical questions that arise in applying clustering methods, namely, 
the question of what metric (distance function) to adopt and the question of how many 
clusters there are in the data. 

In recent times, model-based clustering has become very popular in the statistical 
literature. Unfortunately, as the data to be analyzed from microarray experiments 
often have gene-to-sample ratios of approximately 100-fold, off-the-shelf parametric 
methodology does not apply at least to the classification of the tissues on the basis of 
the genes. This is because the dimension of the feature space (the number of genes) 



is so much greater than the number of observations (the number of tissues). But even 
the cluster analysis of the genes on the basis of the tissues is a nonstandard problem, 
as the genes are not all independently distributed. 

An obvious way to handle the very large number of genes is to perform a principal 
component analysis (PCA) and carry out the cluster analysis on the basis of the 
leading components. But a potential problem with a PCA is the determination of an 
appropriate number of principal components (PCs) useful for clustering. A common 
practice is to choose the first few leading components. But it is not clear where to 
stop and whether some of these components are caused by some artifact or noises in 
the data unrelated to the clustering task. Also, there is the difficulty of interpretation 
of components because each component has loadings generally on all genes. 

Hence the focus in the book is on the EMMIX-GENE procedure, which is a 
normal mixture-based method of clustering that has been especially developed for 
the clustering of tissue samples or other high-dimensional data. This procedure has 
an option for an initial selection of the genes where genes that appear to have little 
clustering capacity are discarded. It then clusters the (standardized) gene profiles into 
groups, effectively using Euclidean distance as the metric, with the aim that highly 
correlated genes are put in the same cluster. Each group of genes is then represented 
by a single metagene (the group-sample mean) and then clustering is performed in 
terms of the metagenes. This divide-and-conquer approach is becoming popular in 
the bioinformatics literature for both unsupervised and supervised classification of 
tissue samples. 

The clustering step of EMMIX-GENE makes use of, if needed, mixtures of factor 
analyzers. That is, it provides a global nonlinear approach to dimension reduction as 
it postulates a finite mixture of linear submodels (factor models) for the distribution of 
the full signature vector or a reduced version of metagenes given the (unobservable) 
factors. Thus, it is a local dimensionality reduction method in contrast with a PCA, 
which is a global linear method. 

A number of discriminant rules are discussed for the supervised classification of 
the tissue samples. However, the aim of this book is not to provide a comprehensive 
review of available methods but rather to focus on what we think are useful methods 
for the analysis of microarray data. To this end, the focus in discriminant analysis of 
tissue samples is on the support vector machine. It has the advantage that it can be 
formed from all the genes and its performance is generally not too disadvantaged as 
a consequence of using all the genes. Its performance can be improved by undertak- 
ing feature selection using an easily implemented procedure called recursive feature 
elimination. 

In the statistical analyses, including discriminant and cluster analyses, some form 
of feature selection will usually be carried out. A consequence of basing the final 
analysis on a selected “top” subset of the available genes is that there will typically be 
a selection bias that needs to be corrected for in relating the conclusions to subsequent 
(new) data. In the case of a discriminant rule, it means that the selection bias has 
to be allowed for in the estimation of the generalization error. Otherwise, a false 
overoptimistic impression will be obtained for the discriminatory power of the rule. 



This bias has often been overlooked in the bioinformatics literature. Also, this bias 
arises in an unsupervised context with tests and plots on the number of clusters. 

The first two chapters of this book aim to ( 1 )  provide a bridge to the biological 
and technical aspects involved in microarray experiments, and ( 2 )  summarize and 
emphasize the need for basic research in DNA array technologies and statistical 
thinking through every step of the microarray experiment and analysis to enhance 
reliability and reproducibility of research results. 

Chapter 1 is an introductory chapter and provides a review on DNA microarrays 
and relevant technology. In particular, we begin with the biological principles behind 
microarray experiments. Background information on the substrates and technology 
used in microarray gene expression studies is intended for the biostatistician who is not 
familiar with the biological experiments. We discuss DNA, cDNA, oligonucleotides, 
and the development of microarray technology, as well as the steps involved in the 
manufacture of cDNA microarrays and in generating experimental microarray data. 
Commercial arrays, primarily the Genechipa),  are also briefly introduced in this 
chapter. 

Chapter 2 discusses cleaning and normalization of gene expression microarray 
data, as well as the need for designs of experiments with replicated data. 

Chapter 3 considers in a general context some methods for the cluster analysis of 
multivariate data consisting of n independent observations taken on a p-dimensional 
feature vector associated with the random phenomenon of interest. The focus is on 
model-based methods of clustering and it covers the use of mixtures of factor analyzers 
for high-dimensional data such as microarray data. In relation to the problem of how 
many clusters there are in the data, consideration is given to the problem of assessing 
the number of components in a mixture model by resampling. 

Chapter 4 considers the development of the model-based methodology covered 
in Chapter 3 for its application to problems in the clustering of tissue samples. The 
emphasis is on the EMMIX-GENE procedure which has been developed specifically 
for the clustering of tissue samples. Its application to real microarray data sets is 
illustrated on two well-known sets in the literature. Also, it is demonstrated on 
several real data sets how this model-based approach to clustering can be used to 
consider the question of how many clusters of tissues there are in the data. 

Chapter 5 focuses on the selection of differentially expressed genes in known 
classes of tissue samples. As this problem concerns the selection of significant genes 
from a large pool of candidate genes, it needs to be carried out within the framework 
of multiple hypothesis testing. The recent and fruitful literature on the latter topic 
in the context of microarrays is covered in depth. Distributional problems, including 
use of the t-distribution and its variants to provide robustness are introduced with a 
discussion of numerous methods, frequentist and Bayesian, to handle the multiplicity 
issue. The latter part of this chapter considers the clustering of genes that have been 
identified as being differentially expressed with a view to finding: (1) groups of genes 
that are significantly correlated with each other; (2) groups of genes that share similar 
expressions across the tissues. 

Chapter 6 considers methods in discriminant analysis or supervised classification 
in a general context with a view to their application to microarray data. Discriminant 
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rules covered include the traditional normal-based linear and quadratic discriminant 
classifiers, more flexible parametric rules based on normal mixtures or mixtures of 
factor analyzers, support vector machines and their variants, nearest-neighbor and 
nearest centroid rules, classification trees, and neural networks. The problem of 
error-rate estimation of a discriminant rule is considered too, along with ways for the 
provision of standard errors for the estimates of the error rates. 

Chapter 7 considers applications of some of the discriminant rules introduced in 
the previous chapter to the supervised classification of tissue samples. In applications 
concerned with the diagnosis of cancer, one class may correspond to cancer and the 
other to benign tumors. In applications concerned with patient survival following 
treatment for cancer, one class may correspond to the good prognosis group and the 
other to the poor prognosis group. Also, there is interest in the identification of 
“marker” genes that characterize the different tissue classes. Attention is focused on 
applications of the support vector machine and nearest-shrunken centroids, which is 
a recent version of nearest centroids to handle the very large number of genes. These 
two approaches are demonstrated on some cancer data sets. Particular attention is 
paid to the need to correct for the selection bias in estimating the prediction capacity 
of a discriminant rule formed from a subset of genes selected from a much larger set. 

Chapter 8 is concerned with linking results of a model-based clustering of tumor 
tissues on cancer biology and clinical outcome. Cancer patients with the same stage of 
disease can have markedly different treatment responses and clinical outcome. Thus 
there is much interest in whether microarray expression data can be used to provide 
prognostic information beyond that provided by stage and other traditional clinical 
criteria. We report some recent results that show that the clustering provides signif- 
icant prognostic information on the outcome of the disease beyond that available in 
current systems based on histopathology criteria and extent of disease at presentation. 
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1 
Microarrays in Gene 

Expression Studies 

1.1 INTRODUCTION 

Recently, the scientific world has witnessed an explosion in the development of com- 
prehensive, high-throughput methods for molecular biology experimentation. Po- 
tentially, these cutting-edge techniques will allow researchers to characterize genetic 
diseases such as cancer at the molecular level, and will lead to new treatments di- 
rected at specific cellular aberrations. The focus in this book is on the output from 
array technologies, which have made it straightforward to monitor simultaneously 
the expression pattern of thousands of genes. We are concerned with how to analyze 
such massive data sets. 

In this chapter, we provide background information on the substrates and tech- 
nology used in microarray gene expression studies. It is intended for biostatisticians 
who are not familiar with the biological experiments that produce their microarray 
data. We discuss DNA, cDNA, oligonucleotides, and the development of microarray 
technology as well as the steps involved in the manufacture of cDNA microarrays 
and in generating experimental microarray data. Commercial arrays, primarily the 
Genechipa,  are also introduced briefly in this chapter. In Chapter 2 we discuss 
cleaning and normalization of gene expression microarray data and their effects on 
methods for detecting differential expression. Subsequent chapters of the book are 
devoted to statistical analyses of the data taken to be cleaned and normalized. 

1 



2 MICROARRAYS IN GENE EXPRESSION STUDIES 

1.2 BACKGROUND BIOLOGY 

1.2.1 Genome, Genotype, and Gene Expression 

The human genome i s  a representation of our entire gene complement. The human 
genome map, completed in April 2003, represents the identification and prediction of 
the base-pair sequences along each of the 23 pairs of chromosomes present in the hu- 
man cell nucleus. Even as researchers celebrated the completion of the map ahead of 
its scheduled date, the human genome was not (and is not) a known entity. In addition 
to chromosomal areas that still prove difficult to map, a multitude of unknown vari- 
ations in the genome complicate the identification of individual gene complements. 
In fact, scientists use a different term when speaking about one person’s complete 
gene complement: genotype. Each person’s genotype may be unique because there 
are untold numbers of genetic sequence variations in the form of mutations and poly- 
morphi sms. 

A related research endeavor, the International HapMap project, started in October 
2002, will identify and describe the patterns of variations in DNA sequences that are 
common among humans. This research involves identifying the sites in the human 
genome where persons differ by a single base (known as a single nucleotide polymor- 
phism, or SNP), and identifying sets of associated SNPs, known as haplotypes. The 
ultimate goal of this project is to produce a database of the common haplotypes in 
the human genome and the SNPs that can be used as tags for each of the haplotypes. 
(See h t t p  : / /hapmap. org for additional information.) 

The initial mapping of the human genome has provided a common foundation to 
which researchers in the field of genetics and in the many overlapping fields of molec- 
ular biology, biochemistry and biophysics, biostatistics, pharmacogenetics, bioinfor- 
matics, computer science, and many others will contribute from this point forward. 

The development of computational models and methods for the investigation of 
gene expression patterns has already led to important biostatistical research projects, 
and its importance will continue to grow because of the increasing specialization of 
biomedicine. The greatest biomedical gains are being realized through knowledge of 
a specific subtype of a disease or disorder, the specific biochemical pathways affected 
by the disease and by the therapy prescribed, and the myriad characteristics of the 
individual patient’s genotype and phenotype’ that result in his or her very unique 
biological response to the disease or disorder and to the therapy that is prescribed. 

What is to be gained from the measurement of gene expression patterns? Exper- 
iments are designed to observe the changes in a gene in response to external stimuli 
and/or to the activation or expression of other genes, allowing the observation and 
measurement of the relative expression of a gene. Cell samples are exposed ex- 
perimentally to human hormones, toxins, pharmacologic agents, and so on, and the 
resulting increase or decrease in the transcription (expression) of a particular DNA 

’ A  phenotype comprises all the physical, biochemical, and physiological Characteristics of a person as 
determined through genetic and environmental influences. A phenotype is also the manifestation or 
expression of a gene or gene pair in human characteristics. 
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segment or gene can be measured. This information will be used to elucidate the 
potential pathways of genes as well as the interrelations among various genes. It will 
be applied to the development of pharmacologic agents and genetic therapies with 
a level of target specificity that is well beyond that of our current ability to analyze 
disorders, implement preventive measures, or prescribe medical treatments appropri- 
ately. Scientists are learning that complex disorders result from the interactions of 
many genes and are identifying the components of the interactions. 

1.2.2 Of Wild-Types and Other Alleles 

Researchers in the human genome project have determined that chromosome 20 is 
made up of approximately 60 million bases and contains 727 genes (Hattori and 
Taylor, 2001). It is believed that a human being inherits 30,000 to 40,000 genes 
from each parent. What is a gene? A gene is a specific segment of a DNA molecule 
that contains all the coding information necessary to instruct a cell to synthesize a 
specific product, such as an RNA molecule or a protein. Contained within the gene 
are segments that we acknowledge as active in the coding process (exons), as well as 
segments that are noncoding (introns). Each gene also represents a basic unit of a 
person’s biological inheritance from his or her two parents. Genes can be “mapped” 
because each occupies a specific location (or locus) on a chromosome, and each 
chromosome can be specifically identified as well. 

Genes are identified according to their apparent general or specific function. It 
is believed that housekeeping genes (for example, GAPDH, B-actin, tubulin) are 
expressed or functional in all cells because they encode proteins that are needed for 
basic cellular activity. Additional examples of gene types that have been identified 
include the immunoglobulin genes, which code to direct the synthesis of specific 
types of immunoglobulins (antibodies); and a tumor suppressor gene (antioncogene), 
which functions to limit the formation and growth of malignant cells. By definition, 
human genes function to promote and regulate biological activity that is considered 
necessary and productive for the functioning of the organism. It is not correct to state 
that a gene codes for a disease or predisposes a person to a specific disorder. Rather, 
it is a deleterious mutation in a gene that may predispose a person to a specific disease 
or disorder. 

A variation or any alternative form of a gene that is found to occupy the same locus 
on a particular chromosome is known as an allele. A wild-type allele is the form of a 
particular gene that is thought to have developed through the evolutionary processes 
that exist in nature (called “wild’ because it is a product of nature itself). A gene that 
is found to have a mutation will be labeled as a specific allele of that gene, which is 
different from the wild-type allele and from other alleles that identify other types of 
mutations occurring at that same chromosomal locus. 
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1.2.3 Aspects of Underlying Biology and Physiochemistry 

Deoxyribonucleic acid (DNA) is contained within chromosomes in the nucleus of 
each cell. The DNA rnolecule consists of two anti-parallel strands of sugar-phosphate 
linkages that are bonded together in a right-handed double helix by the noncovalent 
hydrogen bonding between pairs of attached amino bases, which lie in a flat plane 
roughly perpendicular to the long axis of the molecule. The anti-parallel arrangement 
of the nucleotide chains requires the transcription of a new RNA or DNA chain to 
run in the opposite direction of‘ the template. Hydrophobic interactions between the 
stacked bases in the interior of the DNA molecule also stabilize the double helix by 
packing it tightly to exclude water and other nonpolar molecules. Adenine, thymine, 
guanine. and cytosine are the amine bases, the sequential order of which contributes 
to the functioning of a particular segment of the DNA strand (a gene). The bases 
exhibit a characteristic and specific bonding known as buse puiring. Base pairing 
(also known as Watson-Crick base puiring) is a chemical bonding process that allows 
molecular hybridization to occur. Between two strands of DNA, the base known as 
adenine (A) specifically bonds with thymine (‘T) through two hydrogen bonds, and 
guanine (G) specifically bonds to cytosine (C) through two hydrogen bonds, in a 
manner that creates the double helix. Between a strand of DNA and a strand of 
ribonucleic acid or RNA (during transcription), adenine from the DNA strand will 
bond specifically to the base uracil (U) from the RNA strand, and guanine will again 
bond specifically to cytosine. The amine base that will form a bonding pair with 
another amine base (A with T or A with U, and G with C) is considered to be its 
complementary base, and a single strand of DNA or RNA that contains the same 
sequential order of complementary bases for bonding as a given strand is considered 
to be its complementary strand. Single DNA or RNA strands will form stable bonds 
only with a complementary strand. This specificity of bonding allows the “message” 
of the sequence of base pairing in that segment of DNA to be communicated through 
the process of transcription. 

Transcription is the communication of a genetic code from DNA to RNA through 
the synthesis of a strand of RNA that has sequences of bases complementary to that 
of the DNA strand. Genetic transcription is carried out to direct the activity of the 
cell. The sequence of the bases in a DNA segment comprises the code or genetic 
instructions that are passed on from the DNA molecule to the RNA molecule because 
of the specific pairing that occurs between the bases in DNA and RNA. Nucleic acids 
that guide the production of proteins are transcribed in the nucleus of the cell as 
messenger RNA (mRNA). Microarray technology utilizes these properties of specific 
bonding or hybridization of a single strand of DNA to a complementary strand of 
DNA or RNA. The hydrogen bonding between the bases is relatively weak and can be 
broken by heating the DNA or RNA sample to its melting temperature (approximately 
90 “C) through a process referred to as denaturing. The single denatured strands of 
the polynucleotide can then be attached to a solid substrate or used to probe strands 

2The process of synthesizing polypeptide chains from mRNA is known as translation, wherein the sequence 
of bases in the mRNA strand determines the amino acid sequence in the protein that is produced. 
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of unknown coding order in experiments. Once the denatured DNA is slowly cooled 
to approximately 60”C, reassociation occurs. Reassociation is the process whereby 
single strands of the polynucleotide associate with Complementary strands through 
random collisions, resulting in the formation of specific amine base pairs through 
hydrogen bonding. Reassociation is facilitated if the DNA sample is fragmented into 
short lengths of nucleotides, thus increasing the number of random collisions and 
increasing the probability that complementary chains will undergo base pairing. 

1.3 POLYMERASE CHAIN REACTION 

PoZymeruse chain reaction (PCR) is a technique that “amplifies” or replicates DNA 
fragments. It is commonly used to create billions of copies of specific fragments 
of DNA from a single DNA molecule. This technique has numerous applications in 
medical research, in forensic science, and in many related fields and is used to produce 
DNA for the manufacture of microarrays. The PCR technique was developed in 
1983 through the work of Kary B. Mullis, a biochemist, and his colleagues at Cetus 
Corporation in Emeryville, California (Mullis, 1990). [F. Hoffman-LaRoche Ltd. 
and Roche Molecular Systems, Inc., purchased the patent for the PCR technique 
from Cetus Corporation; however, its recognition as an acceptable patent, since it is 
based on a naturally occurring enzyme, is currently under dispute in United States 
appeals courts. European courts upheld the patent in a ruling issued in 2003. See 
Dalton (2001) and Knight (2003).] 

The PCR technique is based on the catalytic action of a DNA polymerase enzyme 
that is stable at high temperatures, such as those used to denature DNA and RNA 
molecules. The initial technique utilized a DNA polymerase enzyme isolated from 
the genetically engineered bacterium Therrnus aquaticus (Tag), which was found 
in thermal springs of Yellowstone National Park in Wyoming. Use of a polymerase 
enzyme from bacteria with characteristics similar to the Tuq bacteria enables the DNA 
replications to be conducted at high temperatures for fast reaction rates and can be 
rigorously controlled for high fidelity. In human cell division, a primer (a short RNA 
segment that functions to start the copying of the DNA strands) starts the creation 
of a template of each single strand of DNA in  each chromosome as the base pairing 
bonds separate. The polymerase then takes over, creating the DNA templates that 
reproduce the genetic material in the creation of a new cell. For the PCR technique, a 
Tuq polymerase from the bacterium is provided, along with the primers and a supply 
of the four nucleotide bases (adenine, guanine, cytosine, and thymine). The DNA 
to be duplicated is then added to a vial containing these components. The vial is 
heated to 90°C for 30 seconds to denature the DNA, separating the strands. The vial 
is then slowly cooled to 60°C to allow the primers to bind to the DNA strands, and 
it is again heated to promote the action of the Taq polymerase. The entire process, 
duplicating each piece of DNA in the vial, takes less than 2 minutes. The cycle is 
then repeated for the same vial approximately 30 times, with each new DNA segment 
acting as a new template, exponentially reproducing the number of DNA segments 
in the vial (Mullis, 1990). Recombinant TLzq polymerase, obtained by the insertion 
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of the gene for the Taq polymerase into another type of bacteria (and currently held 
under a second patent by F. Hoffman-LaRoche Ltd.), is now more commonly used 
for DNA amplification (Dalton, 2001). 

Following the PCR process, the DNA samples are purified to reduce the presence 
of unwanted components as well as salts and primers used in the PCR process. Pu- 
rification is done by precipitation, gel-filtration chromatography, or both (Duggan et 
al., 1999). PCR products representing specific genes are then applied to the array to 
manufacture DNA microarrays. 

1.4 CDNA 

Messenger RNA (mRNA) is the form of ribonucleic acid that directs the production 
of cellular proteins, so it is important in experiments of gene expression. Researchers 
want to observe what cellular proteins are produced and the function of those proteins 
in particular types of cells (such as tumor cells) or in response to specific external 
stimuli, so they are interested in testing the expression patterns of the mRNA. Al- 
though protein synthesis and activation are not regulated solely at mRNA levels in 
a cell, mRNA measurement is used to estimate cellular changes in response to ex- 
ternal signals or environmental changes. The mRNA in a biological sample is first 
chemically bound to a DNA molecule in order to remove it from the other cellular 
components. The molecule of mRNA is relatively fragile, however, and can easily be 
broken down by the action of enzymes that are prevalent in biological solutions, so 
researchers commonly manipulate a form of DNA that possesses the complementary 
bases of the mRNA while existing in a more Stdbk state. This form of DNA, known 
as complementa~ DNA (cDNA), is created directly from the sample mRNA through a 
procedure known as reverse transcription (transcribing complementary genetic base 
sequences from RNA to DNA). cDNA is also called synthetic DNA, since it is formed 
through reverse transcription from RNA rather than through self-replication during 
cell division. cDNA is generally prepared in strand lengths of 500 to 5,000 bases of 
known sequence. 

1.4.1 Expressed Sequence Tag 

Human genes contain base-pairing sequences that are replicated, as well as sequences 
that are not replicated, during mRNA translation to form specific polypeptide chains 
in protein synthesis. The sequences that are translated in protein synthesis are coding 
sequences, known as e,cons, while the noncoding sequences are known as introns. 
Enzymes activated during mRNA transcription recognize the noncoding junctions in 
the nucleotide sequence and splice together the exons for protein production after 
removing the introns. Expressed sequence tag (EST) is the name given to a short 
sequential segment from a gene. It is generated to represent the coding portion of 
a gene; thus. an EST is frequently used as a gene substitute for PCR amplification, 
microarray production, and experiments. Substituting shorter nucleotide sequences 
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for genomic DNA was proposed in the 1980s and was first undertaken in experiments 
on cDNA clones derived from human brain tissue by a research group at the National 
Institute of Neurological Disorders and Stroke, National Institutes of Health in the 
United States (Adams and Bischof, 1994). ESTs are generated through transcription 
cloning from both ends of a cDNA sequence, through what is called incomplete 
unedited single-pass sequencing reads of cDNA, resulting in frequent errors (Marra 
et al., 1998). EST data can be used in general evaluations of gene expression but are 
not considered suitable for gene expression studies that require greater detail. ESTs 
have been shown to be valuable in facilitating gene identification and in genome 
mapping, and EST data comprise the bulk of most public DNA sequence databases 
(Gerhold and Caskey, 1996; Marra et al. 1998; Quackenbush, 2001; Wolfsberg and 
Landsman, 2001). The criticism of ESTs in gene libraries has been due primarily 
to an overabundant representation in the data of genes that are frequently expressed, 
resulting in redundancies, and an absence of representation of genes that are rarely 
expressed. Researchers generally try to correct for the presence of redundant EST 
data in a gene library. 

1.5 MICROARRAY TECHNOLOGY AND APPLICATION 

High-density DNA microarray technology allows researchers to monitor the interac- 
tions among thousands of gene transcripts in an organism on a single experimental 
medium, which is often a glass microscope slide or nylon membrane. Prior to the 
computerization and miniaturization of this technology, researchers were limited to 
examinations of much smaller numbers of genetic units per experiment and were able 
to assess interactions among genes under changing conditions on a much smaller 
scale. Microarray technology is particularly useful in the evaluation of gene expres- 
sion patterns in complex disorders because of its ability to observe the expression 
of the same genes in different samples at the same time and in response to the same 
stimuli. 

The use of microarrays in biomedical research is equivalent to some of the techno- 
logical advancements found in the computer science industry, such as that of parallel 
distribution. Distributing the “work” of an experiment in a parallel fashion facilitates 
solving computationally complex problems and becomes more than the equivalent 
of running thousands of experimental steps at the same time. Microarrays are gen- 
erally designed to provide parallel distribution of the work of an experiment. Each 
microarray can represent thousands of separate biochemical assays performed in a 
much shorter time period. 

Microarrays can be used to evaluate the dynamic expression of genes in response 
to normal cellular activity (for example, changes in gene transcription, cell division) 
or in response to external stimuli (for example, a toxic substance, viral infection). 
The ability to simulate a large variety of cellular conditions and then translate and 
process the resulting large quantities of data, provides a systematic way to evaluate 
cellular function and genetic variations and may be particularly important in testing 
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for genetic susceptibility to diseases and disorders as well as genetic susceptibility 
(or the ability to respond effectively) to specific therapies or interventions. 

The biostatistician’s concern lies in the statistical methods and computations that 
are required to appropriately normalize, analyze, and interpret the vast amounts of data 
obtained from gene expression studies using microarrays. It is important, however, 
for the biostatistician to develop a basic understanding of the procedures involved 
in production of the arrays and in the experiments that generate gene expression 
data. An understanding of how the data will be applied in a biomedical context is 
also an important factor. A biostatistician’s initial task is to consider the appropriate 
statistical normalization procedures that may need to be performed on data that 
are generated from microarray experiments. Understanding the components of the 
microarray experiments and the levels of sample processing are the crucial preliminary 
requirement that will guide the biostatistician (Nguyen et al., 2002; Kerr, 2003; Simon 
et al., 2002; Dobbin et al., 2003). Chapter 2 focuses on data normalization techniques 
and relevant controversies. The present chapter will provide the biostatistician with 
some basic principles underlying the microarray technology, beginning with a review 
of some terms and concepts common to studies that use DNA microarrays. 

1.5.1 History of Microarray Development 

Microarray technology developed through the application of advanced technologies 
from the fields of biology and physiochemistry to the analysis of ligand assays, par- 
ticularly those involving immunoassays. Assays are determinations of the amount 
of a particular substance within a mixture of different substances. For example, as- 
says have been in use for decades to identify blood proteins; to test for chemical 
exposure; to perform urinalyses; to screen for drugs; to screen for certain congenital 
mutations (such as (2-fetoprotein); to test for blood clotting disorders; to measure 
antibody titers; and to test for enzymes specific to injury to the heart muscle or liver 
tissue. Immunoassays help determine the amount of antibodies present in a biological 
sample that are involved in the very specific antibody-antigen binding that occurs in 
immunologic response processes. Researchers in this field were among the first to 
introduce microarray technology. Labeling techniques implemented in immunoas- 
says included fluorescent labeling of either the antibody or the antigen to detect its 
presence. as well as radioactive labeling and enzyme-linked immunosorbent assay 
(ELIS A). 

Immunoassay technology, as developed in the 1950s and 1960s, involved the 
attachment of antibodies to solid supports and relied on the specificity of target 
molecules binding to the antibody (Polsky-Cynkin et al. 1985; Ekins, 1998). These 
same techniques would subsequently be adapted for DNA analysis. Early assays 
utilized macroarray technology, whereby the samples were applied or “spotted” man- 
ually onto a test surface, creating sample spot sizes of 300 pm or more. Once arrays 
were designed to support “sample spots” of less than 200 pm in diameter; however, 

‘Normalization is the process of standardizing the data so that reasonable data comparisons can be made. 


