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PREFACE 
ccurate and state-of-the-art analysis of food composition is of interest and concern A to a divergent clientele including research workers in academic, government and 

industrial settings, regulatory scientists, analysts in private commercial laboratories, and 
quality control professionals in small and large companies. Some methods are empiri- 
cal, some commodity specific, and many have been widely accepted as standard 
methods for years. Others are at the cutting edge of new analytical methodology and 
are rapidly changing. A common denominator within this diverse group of methods 
is the desire for detailed descriptions of how to carry out analytical procedures. A frus- 
tration of many authors and readers of peer-reviewed journals is the brevity of most 
Materials and Methods sections. There is editorial pressure to minimize description 
of experimental details and eliminate advisory comments. When one needs to undertake 
an analytical procedure with which one is unfamiliar, it is prudent to communicate first- 
hand with one experienced -with the methodology. This may require a personal visit to 
another laboratory and/or electronic or phone communication with someone who has 
expertise in the procedure. Pin objective of the Handbook of Food Analytical Chemistgi 
is to provide exactly this kind of detailed information which personal contact would 
provide. Authors are instructed to present the kind of details and advisory comments 
they would give to a graduate student or technician who has competent laboratory 
skills and who has come to them to learn how to carry out an analytical procedure 
for which the author has expertise. 

Some basic food analyticalL methods such as determination of "brix, pH, titratable 
acidity, total proteins and total lipids are basic to food analysis and grounded in pro- 
cedures which have had wide-spread acceptance for a long time. Others such as analysis 
of cell-wall polysaccharides. analysis of aroma volatiles, and compressive measurement 
of solids and semi-solids, require use of advanced chemical and physical methods and 
sophisticated instrumentation. In organizing the Handbook of Food Analytical Chem- 
istry we chose to categorize on a disciplinary rather than a commodity basis. Included 
are chapters on water, proteins, enzymes, lipids, carbohydrates, colors, flavors texture/ 
rheology and bioactive food components. We have made an effort to select methods that 
are applicable to all commodities. However, it is impossible to address the unique and 
special criteria required for analysis of all commodities and all processed forms. There 
are several professional and trade organizations which focus on their specific commod- 
ities, e.g., cereals, wines, lipids, fisheries, and meats. Their methods manuals and pro- 
fessional journals should be consulted, particularly for specialized, commodity-specific 
analyses. 

This two-volume handbook is derived from another John Wiley & Sons publication, 
Current Protocol in Food Analytical Chemistry. That manual was published from 
January 2001 -December 2003 in loose-leaf and CD-Rom format. That design permitted 
addition of new and revised units on a quarterly basis. The two-year compilation of these 
units makes for a very complete reference on food analytical methods. 
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FOREWORD TO CURRENT PROTOCOLS IN 
FOOD ANALYTICAL CHEMISTRY 

ccurate, precise, sensitive, and rapid analytical determinations are as essential in A food science and technology as in chemistry, biochemistry, and other physical 
and biological sciences. In many cases, the same methodologies are used. How does 
one, especially a young scientist, select the best methods to use? A review of original pub- 
lications in a given field indicates that some methods are cited repeatedly by many noted 
researchers and analysts, but with some modifications adapting them to the specific 
material analyzed. Official analytical methods have been adopted by some professional 
societies, such as the Official Methods of Analysis (Association of Official Analytical 
Chemists), Official Methods and Recommendation Practices (American Oil Chemists’ 
Society), and Official Methods of Analysis (American Association of Cereal Chemists). 

The objective of Current Protocols in Food Analytical Chemistry is to provide the type 
of detailed instructions and comments that an expert would pass on to a competent tech- 
nician or graduate student who needs to learn and use an unfamiliar analytical pro- 
cedure, but one that is routine in the lab of an expert or in the field. 

What factors can be used to predetermine the quality and utility of a method? An analyst 
must consider the following questions: Do I need a proximate analytical method that will 
determine all the protein, or carbohydrate, or lipid, or nucleic acid in a biological 
material? Or do I need to determine one specific chemical compound among the thou- 
sands of compounds found in a food? Do I need to determine one or more physical prop- 
erties of a food? How do I obtain a representative sample? What size sample should I 
collect? How do I store my samples until analysis? What is the precision (reproducibility) 
and accuracy of the method or what other compounds and conditions could interfere with 
the analysis? How do I determine whether the results are correct, as well as the precision 
and accuracy of a method? How do I know that my standard curves are correct? What 
blanks, controls and internal standards must be used? How do I convert instrumental 
values (such as absorbance) to molar concentrations? How many times should I repeat 
the analysis? And how do I report my results with appropriate standard deviation and 
to the correct number of significant digits? Is a rate of change method (i.e., velocity as 
in enzymatic assays) or a static method (independent of time) needed? 

Current Protocols in Food Analytical Chemistry will provide answers to these questions. 
Analytical instrumentation has evolved very rapidly during the last 20 years as physicists, 
chemists, and engineers have invented highly sensitive spectrophotometers, polarometers, 
balances, etc. Chemical analyses can now be made using milligram, microgram, nano- 
gram, or picogram amounts of materials within a few minutes, rather than previously 
when grams or kilograms of materials were required by multistep methods requiring 
hours or days of preparation and analysis. Current Protocols in Food Analytical Chem- 
ist? provides state-of-the-art methods to take advantage of the major advances in sensi- 
tivity, precision, and accuracy of current instrumentation. 

How do chemical analyses of foods differ from analyses used in chemistry, biochemis- 
try and biology? The same methods and techniques are often used; only the purpose of 
the analysis may differ. But foods are to be used by people. Therefore, methodology to 
determine safety (presence of dangerous microbes, pesticides, and toxicants), accept- 
ability (flavor, odor, color, texture), and nutritional quality (essential vitamins, minerals, 
amino acids, and lipids) are essential analyses. Current Protocols in Food Analytical 
Chemistry is designed to meet all these requirements. 

John Whitaker 
Davis, California 
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SECTION A 
Water 

INTRODUCTION 

ater determination in foods is a deceptively simple theme. Defining the quantity 
to be measured identifies the inherent complexity. Three separate types of measure 

may be appropriate: (a) a gravimetric measure, (b) a measure related to vapor pressure, 
and (c) a measure of the mobilities of water molecules. The ubiquitous nature of water in 
our environment provides additional complexity in the challenge of preventing transfer 
of water between sample and environment. The earliest measures of amount of water were 
all gravimetric, determining the weight fraction of water in the food. These methods range 
from simple direct weighing, using a difference technique, to more complex methods 
where the amount of water is determined by spectroscopic methods or by chemical assay. 
A wide range of methods have been developed and are in daily use, since gravimetric 
water content is important for formulation and for labeling purposes. This measure, 
however, is of little value for the prediction of the stability of a food, even though water 
plays a critical role in determining the stability characteristics of foods. 

For a measure of amount of water relevant to stability concerns, vapor pressure, or its 
related thermodynamic parameters, is more relevant. Determination of vapor pressure 
uses methods developed from thermodynamic roots, though if the product is not at true 
equilibrium, the measured quantity is not a thermodynamic descriptor of the product, 
although it is still a measure of a product characteristic. Water mobilities are often inferred 
from spectroscopic measurements of relaxational phenomena. Many workers attempt to 
identify different “classes” of water characteristic of different ranges of water content and 
water partial vapor pressure. Spectroscopic measurements, too, are often interpreted in 
terms of populations of water molecules with similar characteristics. 

The objective of this section is to provide clear descriptions of the alternative methods 
for the determination of gravimetric water content (Chapter A l )  and of the range of 
methods available for the estimation of vapor pressure or its related parameters (Chapter 
A2). 

GRAVIMETRIC MEASUREMENTS OF WATER 

UNITA 1.1 describes the direct determination of gravimetric water by drying and weighing, 
surveying a range of well established techniques. U N I T A I . Z  describes the use of the Karl 
Fischer titration for the chemical determination of the amount of water contained in a 
sample. U N I T A I . ~  describes a particular use of nuclear magnetic resonance spectroscopy 
(NMR) to determine the water content and the oil content of seeds. U N I T A I . ~  provides an 
overview of some indirect methods for the estimation of water content. It considers the 
pros and cons of the measurement of physical characteristics (density and refractive index) 
that may be correlated with the water content of specific systems, and identifies the critical 
assumptions associated with the use of such indirect methods. 
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VAPOR PRESSURE MEASUREMENTS OF WATER 

The initial unit in this chapter (UNIT A2.1) discusses the constraints which must be 
considered when attempting to estimate the vapor pressure above an aqueous system. 
These constraints are operative whichever technique may be utilized. The use of a 
dew-point cell to estimate vapor pressure and water activity is described in u ~ r r ~ 2 . 2 .  This 
unit clearly identifies the precautions which are essential to a good dew-point determina- 
tion. The use of isopiestic techniques, in which a known atmospheric condition is 
produced and the sample is assumed to have equilibrated with this atmosphere, is the 
subject of u ~ r ~ 2 . 3 .  The techniques of this unit are frequently employed for the special 
purpose of determining moisture sorption isotherms. These describe the relationship 
between the gravimetric water content of a sample and the partial water vapor pressure 
sustained by the sample. Such relationships can be a useful tool for correlating/estimating 
moisture content from partial water vapor pressure measurements and vice versa. U N I T A Z . ~  

describes the direct manometric measurement of water vapor pressure. The method is 
very demanding of good technique, which is why it is seldom used. All primary vapor 
pressure data result from the use of this type of apparatus. The primary vapor pressure 
data for pure water (used as the reference data for all of the indirect methods, including 
dew point, isopiestic, etc.) were produced by direct manometric evaluation. U N ~  A2.5 

describes the use of electronic sensors for vapor pressure measurement. This method is 
considered the most simple method for measuring water activity. Advantages and limita- 
tions of different types of electronic sensors are discussed. 
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Gravimetric Determination of Water by 
Drying and Weighing 

Water (moisture) in a sample is measured gravimetrically by determining the weight loss 
in a sample after it has been placed in an appropriate oven (convection, vacuum, or 
microwave) for a given time. In addition, there are automatic moisture analyzers available 
that utilize infrared lamps as a heat source. These types of moisture analyzers are fast but 
many times are matrix dependent, which requires some trial-and-error testing to deter- 
mine the correct settings (power and time). Water and moisture are used interchangeably 
in the description of these protocols. In addition, it is assumed in the gravimetric method 
that only water is removed in the drying process, when in fact there may be volatile loss 
in some samples. 

Although the measurement of weight loss due to evaporation of water is frequently used 
to calculate moisture content, it should be pointed out that the value obtained may not be 
a true measure of water content. In some samples, only a proportion of the water present 
is lost at the drying temperature. The balance (bound water) is difficult to remove 
completely. In addition, the water lost may actually increase as the temperature is raised. 
Some samples with high fat content may exhibit volatile oil loss at drying temperatures 
of 100°C. Weight loss may also be dependent on such factors as particle size, weight of 
samples used, type of dish used, and temperature variations in the oven from shelf to shelf. 
Thus, it is important to compare results obtained using the same drying conditions. 

This unit provides three protocols for which there are established procedures for various 
matrices. The Basic Protocol describes water removal and quantitation after a sample is 
placed in a convection oven. It is probably the method of choice when one does not know 
which method to choose when dealing with an unknown matrix, or when one looks at 
samples that foam excessively in the vacuum oven method or "react," such as popcorn 
under vacuum. Alternate Protocol 1 describes water removal and quantitation after a 
sample is placed in a vacuum oven. Because it is at reduced pressure, drying times are 
slightly reduced compared to the convection method. In addition, drying temperatures 
<1OO"C are possible, which is important for samples that may decompose at higher drying 
temperatures. Alternate Protocol 2 describes water removal using a microwave source 
where such analyzers measure and calculate loss automatically. 

MEASURING MOISTURE USING A CONVECTION OVEN 
Water is measured in a sample by determining the loss in weight for the sample after it 
has been dried in a convection oven. The method requires only a small amount of 
homogeneous sample and can measure an effective range of 0.0 1 % to 99.99% water. 

Materials 
Homogeneous sample 
Convection oven capable of maintaining a temperature of 103" f 2°C 
Aluminum weighing dishes (with or without covers) 
Desiccator with desiccant 
Balance capable of measuring if). 1 mg 

1. Set the temperature of a convection oven to 105°C. 

2. Dry an aluminum weighing dish (and cover, if used) 21 hr at 105°C. Cool and store 

Covered weighing dishes are useful when analyzing samples that splatter: Weighing dishes 
without covers may otherwise be preferred, as they are disposable. 

dried dish in a desiccator. Cool 230 min before using. 

UNIT AI. I 

BASIC 
PROTOCOL 

Gravimetric 
Measurements of 
Water 
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