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PREFACE

Distributions and their properties and interrelationships assume a very im-
portant role in most upper-level undergraduate as well as graduate courses
in the statistics program. For this reason, many introductory statistics text-
books discuss in a chapter or two a few basic statistical distributions, such
as binomial, Poisson, exponential, and normal. Yet a good knowledge of
some other distributions, such as geometric, negative binomial, Pareto, beta,
gamma, chi-square, logistic, Laplace, extreme value, multinomial, multivari-
ate normal, and Dirichlet will be immensely useful to those students who go
on to upper-level undergradunate or graduate courses in statistics. Students in
applied programs such as psychology, sociology, biology, geography, geology,
economics, business, and engineering will also benefit significantly from an ex-
posure to different distributions and their properties as statistical modelling
of observed data is an integral part of these disciplines.

It is for this reason we have prepared this textbook, which is tailor-made
for a one-term course (of about 35 lectures) on statistical distributions. All
the preliminary coucepts and definitions are presented in Chapter 1. The
rest of the material is divided into three parts, with Part I covering discrete
distributions, Part II covering continuous distributions, and Part III covering
multivariate distributions. In each chapter we have included a few pertinent
exercises (at an appropriate level for students taking the course) which may be
handed out as homework at the end of each chapter. A biographical sketch of
some of the leading contributors to the arca of statistical distribution theory
is presented in the Appendix to present students with a historical sense of
developments in this important and fundamental area in the field of statistics.

From our experience, we would suggest the following lecture allocation for
teaching a course on statistical distributions based on this book:

5 lectures on preliminaries (Chapter 1)
9 lectures on discrete distributions (Part I)

17 lectures on continuous distributions  (Part II)
4 lectures on multivariate distributions (Part I1I)

We welcome comments and criticisms from all those who teach a course
based on this book. Any suggestions for improvement or “necessary” addition
(omuission of which in this version should be regarded as a consequence of our

XV



xvi PREFACE

ignorance, not of personal nonscientific antipathy) sent to us will be much
appreciated and will be acted upon when tle opportunity arises.

It is important to mention here that many authoritative and encyclopedic
volumes on statistical distribution theory exist in the literature. For example:

e Johnson, Kotz, and Kemp (1992), describing discrete univariate distri-
butions

e Stuart and Ord (1993), discussing general distribution theory

e Johnson, Kotz, and Balakrishnan (1994, 1995), describing continuous
univariate distributions

e Johnson, Kotz, and Balakrishnan (1997), describing discrete multivari-
ate distributions

e Winumer and Altmann (1999), providing a thesaurus on discrete uni-
variate distributions

e Evans, Peacock, and Hastings (2000), describing discrete and continuous
distributions

e Kotz, Balakrishnan, and Johuson (2000), discussing continuous multi-
variate distributions

are some of the prominent ones. In addition, there are separate books dedi-
cated to some specific distributions, such as Poisson, generalized Poisson, chi-
square, Pareto, exponential, lognormal, logistic, normal, and Laplace (which
have all been referred to in this book at appropriate places). These books
may be consulted for any additional information.

We take this opportunity to express our sincere thanks to Mr. Steve
Quigley (of John Wiley & Sons, New York) for his support and encouragement
during the preparation of this book. Our special thanks go to Mrs. Debbie
Iscoe (Mississauga, Ontario, Canada) for assisting us with the camera-ready
production of the manuscript, and to Mr. Weiquan Liu for preparing all the
figures. We also acknowledge with gratitude the financial support provided
by the Natural Sciences and Engineering Research Council of Canada and the
Russian Foundation of Basic Research (Grants 01-01-00031 and 00-15-96019)
during the course of this project.

N. BALAKRISHNAN
Hamilton, Canada

V. B. NEVZOROV
St. Petersburg, Russia

April 2003



CHAPTER 1

PRELIMINARIES

In this chapter we present some basic notations, notions, and definitions which
a reader of this book must absolutely know in order to follow subsequent
chapters.

1.1 Random Variables and Distributions

Let (2,7, P) be a probability space, where = {w} is a set of elementary
events, T is a o-algebra of events, and P is a probability measure defined on
(2, 7). Further, let B denote an element of the Borel o-algebra of subsets of
the real line R.

Definition 1.1 A finite single-valued funetion X = X (w) which maps € into
R is called a random variable if for any Borel set B in R, the inverse image
of B, i.e.,

X Y(B)={w: X(w) € B}

belongs to the o-algebra T.
It means that for all Borel sets B, one can define probabilities
P{X ¢ B} = P{X (B)}.

In particular, if for any = (—oc < & < o0) we take B = (—o0,z], then the
function

F(z) = P{X <z} (1.1)
is defined for the random variable X.

Definition 1.2 The function F(x) is called the distribution function or cu-
mulative distribution function (cdf) of the random variable X.

Remark 1.1 Quite often, the cumulative distribution function of a random
variable X is defined as

G(z) = P{X < z}.

1



2 PRELIMINARIES

Most of the properties of both these versions of cdf (i.e., F' and G) coincide.
Ouly one important difference exists between functions F(z) and G(z): F is
right continuous, while ¢ is left continuous. In our treatment we usc the cdf
as given in Definition 1.2.

There are three types of distributions: absolutely continuous, discrete and
singular, and any cdf F(z) can be represented as a mixture

F(z) = pi Fi(z) + paFo(x) + psFs(x) (1.2)

of absolutely continuous Fy, discrete Fp, and singular F3 cdf’s, with non-
negative weights py, po, and pz such that p; + ps + ps = 1. In this book we
restrict ourselves to distributions which are either purely absolutely continu-
ous or purely discrete.

Definition 1.3 A random variable X is said to have a discrete distribution
if there cxists a countable set B = {x,23,...} such that

P{X e B} =1.
Remark 1.2 To determine a random variable having a discrete distribution,
one must fix two sequences: a sequence of values x, 2, ... and a sequence of
probabilities pp = P{X = zx}, k = 1,2,..., such that

Zpk =1
k

In this case, the cdf of X is given by

Fa)-P{x<zt= ¥ p (1.3)

k: ap<x

Definition 1.4 A random variable X with a c¢df F is said to have an ab-
solutely continuous distribution if there exists a nonnegative function p(z)
such that

F(z) = / p(t) dt (1.4)
for any real .
Remark 1.3 The function p(z) then satisfies the condition

/ p(t) dt =1, (1.5)

and it is called the probability density function (pdf) of X. Note that any
nonnegative function p(x) satisfying (1.5) can be the pdf of some random
variable X.

Remark 1.4 If a random variable X has an absolutely continuous distribu-
tion, then its cdf F(x) is continuous.
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Definition 1.5 We say that random variables X and Y have the same dis-
tribution, and write

xiy (1.6)
if the cdf’s of X and Y (i.e., Fx and Fy) coincide; that is,
Fx(z)=P{X <z} =P{Y <z} =F(z)Vz

Exercise 1.1 Construct an example of a probability space (2,7, P) and a
finite single-valued function X = X (w),w € Q, which maps Q into R, that is
not a random variable.

Exercise 1.2 Let p(z) and ¢(x) be probability density fufictions of two ran-
dom variables. Consider now the following functions:

(a) 2p(x) — q(x); (b) p(z) + 2q(x); (c) Ip(z) — q(=)]; (d) %(p(w) +q(z)).

Which of these functions are probability density functions of some random
variable for any choice of p(z) and ¢(z)? Which of them can br valid probabil-
ity density functions under suitably chosen p(z) and g¢(z)? Is there a function
that can never be a probability density function of a random variable?

Exercise 1.3 Suppose that p(x) and ¢(x) are probability density functions
of X and Y, respectively, satisfying

plx) =2—¢q(z) for O0<z<l.
Then, find P{X < -1} + P{Y < 2}.

The quantile function of a random variable X with cdf F(z) is defined by
Qu) =inf{z: F(z) > u}, 0<u<l.

In the case when X has an absolutely continuous distribution, then the
quantile function Q(u) may simply be written as

Qu) = F Yu), 0<u<l.
The corresponding quantile density function is given by

oy = T —
du (Q(u))

where p(z) is the pdf corresponding to the cdf F(z).
It should be noted that just as forms of F(x) may be used to propose
families of distributions, general forms of the quantile function (J(u) may also
be used to propose families of statistical distributions. Interested readers

may refer to the recent book by Gilchrist (2000) for a detailed discussion on
statistical modelling with quantile functions.

O0<u<l,
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1.2 Type of Distribution

Definition 1.6 Random variables X and Y are said to belong to the same
type of distribution if there exist constants a and h > 0 such that

Y £a+hX. (1.7)

Note then that the cdf’s Fx and Fy of the random variables X and Y
satisfy the relation

Fy(z) = Fx <x;“) v 2. (1.8)

One can, therefore, choose a certain cdf F as the standard distribution funec-
tion of a certain distribution family. Then this family would consist of all
cdf’s of the form

F(z.a,h)=F (

r—a

), —oc < & <00, h>0, (1.9)

and
F(z) = F(z,0,1).
Thus, we have a two-parameter family of cdf’s F(z,a,h), where a is called
the location parameter and h is the scale parameter.
For absolutely continuous distributions, one can introduce the correspond-
ing two-parameter families of probability density functions:

plz, a,h) :%p(m;‘I), (1.10)

where p(z) = p(z,0,1) corresponds to the random variable X with cdf F, and
p(x,a, h) corresponds to the random variable Y = a + hX with cdf F(z,a,h).

1.3 Moment Characteristics

There are some classical numerical characteristics of random variables and
their distributions. The most popular ones are expected values and variances.
More general characteristics are the moments. Among them, we emphasize
moments about zero (about origin) and central moments.

Definition 1.7 For a discrete random variable X taking on values zp,x9,
... with probabilities

])k:P{X:.’L‘k}, ]f:LQ,...,
we define the nth moment of X about zero as

Qy = EX" = erpk (111)
k

We say that «,, exists if

Z |z |"pr < 00.

k
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Note that the cxpected value EX is nothing but a;. EX is also called the
mean of X or the mathematical expectation of X.

Definition 1.8 The nth central moment of X is defined as

B = B(X — EX)" =3 (= EX)"ps, (1.12)
k

given that
Z o — EX|"pr < 0.
k

If a random variable X has an absolutely continuous distribution with a
pdf p(z), then the moments about zero and the central moments have the
following expressions:

on = EX" = / z"p(z) dx (1.13)
and
Bn=FE(X - EX)" = / (x — EX)"p(z) dz. (1.14)

We say that moments (1.13) exist if
o0
/ lz|*p(x) dr < ooc. (1.15)
— 00
The variance of X is simply the second central moment:

Var X = 3, = E(X - EX)% (1.16)

Central moments are easily expressed in terms of moments about zero as
follows:

n

/n = E — EX\" = _1\k n k n—k
B0 = BX-EXy =Y 1) (})EX 1 EX
k=0
Z(-1)’“<Z> & o (1.17)
k=0
In particular, we have
Var X = 3y = ap — 0 (1.18)

and
[33 = Qg — 3(11042 + 2(1? and [34 = (g — 4(}11(13 + 6(1%0&2 — 3()/1l (119)

Note that the first central moment 3; = 0.



6 PRELIMINARIES

The inverse problem cannot be solved, however, because all central mo-
ments save no information about FX; hence, the expected value cannot be
expressed in terms of 3, (n = 1,2,...). Nevertheless, the relation

a, = EX"=E[(X-FEX)+EX]"
_ =~ (n k _ n—#k
= ;)(k) (EX)FE(X — EX)
B ’;)(k,)a’fﬁn-k (1.20)

will enable us to express a, (n = 2,3,...) in terms of a; = EX and the
central moments s, ..., 3,. In particular, we have

ag = P + al, (1.21)

a3 = Oy + 3020 + a‘% and a4 = B4 + 48301 + 6ﬂ2a% + a%. (1.22)

Let X and Y belong to the same type of distribution [see (1.7)], meaning
that 4
Y =a+hX

for some constants a and h > 0. Then, the following equalities allow us to
express moments of Y in terms of the eorresponding moments of X:

EY" = E(a+hX)" =) (”) a*hRE XN R (1.23)
k
k=0
and
E(Y — EY)" = E[h(X — EX)]" = A"E(X — EX)". (1.24)

Note that the central moments of Y do not depend on the location parameter
a. As particular cases of (1.23) and (1.24), we have

EY = a+hEX, (1.25)
EY? = 4?4 2hEX +h2EX?,  Var Y = h? Var X, (1.26)
EY? = a®+3a°hEX + 3ah’EX* + h*EX?, (1.27)
EY* = a'+4d®hEX +6a*h2EX? + 4ah3EX? + K*EX*Y. (1.28)
Definition 1.9 For random variables taking on values 0,1, 2, . . ., the factorial
moments of positive order are defined as
e = EX(X ~1)--- (X - r+1), r=1,2,..., (1.29)
while the factorial moments of negative order are defined as
- 1
_p = E r=1,2,.... (1.30)

(X+1D)(X+2) (X +r)}’
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While dealing with discrete distributions, it is quite often convenient to
work with these factorial inoments rather than regular moments. For this
reason, it is useful to note the following relationships between the factorial
moments and the moments:

pr = ai, (1.31)
o = a9 —aq, (1.32)
s = ag— 3as + 2a1, (1.33)
e = a4 —6asg+ 1lag — 6ay, (1.34)
ay = g, (1.35)
a3 = pg+ 3p + pr, (1.36)
ay = fig +6us 4+ Tus + f1y. (1.37)

Exercise 1.4 Present two different random variables having the same expec-
tations and the same variances.

Exercise 1.5 Let X be a random variable with expectation EX and variance
Var X. What is the sign of r(X) = E(X — | X|)}(Var X — Var |X|)? When
does the quantity r(X) equal 07

Exercise 1.6 Suppose that X is a random variable such that P{X > 0} =1
and that both FX and E(1/X) exist. Then, show that EX + E(1/X) > 2.

Exercise 1.7 Suppose that P{0 < X < 1} = 1. Then, prove that EX? <
EX < EX? + 1 Also, find all distributions for which the left and right
bounds are attained.

Exercise 1.8 Construct a variable X for which EX® = —5 and EX® = 24.

1.4 Shape Characteristics

For any distribution, we are often interested in some characteristics that are
associated with the shape of the distribution. For example, we may be in-
terested in finding out whether it is unimodal, or skewed, and so on. Two
important measures in this respect are Pearson’s measures of skewness and
kurtosis.
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Definition 1.10 Pearson’s measures of skewness and kurtosis are given by

B
= 37
2
and )
_
Y2 ﬁ% .

Since these measures are functions of central moments, it is clear that they
are free of the location. Similarly, due to the fractional form of the measures,
it can readily be verified that they are free of scale as well. It can also be
seen that the measure of skewness v; may take on positive or negative values
depending on whether 35 is positive or negative, respectively. Obviously, when
the distribution is symmetric about its mean, we may note that 3 is 0, in
which case the measure of skewness v, is also 0. Hence, distributions with
~v1 > 0 are said to be positively skewed distributions, while those with v < 0
arc said to be negatively skewed distributions.

Now, without loss of generality, let us consider an arbitrary distribution
with mean 0 and variance 1. Then, by writing

[/xf‘ () dmr - [/ {x\/m} {(m2 - 1)\/;@} dmr

and applying the Cauchy Schwarz inequality, we readily obtain the inequality
Y2 > 1+ 1

Later, we will observe the coefficient of kurtosis of a normal distribution
to be 3. Based on this value, distributions with 5 > 3 are called leptokurtic
distributions, while those with vo < 3 are called platykurtic distributions.
Incidentally, distributions for which v, = 3 (which clearly includes the normal)
are called mesokurtic distributions.

Remark 1.5 Karl Pearson (1895) designed a system of continuous distrib-
utions wherein the pdf of every member satisfies a differential equation. By
studying their moment properties and, in particular, their cocflicients of skew-
ness and kurtosis, he proposed seven families of distributions which all occu-
pied different regions of the (v1,72)-plane. Several prominent distributions
{such as beta, gamma, normal, and ¢ that we will see in subsequent chapters)
belong to these families. This developinent was the first and historic attempt
to propose a unified mechanisim for developing different families of statistical
distributions.

1.5 Entropy

One more useful characteristic of distributions (called entropy) was introduced
by Shannon.
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Definition 1.11 For a discrete random variable X taking on values zy, z2,
... with probabilities p1, pa, - .. , the entropy H(X) is defined as

H(X) = “an IOan (138)

If X has an absolutely continuous distribution with pdf p(z), then the
entropy is defined as

H(X)= - ./D p(z)log p(x) d, (1.39)

where

D= {z:p(x)>0}.
In the case of discrete distributions, the transformation
Y=a+hX, —oo<a<oo, h>0

does not change the probabilities p, and, consequently, we have

On the other hand, if X has a pdf p(z), then Y = a 4+ hX has the pdf

g(fv):%p<x;a>

and

where

Dy = o) > 0) = {oip () »0} = o Tt e ).
It is then easy to verify that
1 T —a 1 r—a
Y) = - - 1 2y ds
noy = - [ (e e (550
1
= 4/p(x)log{ﬁ p(m)}dm

D

logh/Dp(x) dr ~ /Dp(x) log p(z) dx
= logh+ H(X). (1.40)
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1.6 Generating Function and
Characteristic Function

In this section we present some functions that are useful in generating the
probabilities or the moments of the distribution in a simple and unified man-
ner. In addition, they may also help in identifying the distribution of an
underlying random variable of interest.

Definition 1.12 Let X take on values 0,1,2,... with probabilities p, =
P{X = n}, n = 0,1,... . All the information about this distribution is
contained in the generating function, which is defined as

P(s) = Es® =Y pas™, (1.41)

n=0
with the right-haud side (RHS) of (1.41) converging at least for || < 1.
Some important properties of generating functions are as follows:
(a) P(1) = 1;
(b) for |s] < 1, there exist derivatives of P(s) of any order;

(¢) for 0 < s < 1, P(s) and all its derivatives P*)(s),k = 1,2,..., are
noumnegative increasing convex functions;

(d) the generating function P(s) uniquely determines probabilities p,, n =

1,2,..., and the following relations are valid:
po = P(0),
P (0
Pn = —()i 71:1,2,...;
n!

(e) if random variables X,,..., X, are independent and have generating
functions
P;,;(S):ESX'“, k=1,....n,

then the generating function of the sum Y = X 4 - - - + X, satisfies the

relation
Py (s) = [] Puls); (1.42)
k=1
(f) the factorial moments can be determined from the generating function
as
pr=EX(X —1)-- (X —k+1)= PR(1), (1.43)
where

PHI(1) = h%lllp(k)(s).
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Definition 1.13 The characteristic function f(t) of a random variable X is
defined as

f(t) = Eexp{itX} = EcostX +1i EsintX. (1.44)

If X takes on values z4 (k = 1,2,...) with probabilities px = P{X = zx},
then

ft) = > explitze) pr
k

= ) cos(tex) pi +1 ) sin(tex) pi. (1.45)
k k

For a random variable having a pdf p(z), the characteristic function takes
on an analogous form:

0 = [ epta) i

— 00

= /OO cos(tz) p(z) dz +1 /oo sin(tz) p(z) dz. (1.46)

— 0 J —00

For random variables taking on values 0, 1,2, ..., there exists the following
relationship between the characteristic function and the generating function:

f(t) = P(e"). (1.47)
Some of the useful properties of characteristic functions are as follows:
(a) f(O)=1,
ORVGIESE
(¢) f(¢) is uniformly continuous;

(d) f(t) uniquely determines the distribution of the corresponding random
variable X

(e} if X has the characteristic function f, then ¥ = a + hX has the char-
acteristic function

g(t) = etat f(ht);

(f) if randomn variables Xi,...,X,, are independent and their character-
istic functions are fi(t),..., fa(t), respectively, then the characteristic
function of the sum ¥ = X; +--- + X, is given by

()= ] 50 (1.48)
k=1
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(g) if the nth moment EX™ of the randomn variable X exists, then the
characteristic function f(¢) of X has the first n derivatives, and

F9(0)

@+

ar = EXF = k=1,2,...,n (1.49)

moreover, in this situation, the following expansion is valid for the char-
acteristic function:

= 1S AP0 e

= 14> o(it) + ra(t), (1.50)
k=1
where
ra(t) = o(t™)
as t — 0;

(h) let random variables X, X, Xo,... have cdf’s F, Fy, F5, ... and charac-
teristic functions f, f1, fo, ..., respectively. If for any fixed ¢, as n — oo,

fa(t) = f(1), (1.51)

then
F.(x) > F(x) (1.52)

for any x, where the limiting cdf is continuous. Note that (1.52) also
implies (1.51).

There exist inversion formulas for characteristic functions which will enable
us to determine the distribution that corresponds to a certain characteristic
function. For example, if

/MWMﬁ<m,

— 00

where f(t) is the characteristic function of a random variable X, then X has
the pdf p(x) given by

1 [~ .
plx) = —/ e T f(t) dt. (1.53)
27 J_ oo

Remark 1.6 Instead of working with characteristic functions, one could de-
fine the moment generating function of a random variable X as Fexp{tX}
(a real function this time) and work with it. However, there are instances
where this moment generating function may not exist, while the characteris-
tic function always exists. A classic example of this may be seen later when
we discuss Cauchy distributions. Nonetheless, when the moment generating
function does exist, it uniquely determines the distribution just as the char-
acteristic function does.
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Exercise 1.9 Consider a random variable X which takes on values 0,1,2, ...
with probabilities p, = P{X =n},n=0,1,2,.... Let P(s) be its generating
function. If it is known that P(0) = 0 and P($) = 3, find the probabilities
Pn-

Exercise 1.10 Let P(s) and Q(s) be the generating functions of the random
variables X and Y. Suppose it is known that both FX and EY exist and
that P(s) > Q(s),0 < s < 1. What can be said about E(X — Y)? Can this
expectation be positive, negative, or zero?

Exercise 1.11 If f(t) is a characteristic function, then prove that the func-
tions
1

f1(t) = T () =f®)F, and f5(t) =Re f(t),

where Re f(t) denotes the real part of f(¢), are also characteristic functions.

Exercise 1.12 If f(t) is a characteristic function that is twice differeutiable,
prove that the function g(t) = f”(t)/f"(0) is also a characteristic function.

Exercise 1.13 Consider the functions f(t) and g(t) = 2f(¢t)—1. Then, prove
that if g(¢) is a characteristic function, f(t) also ought to be a characteristic
function. The reverse may not be true. To prove this, construct an example
of a characteristic function f(t) for which g(t) is not a characteristic function.

Exercise 1.14 Find the only function among the following which is a char-
acteristic function:

F@), f22t), f3t), and fO(61).

Exercise 1.15 Find the only function among the following which is not a
characteristic function:

F), 2f(t)—1, 3f(t)—2, and 4f(t)— 3.

Exercise 1.16 1t is easy to verify that f(t) = cos ¢ is a characteristic function
of a random variable that takes on values 1 and —1 with equal probability of
%. Consider now the following functions:

053t 1
cos®3t, cos®2t cos*3t, cos t?, cos(cost), €' and 7T
— coS

Which of these are characteristic functions?

Exercise 1.17 Prove that the functions f,,(t) = cos™t — sin"t,n = 1,2,...
are characteristic functions only if n is an even integer.




