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Preface

The Probabilistic Method has recently been developed intensively and become one
of the most powerful and widely used tools applied in Combinatorics. One of
the major reasons for this rapid development is the important role of randomness in
Theoretical Computer Science, a field which is recently the source of many intriguing
combinatorial problems.

The interplay between Discrete Mathematics and Computer Science suggests an
algorithmic point of view in the study of the Probabilistic Method in Combinatorics
and this is the approach we tried to adopt in this book. The manuscript thus includes a
discussion of algorithmic techniques together with a study of the classical method as
well as the modern tools applied in it. The first part of the book contains a description
of the tools applied in probabilistic arguments, including the basic techniques that
use expectation and variance, as well as the more recent applications of martingales
and Correlation Inequalities. The second part includes a study of various topics in
which probabilistic techniques have been successful. This part contains chapters on
discrepancy and random graphs, as well as on several areas in Theoretical Computer
Science: Circuit Complexity, Computational Geometry, and Derandomization of
randomized algorithms. Scattered between the chapters are gems described under
the heading “The Probabilistic Lens.” These are elegant proofs that are not necessarily
related to the chapters after which they appear and can usually be read separately.

The basic Probabilistic Method can be described as follows: In order to prove
the existence of a combinatorial structure with certain properties, we construct an
appropriate probability space and show that a randomly chosen element in this space
has the desired properties with positive probability. This method was initiated by

vii



viii PREFACE

Paul Erdds, who contributed so much to its development over the last fifty years, that
it seems appropriate to call it “The Erdos Method.” His contribution can be measured
not only by his numerous deep results in the subject, but also by his many intriguing
problems and conjectures that stimulated a big portion of the research in the area.

It seems impossible to write an encyclopedic book on the Probabilistic Method;
too many recent interesting results apply probabilistic arguments, and we do not even
try to mention all of them. Our emphasis is on methodology, and we thus try to
describe the ideas, and not always to give the best possible results if these are too
technical to allow a clear presentation. Many of the results are asymptotic, and we
use the standard asymptotic notation: for two functions f and g, we write f = O{g)
if f < cg for all sufficiently large values of the variables of the two functions, where
¢ is an absolute positive constant. We write f = Q(g) if g = O(f) and f = O(y) if
f =0{g) and f = Q(g). If the limit of the ratio f/g tends to zero as the variables
of the functions tend to infinity we write f = o(g). Finally, f ~ g denotes that
f = (1+0(1))g, that is f/g tends to 1 when the variables tend to infinity. Each
chapter ends with a list of exercises. The more difficult ones are marked by (*). The
exercises, which have been added to this new edition of the book, enable readers to
check their understanding of the material, and also provide the possibility of using
the manuscript as a textbook.

Besides these exercises, the second edition contains several improved results and
covers various topics that were discussed in the first edition. The additions include
a continuous approach to discrete probabilistic problems described in Chapter 3,
various novel concentration inequalities introduced in Chapter 7, a discussion of
the relation between discrepancy and VC-dimension in Chapter 13, and several
combinatorial applications of the entropy function and its properties described in
Chapter 14. Further additions are the final two Probabilistic Lenses and the new
extensive appendix on Paul Erdds, his papers, conjectures, and personality.

It is a special pleasure to thank our wives, Nurit and Mary Ann. Their patience,
understanding and encouragment have been key ingredients in the success of this
enterprise.

NoGA ALON

JOEL H. SPENCER
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The Basic Method

What you need is that your brain is open.
—Paul Erdos

1.1 THE PROBABILISTIC METHOD

The probabilistic method is a powerful tool for tackling many problems in discrete
mathematics. Roughly speaking, the method works as follows: Trying to prove that a
structure with certain desired properties exists, one defines an appropriate probability
space of structures and then shows that the desired properties hold in this space with
positive probability. The method is best illustrated by examples. Here is a simple one.
The Ramsey number R(k, {) is the smallest integer  such that in any two-coloring
of the edges of a complete graph on n vertices K, by red and blue, either there is a
red Ky (i.e., a complete subgraph on & vertices all of whose edges are colored red) or
there is a blue K;. Ramsey (1929) showed that R(k, £) is finite for any two integers
k and ¢. Let us obtain a lower bound for the diagonal Ramsey numbers R(k, k).

Proposition L1.1 I (7) -2 (2) < 1 then R(k, k) > n. Thus R(k, k) > [24/2] for
allk > 3.

Proof. Consider a random two-coloring of the edges of K,, obtained by coloring
each edge independently either red or blue, where each color is equally likely. For
any fixed set R of k vertices, let Ag be the event that the induced subgraph of K, on
R is monochromatic (i.e., that either all its edges are red or they are all blue). Clearly,

1



2 THE BASIC METHOD

Pr(dg) = 2-(). Since there are (%) possible choices for R, the probability
that at least one of the events Ar occurs is at most (2)21'(2) < 1. Thus, with
positive probability, no event Ag occurs and there is a two-coloring of K, without a

monochromatic K, i.e., R(k, k) > n. Note that if ¥ > 3 and we take n = ]_2"/2J

k
then (7)2~() < 222 . a7~ < 1and hence R(k, k) > [2%/2] forall k > 3. W

This simple example demonstrates the essence of the probabilistic method. To
prove the existence of a good coloring we do not present one explicitly, but rather
show, in a nonconstructive way, that it exists. This example appeared in a paper of
P. Erd6s from 1947. Although Szele had applied the probabilistic method to another
combinatorial problem, mentioned in Chapter 2, already in 1943, ErdGs was certainly
the first one who understood the full power of this method and applied it successfully
over the years to numerous problems. One can, of course, claim that the probability
is not essential in the proof given above. An equally simple proof can be described
by counting; we just check that the total number of two-colorings of K, is bigger
than the number of those containing a monochromatic K.

Moreover, since the vast majority of the probability spaces considered in the
study of combinatorial problems are finite spaces, this claim applies to most of
the applications of the probabilistic method in discrete mathematics. Theoretically,
this is, indeed, the case. However, in practice, the probability is essential. Tt
would be hopeless to replace the applications of many of the tools appearing in this
book, including, e.g., the second moment method, the Lovdsz Local Lemma and the
concentration via martingales by counting arguments, even when these are applied
to finite probability spaces.

The probabilistic method has an interesting algorithmic aspect. Consider, for
example, the proof of Proposition 1.1.1 that shows that there is an edge two-coloring
of K, without a monochromatic Kz10g, . Can we actually find such a coloring?
This question, as asked, may sound ridiculous; the total number of possible colorings
is finite, so we can try them all until we find the desired one. However, such a

procedure may require 2() steps; an amount of time which is exponential in the size
[= (g)] of the problem. Algorithms whose running time is more than polynomial
in the size of the problem are usually considered impractical. The class of problems
that can be solved in polynomial time, usually denoted by P [see, e.g., Aho, Hopcroft
and Ullman (1974)], is, in a sense, the class of all solvable problems. In this sense,
the exhaustive search approach suggested above for finding a good coloring of K,
is not acceptable, and this is the reason for our remark that the proof of Proposition
1.1.1 is nonconstructive; it does not supply a constructive, efficient and deterministic
way of producing a coloring with the desired properties. However, a closer look
at the proof shows that, in fact, it can be used to produce, effectively, a coloring

which is very likely to be good. This is because for large k, if n = [2%/2] then
k k

(x) 21-(3) < 21%(#)’“ < 21—;,—1‘1 < 1. Hence, a random coloring of K, is very

likely not to contain a monochromatic K3 10g ». This means that if, for some reason,

we must present a two-coloring of the edges of Kip24 without a monochromatic

Ky we can simply produce a random two-coloring by flipping a fair coin (10224)
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times. We can then deliver the resulting coloring safely; the probability that it
contains a monochromatic Ksg is less than -22171!, probably much smaller than our
chances of making a mistake in any rigorous proof that a certain coloring is good!
Therefore, in some cases the probabilistic, nonconstructive method does supply
effective probabilistic algorithms. Moreover, these algorithms can sometimes be
converted into deterministic ones. This topic is discussed in some detail in Chapter
15.

The probabilistic method is a powerful tool in Combinatorics and in Graph Theory.
It is also extremely useful in Number Theory and in Combinatorial Geometry. More
recently it has been applied in the development of efficient algorithmic techniques and
in the study of various computational problems. In the rest of this chapter we present
several simple examples that demonstrate some of the broad spectrum of topics in
which this method is helpful. More complicated examples, involving various more
delicate probabilistic arguments, appear in the rest of the book.

1.2 GRAPH THEORY

A tournament on a set V of n players is an orientation T' = (V, E) of the edges of the
complete graph on the set of vertices V. Thus, for every two distinct elements x and
y of V either (z,y) or (y, x) is in E, but not both. The name “tournament” is natural,
since one can think of the set V' as a set of players in which each pair participates in
a single match, where (z,y) is in the tournament iff « beats y. We say that T" has the
property Sy, if for every set of k players there is one who beats them all. For example, a
directed triangle 75 = (V, E), where V = {1,2,3} and E = {(1,2),(2,3),(3,1)},
has S;. Isit true that for every finite & there is a tournament 7" (on more than & vertices)
with the property S;? As shown by Erdos (1963b), this problem, raised by Schiitte,
can be solved almost trivially by applying probabilistic arguments. Moreover, these
arguments even supply a rather sharp estimate for the minimum possible number of
vertices in such a tournament. The basic (and natural) idea is that if n is sufficiently
large as a function of %, then a random tournament on the set V' = {1,...,n} of n
players is very likely to have property S;. By a random tournament we mean here a
tournament 7" on V obtained by choosing, for each 1 < ¢ < j < n, independently,
either the edge (¢, ) or the edge {J,1), where each of these two choices is equally

likely. Observe that in this manner, all the 2(3) possible tournaments on V are equally
likely, i.e., the probability space considered is symmetric. It is worth noting that we
often use in applications symmetric probability spaces. In these cases, we shall
sometimes refer to an element of the space as a random element, without describing
explicitly the probability distribution . Thus, for example, in the proof of Proposition
1.1.1 random two-colorings of K, were considered, i.e., all possible colorings were
equally likely. Similarly, in the proof of the next simple result we study random
tournaments on V.
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Theorem 1.2.1 If (})(1 — 27%)"™% < 1 then there is a tournament on n vertices
that has the property Sy

Proof. Consiaer a random tournament on the set V' = {1,...,n}. For every fixed
subset K of size k of V, let Ax be the event that there is no vertex which beats all
the members of K. Clearly Pr(Ax) = (1 — 27%¥)" k. This is because for each
fixed vertex v € V — K, the probability that v does not beat all the members of K is
1 — 2% and all these n — k events corresponding to the various possible choices of
v are independent. It follows that

Pr( \ AK> < S Pr(4x) = (Z) (1-27k)nk <1,

KCV KCV
|K|=k |K =k
Therefore, with positive probability no event Ag occurs, i.e., there is a tournament
on n vertices that has the property S;,. B
Let f(k) denote the minimum possible number of vertices of a tournament that
has the property S. Since (}) < (%)k and (1 —27%)"=% < e=(n=k)/2" Theorem
1.2.1 implies that f(k) < k%-2%- (In2) (14 0(1)). Itis not too difficult to check that
f(1) = 3and £(2) = 7. As proved by Szekeres [cf. Moon (1968)], f(k) > ¢; -k-2*.
Can one find an explicit construction of tournaments with at most c¥ vertices
having property Si? Such a construction is known, but is not trivial; it is described
in Chapter 9.
A dominating set of an undirected graph G = (V, E) is a set U C V such that
every vertex v € V' — U has at least one neighbor in U.

Theorem 1.2.2 Let G = (V, E) be a graph on n vertices, with minimum degree

8 > 1. Then G has a dominating set of at most n%ﬁiﬂ vertices.

Proof. Let p € [0,1] be, for the moment, arbitrary. Let us pick, randomly and
independently, each vertex of V' with probability p. Let X be the (random) set of all
vertices picked and let Y = Yx be the random set of all vertices in V — X that do
not have any neighbor in X . The expected value of | X | is clearly np. For each fixed
vertex v € V, Pr(v € Y) = Pr(v and its neighbors are not in X) < (1 — p)®+1,
Since the expected value of a sum of random variables is the sum of their expectations
(even if they are not independent) and since the random variable || can be written
as a sum of n indicator random variables x, (v € V), where x, = 1ifv € Y
and x, = 0 otherwise, we conclude that the expected value of | X| + |Y| is at most
np + n(1 — p)°+L. Consequently, there is at least one choice of X C V such that
|X|+|Yx| < np+n(l —p)®*t. Theset U = X U Yx is clearly a dominating set
of G whose cardinality is at most this size.

The above argument works for any p € [0,1]. To optimize the result we use
elementary calculus. For convenience we bound 1 — p < e™? (this holds for all
nonnegative p and is a fairly close bound when p is small) to give the simpler bound

Ul < np + ne P+,
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Take the derivative of the right-hand side with respect to p and set it equal to zero.
The right-hand side is minimized at

(5 +1)
T8 +1

Formally, we set p equal to this value in the first line of the proof. We now have
U] < nlf“—l;i—‘sﬁﬁ as claimed. B

Three simple but important ideas are incorporated in the last proof. The first is
the linearity of expectation; many applications of this simple, yet powerful principle
appear in Chapter 2. The second is, maybe, more subtle, and is an example of the
“alteration" principle which is discussed in Chapter 3. The random choice did not
supply the required dominating set I/ immediately; it only supplied the set X, which
has to be altered a little (by adding to it the set Yx ) to provide the required dominating
set. The third involves the optimal choice of p. One often wants to make a random
choice but is not certain what probability p should be used. The idea is to carry out
the proof with p as a parameter giving a result which is a function of p. At the end that
pis selected which gives the optimal result. There is here yet a fourth idea that might
be called asymptotic calculus. We wanted the asymptotics of min np + n(1 — p)®*?
where p ranges over [0, 1]. The actual minimum p = 1 — (§ 4+ 1)~1/¢ is difficult
to deal with and in many similar cases precise minima are impossible to find in
closed form. Rather, we give away a little bit, bounding 1 — p < e~ P, yielding
a clean bound. A good part of the arr of the probabilistic method lies in finding
suboptimal but clean bounds. Did we give away too much in this case? The answer
depends on the emphasis for the original question. For § = 3 our rough bound gives
U] < 0.596n while the more precise calculation gives |U| < 0.496n, perhaps a
substantial difference. For § large both methods give asymptotically n]‘y’

It can be easily deduced from the results in Alon (1990b) that the bound in Theorem
1.2.2 is nearly optimal. A nonprobabilistic, algorithmic proof of this theorem can be
obtained by choosing the vertices for the dominating set one by one, when in each
step a vertex that covers the maximum number of yet uncovered vertices is picked.
Indeed, for each vertex v denote by C(v) the set consisting of v together with all
its neighbours. Suppose that during the process of picking vertices the number of
vertices u that do not lie in the union of the sets C'(v) of the vertices chosen so far
is . By the assumption, the sum of the cardinalities of the sets C'(u) over all such
uncovered vertices u is at least 7(é + 1), and hence, by averaging, there is a vertex v
that belongs to at least 7(é + 1) /n such sets C'(u). Adding this v to the set of chosen
vertices we observe that the number of uncovered vertices is now at most 7{1 — él;—l ).
It follows that in each iteration of the above procedure the number of uncovered
vertices decreases by a factor of 1 — (6 + 1)/n and hence after 327 In(6 + 1) steps
there will be at most n /(6 + 1) yet uncovered vertices which can now be added to
the set of chosen vertices to form a dominating set of size at most equal to the one in
the conclusion of Theorem 1.2.2.

Combining this with some ideas of Podderyugin and Matula, we can obtain a very
efficient algorithm to decide if a given undirected graph on n vertices is, say, 5-edge
connected. A cut in a graph G = (V, E) is a partition of the set of vertices V into
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two nonempty disjoint sets V = V3 U V5. If w1 € V] and vy € Vs we say that the
cut separates v; and vy. The size of the cut is the number of edges of G having one
end in V3 and another end in V». In fact, we sometimes identify the cut with the set
of these edges. The edge-connectivity of G is the minimum size of a cut of G. The
following lemma is due to Podderyugin and Matula (independently).

Lemma 1.2.3 Le:G = (V, E) be a graph with minimum degree § and let V = ViUV,
be a cut of size smaller than 6 in G. Then every dominating set U of G has vertices
in Vi and in Vs.

Proof. Suppose this is false and U C V;. Choose, arbitrarily, a vertex v € V5 and
let v, va, ..., V5 be d of its neighbors. For each i, 1 < i < §, define an edge ¢; of
the given cut as follows; if v; € V; then e; = {v,v;}, otherwise, v; € V5 and since
U is dominating there is at least one vertex v € U such that {u, v;} is an edge; take
such a u and put e; = {u,v;}. The & edges e1,...,e; are all distinct and all lie in
the given cut, contradicting the assumption that its size is less than 6. This completes
the proof. W

Let G = (V, E) be a graph on n vertices, and suppose we wish to decide if G is
n/2 edge-connected, i.e., if its edge connectivity is at least n/2. Matula showed, by
applying Lemma 1.2.3, that this can be done in time O(n?). By the remark following
the proof of Theorem 1.2.2, we can slightly improve it and get an O(n®/3 logn)
algorithm as follows. We first check if the minimum degree § of (7 is at least n/2. If
not, G is not n/2-edge connected, and the algorithm ends. Otherwise, by Theorem
1.2.2 there is a dominating set U = {uy,...,ux} of G, where k = O(logn), and it
can in fact be foundin O(n?)-time. We now find, foreach i, 2 < i < k, the minimum
size s; of a cut that separates u; from u;. Each of these problems can be solved by
solving a standard network flow problem in time O(n®/3), [see, e.g., Tarjan (1983).]
By Lemma 1.2.3 the edge connectivity of G is simply the minimum between & and

2r<r1j£1k 5. The total time of the algorithm is O(n®/3 logn), as claimed.
_1'_

1.3 COMBINATORICS

A hypergraphis a pair H = (V, E), where V is a finite set whose elements are called
vertices and E is a family of subsets of V, called edges. It is n-uniform if each of
its edges contains precisely n vertices. We say that H has property B, or that it is
two-colorable if there is a two-coloring of V' such that no edge is monochromatic.
Let m(n) denote the minimum possible number of edges of an n-uniform hypergraph
that does not have property B.

Proposition 1.3.1 [Erdés (1963a)] Every n-uniform hypergraph with less than 2" ~!
edges has property B. Therefore m(n) > 271,

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~ edges.
Color V randomly by two colors. For each edge ¢ € F, let A, be the event that e is
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monochromatic. Clearly Pr(4,) = 2!=". Therefore

Pr ( V Ae) <D Pr(d) <1

ecFE e€EFE

and there is a two-coloring without monochromatic edges. R

In Chapter 3, Section 3.5 we present a more delicate argument, due to Rad-
hakrishnan and Srinivasan, and based on an idea of Beck, that shows that m(n) >
Q((52)22").

The best known upper bound to m(n) is found by turning the probabilistic argu-
ment “on its head.” Basically, the sets become random and each coloring defines an
event. Fix V with v points, where we shall later optimize v. Let y be a coloring of V
with a points in one color, b = v — @ points in the other. Let S C V' be a uniformly
selected n-set. Then

a b
SGETH
- .
(2
Let us assume v is even for convenience. As (fL) is convex, this expression is
minimized when a = b. Thus

Pr(S is monochromatic under x

Pr(S is monochromatic under x) > p

where we set

for notational convenience. Now let S1,...,.S,, be uniformly and independently
chosen n-sets, m to be determined. For each coloring x let A, be the event that none
of the S; are monochromatic. By the independence of the S;

Pr(4,) < (1-p)™.

There are 2¥ colorings so

Pr(\/ 4 <2°(1-p)™

When this quantity is less than 1 there exist S1,..., Sy, so that no A, holds; ie.,
S1,-..,5m is not two-colorable and hence m(n) < m.

The asymptotics provide a fairly typical example of those encountered when
employing the probabilistic method. We first use the inequality 1 — p < e™P. This
is valid for all positive p and the terms are quite close when p is small. When

[v In 2-|
m =
p
then 2¥(1 — p)™ < 2¥e P™ < 1 som(n) < m. Now we need to find v to minimize
v/p. We may interpret p as twice the probability of picking n white balls from
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an urn with »/2 white and v/2 black balls, sampling without replacement. It is
tempting to estimate p by 2-"*1, the probability for sampling with replacement.
This approximation would yield m ~ v2"~*(In 2). As v gets smaller, however, the
approximation becomes less accurate and, as we wish to minimize m, the tradeoff
becomes essential. We use a second order approximation

( / ) -n I I 1~ ’Il —n“/2
(

. . . i i2
as long as v 3> n®/2, estimating 22! =1 — £ + O(%) = e »+t9G2) | Elementary
calculus gives v = n?/2 for the optimal value. The evenness of v may require a

change of at most 2 which turns out to be asymptotically negligible. This yields the
following result of Erdds (1964).

Theorem 1.3.2
e ln 2

m(n) < (1+ o(1)) S2Zn2gn,

Let F = { (A;, B;) } be a family of pairs of subsets of an arbitrary set. We
call F a (k, €)system1f!A| —kand|B| =/fforalll <i< h A,NB;, =10
and A; N B; # 0 for all distinct ¢, j with 1 < 4, j < h. Bollobés (1965) proved the
following result, which has many interesting extensions and applications.

Theorem 1.3.3 If F = {(A;, By)}+_ isa (k,§)-system then h < (¥7%).

Proof. Put X = U (A; U B;) and consider a random order 7 of X. For each ¢,

1<i<kletX; be the event that all the elements of A; precede all those of B; in
this order. Clearly Pr(X;) = 1/(*}%). It is also easy to check that the events X;; are
pairwise disjoint. Indeed, assume this is false and let 7 be an order in which all the
elements of A; precede those of B; and all the elements of A; precede those of B;.
Without loss of generality we may assume that the last element of A; does not appear
after the last element of A;. But in this case, all elements of A; precede all those of
Bj, contradicting the fact that A; N B; # @. Therefore, all the events X; are pairwise

h h
disjoint, as claimed. It follows that 1 > Pr( V X;) = 3. Pr(X;) = h-1/(*}9),

completing the proof. B
Theorem 1.3.3 is sharp, as shown by the family 7 = {(4,X\A4): AC X, |A| =
k}, where X = {1,2,...,k + £}.

1.4 COMBINATORIAL NUMBER THEORY

A subset A of an abelian group G is called sum-free if (A+ A)N A = @, i.e., if there
are no a;,as,az € A such that a; 4+ as = as.
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Theorem 1.4.1 [Erdés (1965a)] Every set B = {b1,...,bn} of n nonzero integers
contains a sum-free subset A of size |A| > %n

Proof. Let p = 3k + 2 be a prime, which satisfies p > 2 max |b;| and put C' =
<i<n

{k+1,k+2,...,2k + 1}. Observe that C is a sum-free subset of the cyclic group
Z, and that g%— = 34 > 3. Let us choose at random an integer z, 1 < = < p,
according to a uniform distribution on {1,2,...,p — 1}, and define d, ..., d, by
d; = zb;(mod p), 0 < d; < p. Trivially, for every fixed 4, 1 < ¢ < n, as x ranges
over all numbers 1,2,...,p — 1, d; ranges over all nonzero elements of Z, and

hence Pr(d; € C) = i%‘l— > % Therefore, the expected number of elements b;
such that d; € C' is more than §. Consequently, thereis anz, 1 <z < pand a
subsequence A of B of cardinality |A| > %, such that za(mod p) € C foralla € A.
This A is clearly sum-free, since if a; + as = ag for some a;,as,a3 € A then
zay + wa; = zas(mod p), contradicting the fact that C is a sum-free subset of Z,,.
This completes the proof. B

In Alon and Kleitman (1990) it is shown that every set of n nonzero elements of
an arbitrary abelian group contains a sum-free subset of more than 2n/7 elements,
and that the constant 2/7 is best possible. The best possible constant in Theorem

1.4.1 is not known.

1.5 DISJOINT PAIRS

The probabilistic method is most striking when it is applied to prove theorems whose
statement does not seem to suggest at all the need for probability. Most of the
examples given in the previous sections are simple instances of such statements. In
this section we describe a (slightly) more complicated result, due to Alon and Frankl
(1985), which solves a conjecture of Daykin and Erdds.

Let F be a family of m distinct subsets of X = {1,2,...,n}. Let d((F) denote
the number of disjoint pairs in F, i.e.,

dF)=|{(F,F'):F,F' e F, FNF =0}|.

Daykin and Erd6s conjectured that if m = 2(%”)”, then, for every fixed 6 > 0,
d(F) = o(m?), asn tends to infinity. This result follows from the following theorem,
which is a special case of a more general result.

Theorem 1.5.1 Let F be a family of m = 229" subsets of X =1{1,2,...,n},
where § > 0. Then
d(F) <m? = . (1.1

Proof. Suppose (1.1) is false and pick independently ¢ members A;, Aa, ..., A; of
F with repetitions at random, where ¢ is a large positive integer, to be chosen later.
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We will show that with positive probability [4; U 43 U ... U A > n/2 and still
this union is disjoint to more than 27/2 distinct subsets of X . This contradiction will
establish (1.1).

In fact,

Pr (|A1 UA2 UUAt| S n/2) S ZSCX,|S|STL/2 PI‘(AZ C S,Z = 1,,t)
< 2n(2n/2/2((1/2)+5)n)t — 2n(1—ét) . (1.2)

Define
v(B)=|{AeF:BnA=0}.
Clearly,
3" u(B) = 2d(F) > 2m* /2
BeF
Let Y be a random variable whose value is the number of members B € F which

are disjoint to all the A; (1 < 4 < t). By the convexity of z* the expected value of Y’
satisfies

B t
BW) = 3 (w(B)/m)' = o (20
> % ‘m <-2-‘%Q)t > om1-t8"/2 (1.3)
Since Y < m we conclude that
Pr(Y > mi=10°/2) > p—t6*/2 (1.4)

One can check that for t = [1+ 1/6], m1—t8%/2 5 97/2 and the right-hand side
of (1.4) is greater than the right-hand side of (1.2). Thus, with positive probability,
|A1 U A2 U...UA;| > n/2 and still this union is disjoint to more than 2/2 members
of F. This contradiction implies inequality (1.1). B

1.6 EXERCISES

1. Prove that if there is areal p, 0 < p < 1 such that

(Z)p(:) . (’;)(1 _p® <1,

then the Ramsey number r(k, t) satisfies r(k,t) > n. Using this, show that
r(4,t) > Q(*?/(Int)*/?).

2. Suppose n > 4 and let H be an n-uniform hypergraph with at most 4;; !
edges. Prove that there is a coloring of the vertices of H by four colors so that

in every edge all four colors are represented.
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. (*) Prove that for every two independent, identically distributed real random

variables X and Y,

Pr{|X -Y|<2)<3Pr{|X -Y|<1).

. (® Let G = (V, E) be a graph with n vertices and minimum degree § > 10.

Prove that there is a partition of V into two disjoint subsets A and B so that

|[A] £ O(2122), and each vertex of B has at least one neighbor in A and at

least one neighbor in B.

. (*) Let G = (V, E) be a graph on n > 10 vertices and suppose that if we add

to G any edge not in G then the number of copies of a complete graph on 10
vertices in it increases. Show that the number of edges of G is at least 8n — 36.

. (*) Theorem 1.2.1 asserts that for every integer k¥ > 0 there is a tournament

Ty = (V, E) with |V| > k such that for every set U of at most k vertices of
T, there is a vertex v so that all directed arcs {{v,u) : v € U} arein E.

Show that each such tournament contains at least Q(k2*) vertices.

. Let {(A4;,B;),1 < i < h} be a family of pairs of subsets of the set of

integers such that |A;| = k for all ¢ and |B;| = [ forall 4, A; N B; = @ and
k41
(AN B;)U (A4; N B;) # P foralli # j. Prove that h < gk—ﬁ%-i

. (Prefix-free codes; Kraft Inequality). Let F' be a finite collection of binary

strings of finite lengths and assume no member of F'is a prefix of another one.
Let N; denote the number of strings of length ¢ in F'. Prove that

2%51.
i

. (*) (Uniquely decipherable codes; Kraft-McMillan Inequality). Let F be a

finite collection of binary strings of finite lengths and assume that no two
distinct concatenations of two finite sequences of codewords result in the same
binary sequence. Let V; denote the number of strings of length ¢ in F. Prove

that
Ni oy
Z 91 =

g

Prove that there is an absolute constant ¢ > O with the following property.
Let A be an n by n matrix with pairwise distinct entries. Then there is
a permutation of the rows of A so that no column in the permuted matrix
contains an increasing subsequence of length at least ¢y/n.



