
ADVANCED COMPUTER
ARCHITECTURE AND
PARALLEL PROCESSING

Hesham El-Rewini
Southern Methodist University

Mostafa Abd-El-Barr
Kuwait University

A JOHN WILEY & SONS, INC PUBLICATION





Innodata
0471478393.jpg





ADVANCED COMPUTER ARCHITECTURE
AND PARALLEL PROCESSING



WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

SERIES EDITOR: Albert Y. Zomaya

Parallel & Distributed Simulation Systems / Richard Fujimoto

Surviving the Design of Microprocessor and Multimicroprocessor Systems:

Lessons Learned / Veljko Milutinovic

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S.S. Iyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from

Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

New Parallel Algorithms for Direct Solution of Linear Equations /
C. Siva Ram Murthy, K.N. Balasubramanya Murthy, and Srinivas Aluru

Practical PRAM Programming / Joerg Keller, Christoph Kessler, and Jesper

Larsson Traeff

Computational Collective Intelligence / Tadeusz M. Szuba

Parallel & Distributed Computing: A Survey of Models, Paradigms, and

Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective / Zahir

Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel

Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing / Ivan Stojmenoviic

(Editor)

Internet-Based Workflow Management: Toward a Semantic Web /
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Tools and Environments for Parallel and Distributed Computing Tools /
Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics,

Second Edition / Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols and Applications /
Diane J. Cook and Sajal K. Das (Editors)

Fundamentals of Computer Organization and Architecture / Mostafa Abd-El-

Barr and Hesham El-Rewini

Advanced Computer Architecture and Parallel Processing / Hesham El-Rewini

and Mostafa Abd-El-Barr



ADVANCED COMPUTER
ARCHITECTURE AND
PARALLEL PROCESSING

Hesham El-Rewini
Southern Methodist University

Mostafa Abd-El-Barr
Kuwait University

A JOHN WILEY & SONS, INC PUBLICATION



This book is printed on acid-free paper. �1

Copyright # 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,

for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profit or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department

within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available

ISBN 0-471-46740-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher

http://www.copyright.com


To the memory of Abdel Wahab Motawe, who wiped away the tears of many people and

cheered them up even when he was in immense pain. His inspiration and impact on my life and

the lives of many others was enormous.

—Hesham El-Rewini

To my family members (Ebtesam, Muhammad, Abd-El-Rahman, Ibrahim, and Mai)

for their support and love

—Mostafa Abd-El-Barr





&CONTENTS

1. Introduction to Advanced Computer Architecture
and Parallel Processing 1

1.1 Four Decades of Computing 2

1.2 Flynn’s Taxonomy of Computer Architecture 4

1.3 SIMD Architecture 5

1.4 MIMD Architecture 6

1.5 Interconnection Networks 11

1.6 Chapter Summary 15

Problems 16

References 17

2. Multiprocessors Interconnection Networks 19

2.1 Interconnection Networks Taxonomy 19

2.2 Bus-Based Dynamic Interconnection Networks 20

2.3 Switch-Based Interconnection Networks 24

2.4 Static Interconnection Networks 33

2.5 Analysis and Performance Metrics 41

2.6 Chapter Summary 45

Problems 46

References 48

3. Performance Analysis of Multiprocessor Architecture 51

3.1 Computational Models 51

3.2 An Argument for Parallel Architectures 55

3.3 Interconnection Networks Performance Issues 58

3.4 Scalability of Parallel Architectures 63

3.5 Benchmark Performance 67

3.6 Chapter Summary 72

Problems 73

References 74

vii



4. Shared Memory Architecture 77

4.1 Classification of Shared Memory Systems 78

4.2 Bus-Based Symmetric Multiprocessors 80

4.3 Basic Cache Coherency Methods 81

4.4 Snooping Protocols 83

4.5 Directory Based Protocols 89

4.6 Shared Memory Programming 96

4.7 Chapter Summary 99

Problems 100

References 101

5. Message Passing Architecture 103

5.1 Introduction to Message Passing 103

5.2 Routing in Message Passing Networks 105

5.3 Switching Mechanisms in Message Passing 109

5.4 Message Passing Programming Models 114

5.5 Processor Support for Message Passing 117

5.6 Example Message Passing Architectures 118

5.7 Message Passing Versus Shared Memory Architectures 122

5.8 Chapter Summary 123

Problems 123

References 124

6. Abstract Models 127

6.1 The PRAM Model and Its Variations 127

6.2 Simulating Multiple Accesses on an EREW PRAM 129

6.3 Analysis of Parallel Algorithms 131

6.4 Computing Sum and All Sums 133

6.5 Matrix Multiplication 136

6.6 Sorting 139

6.7 Message Passing Model 140

6.8 Leader Election Problem 146

6.9 Leader Election in Synchronous Rings 147

6.10 Chapter Summary 154

Problems 154

References 155

7. Network Computing 157

7.1 Computer Networks Basics 158

7.2 Client/Server Systems 161

7.3 Clusters 166

7.4 Interconnection Networks 170

viii CONTENTS



7.5 Cluster Examples 175

7.6 Grid Computing 177

7.7 Chapter Summary 178

Problems 178

References 180

8. Parallel Programming in the Parallel Virtual Machine 181

8.1 PVM Environment and Application Structure 181

8.2 Task Creation 185

8.3 Task Groups 188

8.4 Communication Among Tasks 190

8.5 Task Synchronization 196

8.6 Reduction Operations 198

8.7 Work Assignment 200

8.8 Chapter Summary 201

Problems 202

References 203

9. Message Passing Interface (MPI) 205

9.1 Communicators 205

9.2 Virtual Topologies 209

9.3 Task Communication 213

9.4 Synchronization 217

9.5 Collective Operations 220

9.6 Task Creation 225

9.7 One-Sided Communication 228

9.8 Chapter Summary 231

Problems 231

References 233

10 Scheduling and Task Allocation 235

10.1 The Scheduling Problem 235

10.2 Scheduling DAGs without Considering Communication 238

10.3 Communication Models 242

10.4 Scheduling DAGs with Communication 244

10.5 The NP-Completeness of the Scheduling Problem 248

10.6 Heuristic Algorithms 250

10.7 Task Allocation 256

10.8 Scheduling in Heterogeneous Environments 262

Problems 263

References 264

Index 267

CONTENTS ix





&PREFACE

Single processor supercomputers have achieved great speeds and have been pushing

hardware technology to the physical limit of chip manufacturing. But soon this trend

will come to an end, because there are physical and architectural bounds, which limit

the computational power that can be achieved with a single processor system. In this

book, we study advanced computer architectures that utilize parallelism via multiple

processing units. While parallel computing, in the form of internally linked

processors, was the main form of parallelism, advances in computer networks has

created a new type of parallelism in the form of networked autonomous computers.

Instead of putting everything in a single box and tightly couple processors to

memory, the Internet achieved a kind of parallelism by loosely connecting every-

thing outside of the box. To get the most out of a computer system with internal

or external parallelism, designers and software developers must understand the

interaction between hardware and software parts of the system. This is the reason

we wrote this book. We want the reader to understand the power and limitations

of multiprocessor systems. Our goal is to apprise the reader of both the beneficial

and challenging aspects of advanced architecture and parallelism. The material in

this book is organized in 10 chapters, as follows.

Chapter 1 is a survey of the field of computer architecture at an introductory level.

We first study the evolution of computing and the changes that have led to obtaining

high performance computing via parallelism. The popular Flynn’s taxonomy of

computer systems is provided. An introduction to single instruction multiple data

(SIMD) and multiple instruction multiple data (MIMD) systems is also given.

Both shared-memory and the message passing systems and their interconnection

networks are introduced.

Chapter 2 navigates through a number of system configurations for multi-

processors. It discusses the different topologies used for interconnecting multi-

processors. Taxonomy for interconnection networks based on their topology is

introduced. Dynamic and static interconnection schemes are also studied. The

bus, crossbar, and multi-stage topology are introduced as dynamic interconnections.

In the static interconnection scheme, three main mechanisms are covered. These are

the hypercube topology, mesh topology, and k-ary n-cube topology. A number of

performance aspects are introduced including cost, latency, diameter, node

degree, and symmetry.

Chapter 3 is about performance. How should we characterize the performance of

a computer system when, in effect, parallel computing redefines traditional

xi



measures such as million instructions per second (MIPS) and million floating-point

operations per second (MFLOPS)? New measures of performance, such as speedup,

are discussed. This chapter examines several versions of speedup, as well as other

performance measures and benchmarks.

Chapters 4 and 5 cover shared memory and message passing systems, respect-

ively. The main challenges of shared memory systems are performance degradation

due to contention and the cache coherence problems. Performance of shared

memory system becomes an issue when the interconnection network connecting

the processors to global memory becomes a bottleneck. Local caches are typically

used to alleviate the bottleneck problem. But scalability remains the main drawback

of shared memory system. The introduction of caches has created consistency

problem among caches and between memory and caches. In Chapter 4, we cover

several cache coherence protocols that can be categorized as either snoopy protocols

or directory based protocols. Since shared memory systems are difficult to scale up

to a large number of processors, message passing systems may be the only way to

efficiently achieve scalability. In Chapter 5, we discuss the architecture and the net-

work models of message passing systems. We shed some light on routing and net-

work switching techniques. We conclude with a contrast between shared memory

and message passing systems.

Chapter 6 covers abstract models, algorithms, and complexity analysis. We

discuss a shared-memory abstract model (PRAM), which can be used to study

parallel algorithms and evaluate their complexities. We also outline the basic

elements of a formal model of message passing systems under the synchronous

model. We design and discuss the complexity analysis of algorithms described in

terms of both models.

Chapters 7–10 discuss a number of issues related to network computing, in

which the nodes are stand-alone computers that may be connected via a switch,

local area network, or the Internet. Chapter 7 provides the basic concepts of

network computing including client/server paradigm, cluster computing, and grid

computing. Chapter 8 illustrates the parallel virtual machine (PVM) programming

system. It shows how to write programs on a network of heterogeneous machines.

Chapter 9 covers the message-passing interface (MPI) standard in which portable

distributed parallel programs can be developed. Chapter 10 addresses the problem

of allocating tasks to processing units. The scheduling problem in several of its

variations is covered. We survey a number of solutions to this important problem.

We cover program and system models, optimal algorithms, heuristic algorithms,

scheduling versus allocation techniques, and homogeneous versus heterogeneous

environments.

Students in Computer Engineering, Computer Science, and Electrical Engineer-

ing should benefit from this book. The book can be used to teach graduate courses in

advanced architecture and parallel processing. Selected chapters can be used to

offer special topic courses with different emphasis. The book can also be used as

a comprehensive reference for practitioners working as engineers, programmers,

and technologists. In addition, portions of the book can be used to teach short

courses to practitioners. Different chapters might be used to offer courses with

xii PREFACE



different flavors. For example, a one-semester course in Advanced Computer

Architecture may cover Chapters 1–5, 7, and 8, while another one-semester

course on Parallel Processing may cover Chapters 1–4, 6, 9, and 10.

This book has been class-tested by both authors. In fact, it evolves out of the class

notes for the SMU’s CSE8380 and CSE8383, University of Saskatchewan’s (UofS)

CMPT740 and KFUPM’s COE520. These experiences have been incorporated into

the present book. Our students corrected errors and improved the organization of the

book. We would like to thank the students in these classes. We owe much to many

students and colleagues, who have contributed to the production of this book. Chuck

Mann, Yehia Amer, Habib Ammari, Abdul Aziz, Clay Breshears, Jahanzeb Faizan,

Michael A. Langston, and A. Naseer read drafts of the book and all contributed to

the improvement of the original manuscript. Ted Lewis has contributed to earlier

versions of some chapters. We are indebted to the anonymous reviewers arranged

by John Wiley for their suggestions and corrections. Special thanks to Albert Y.

Zomaya, the series editor and to Val Moliere, Kirsten Rohstedt and Christine

Punzo of John Wiley for their help in making this book a reality. Of course, respon-

sibility for errors and inconsistencies rests with us.

Finally, and most of all, we want to thank our wives and children for tolerating all

the long hours we spent on this book. Hesham would also like to thank Ted Lewis

and Bruce Shriver for their friendship, mentorship and guidance over the years.

HESHAM EL-REWINI

MOSTAFA ABD-EL-BARR

May 2004

PREFACE xiii





&CHAPTER 1

Introduction to Advanced
Computer Architecture and
Parallel Processing

Computer architects have always strived to increase the performance of their

computer architectures. High performance may come from fast dense circuitry,

packaging technology, and parallelism. Single-processor supercomputers have

achieved unheard of speeds and have been pushing hardware technology to the phys-

ical limit of chip manufacturing. However, this trend will soon come to an end,

because there are physical and architectural bounds that limit the computational

power that can be achieved with a single-processor system. In this book we will

study advanced computer architectures that utilize parallelism via multiple proces-

sing units.

Parallel processors are computer systems consisting of multiple processing units

connected via some interconnection network plus the software needed to make the

processing units work together. There are two major factors used to categorize such

systems: the processing units themselves, and the interconnection network that ties

them together. The processing units can communicate and interact with each other

using either shared memory or message passing methods. The interconnection net-

work for shared memory systems can be classified as bus-based versus switch-based.

In message passing systems, the interconnection network is divided into static and

dynamic. Static connections have a fixed topology that does not change while

programs are running. Dynamic connections create links on the fly as the program

executes.

The main argument for using multiprocessors is to create powerful computers by

simply connecting multiple processors. A multiprocessor is expected to reach faster

speed than the fastest single-processor system. In addition, a multiprocessor consist-

ing of a number of single processors is expected to be more cost-effective than build-

ing a high-performance single processor. Another advantage of a multiprocessor is

fault tolerance. If a processor fails, the remaining processors should be able to

provide continued service, albeit with degraded performance.

1

Advanced Computer Architecture and Parallel Processing, by H. El-Rewini and M. Abd-El-Barr
ISBN 0-471-46740-5 Copyright # 2005 John Wiley & Sons, Inc.



1.1 FOUR DECADES OF COMPUTING

Most computer scientists agree that there have been four distinct paradigms or eras

of computing. These are: batch, time-sharing, desktop, and network. Table 1.1 is

modified from a table proposed by Lawrence Tesler. In this table, major character-

istics of the different computing paradigms are associated with each decade of

computing, starting from 1960.

1.1.1 Batch Era

By 1965 the IBM System/360 mainframe dominated the corporate computer cen-

ters. It was the typical batch processing machine with punched card readers, tapes

and disk drives, but no connection beyond the computer room. This single main-

frame established large centralized computers as the standard form of computing

for decades. The IBM System/360 had an operating system, multiple programming

languages, and 10 megabytes of disk storage. The System/360 filled a room with

metal boxes and people to run them. Its transistor circuits were reasonably fast.

Power users could order magnetic core memories with up to one megabyte of

32-bit words. This machine was large enough to support many programs in

memory at the same time, even though the central processing unit had to switch

from one program to another.

1.1.2 Time-Sharing Era

The mainframes of the batch era were firmly established by the late 1960s when

advances in semiconductor technology made the solid-state memory and integrated

circuit feasible. These advances in hardware technology spawned the minicomputer

era. They were small, fast, and inexpensive enough to be spread throughout the

company at the divisional level. However, they were still too expensive and difficult

TABLE 1.1 Four Decades of Computing

Feature Batch Time-Sharing Desktop Network

Decade 1960s 1970s 1980s 1990s

Location Computer room Terminal room Desktop Mobile

Users Experts Specialists Individuals Groups

Data Alphanumeric Text, numbers Fonts, graphs Multimedia

Objective Calculate Access Present Communicate

Interface Punched card Keyboard and CRT See and point Ask and tell

Operation Process Edit Layout Orchestrate

Connectivity None Peripheral cable LAN Internet

Owners Corporate computer

centers

Divisional IS shops Departmental

end-users

Everyone

LAN, local area network.

2 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING



to use to hand over to end-users. Minicomputers made by DEC, Prime, and Data

General led the way in defining a new kind of computing: time-sharing. By the

1970s it was clear that there existed two kinds of commercial or business computing:

(1) centralized data processing mainframes, and (2) time-sharing minicomputers. In

parallel with small-scale machines, supercomputers were coming into play. The first

such supercomputer, the CDC 6600, was introduced in 1961 by Control Data

Corporation. Cray Research Corporation introduced the best cost/performance

supercomputer, the Cray-1, in 1976.

1.1.3 Desktop Era

Personal computers (PCs), which were introduced in 1977 by Altair, Processor

Technology, North Star, Tandy, Commodore, Apple, and many others, enhanced

the productivity of end-users in numerous departments. Personal computers from

Compaq, Apple, IBM, Dell, and many others soon became pervasive, and changed

the face of computing.

Local area networks (LAN) of powerful personal computers and workstations

began to replace mainframes and minis by 1990. The power of the most capable

big machine could be had in a desktop model for one-tenth of the cost. However,

these individual desktop computers were soon to be connected into larger complexes

of computing by wide area networks (WAN).

1.1.4 Network Era

The fourth era, or network paradigm of computing, is in full swing because of rapid

advances in network technology. Network technology outstripped processor tech-

nology throughout most of the 1990s. This explains the rise of the network paradigm

listed in Table 1.1. The surge of network capacity tipped the balance from a

processor-centric view of computing to a network-centric view.

The 1980s and 1990s witnessed the introduction of many commercial parallel

computers with multiple processors. They can generally be classified into two

main categories: (1) shared memory, and (2) distributed memory systems. The

number of processors in a single machine ranged from several in a shared

memory computer to hundreds of thousands in a massively parallel system.

Examples of parallel computers during this era include Sequent Symmetry, Intel

iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar (MP),

Fujitsu (VPP500), and others.

1.1.5 Current Trends

One of the clear trends in computing is the substitution of expensive and specialized

parallel machines by the more cost-effective clusters of workstations. A cluster is a

collection of stand-alone computers connected using some interconnection network.

Additionally, the pervasiveness of the Internet created interest in network computing

and more recently in grid computing. Grids are geographically distributed platforms

1.1 FOUR DECADES OF COMPUTING 3



of computation. They should provide dependable, consistent, pervasive, and inex-

pensive access to high-end computational facilities.

1.2 FLYNN’S TAXONOMY OF COMPUTER ARCHITECTURE

The most popular taxonomy of computer architecture was defined by Flynn in 1966.

Flynn’s classification scheme is based on the notion of a stream of information. Two

types of information flow into a processor: instructions and data. The instruction

stream is defined as the sequence of instructions performed by the processing

unit. The data stream is defined as the data traffic exchanged between the memory

and the processing unit. According to Flynn’s classification, either of the instruction

or data streams can be single or multiple. Computer architecture can be classified

into the following four distinct categories:

. single-instruction single-data streams (SISD);

. single-instruction multiple-data streams (SIMD);

. multiple-instruction single-data streams (MISD); and

. multiple-instruction multiple-data streams (MIMD).

Conventional single-processor von Neumann computers are classified as SISD

systems. Parallel computers are either SIMD or MIMD. When there is only

one control unit and all processors execute the same instruction in a synchronized

fashion, the parallel machine is classified as SIMD. In a MIMD machine, each

processor has its own control unit and can execute different instructions on differ-

ent data. In the MISD category, the same stream of data flows through a linear

array of processors executing different instruction streams. In practice, there is

no viable MISD machine; however, some authors have considered pipe-

lined machines (and perhaps systolic-array computers) as examples for MISD.

Figures 1.1, 1.2, and 1.3 depict the block diagrams of SISD, SIMD, and

MIMD, respectively.

An extension of Flynn’s taxonomy was introduced by D. J. Kuck in 1978. In his

classification, Kuck extended the instruction stream further to single (scalar and

array) and multiple (scalar and array) streams. The data stream in Kuck’s clas-

sification is called the execution stream and is also extended to include single

Control
Unit

Instruction Stream

Processor
(P)

Memory
(M)I/O

Instruction Stream Data Stream

Figure 1.1 SISD architecture.

4 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING



(scalar and array) and multiple (scalar and array) streams. The combination of these

streams results in a total of 16 categories of architectures.

1.3 SIMD ARCHITECTURE

The SIMD model of parallel computing consists of two parts: a front-end computer

of the usual von Neumann style, and a processor array as shown in Figure 1.4. The

processor array is a set of identical synchronized processing elements capable of

simultaneously performing the same operation on different data. Each processor

in the array has a small amount of local memory where the distributed data resides

while it is being processed in parallel. The processor array is connected to the

memory bus of the front end so that the front end can randomly access the local

Figure 1.2 SIMD architecture.

P1
Control
Unit-1

M1

Data StreamInstruction Stream

Instruction Stream

Pn
Control
Unit-n Mn

Data StreamInstruction Stream

Instruction Stream

Figure 1.3 MIMD architecture.

1.3 SIMD ARCHITECTURE 5



processor memories as if it were another memory. Thus, the front end can issue

special commands that cause parts of the memory to be operated on simultaneously

or cause data to move around in the memory. A program can be developed and

executed on the front end using a traditional serial programming language. The

application program is executed by the front end in the usual serial way, but

issues commands to the processor array to carry out SIMD operations in parallel.

The similarity between serial and data parallel programming is one of the strong

points of data parallelism. Synchronization is made irrelevant by the lock–step syn-

chronization of the processors. Processors either do nothing or exactly the same

operations at the same time. In SIMD architecture, parallelism is exploited by apply-

ing simultaneous operations across large sets of data. This paradigm is most useful

for solving problems that have lots of data that need to be updated on a wholesale

basis. It is especially powerful in many regular numerical calculations.

There are two main configurations that have been used in SIMD machines (see

Fig. 1.5). In the first scheme, each processor has its own local memory. Processors

can communicate with each other through the interconnection network. If the inter-

connection network does not provide direct connection between a given pair of

processors, then this pair can exchange data via an intermediate processor. The

ILLIAC IV used such an interconnection scheme. The interconnection network in

the ILLIAC IV allowed each processor to communicate directly with four neighbor-

ing processors in an 8 � 8 matrix pattern such that the i th processor can communi-

cate directly with the (i2 1)th, (iþ 1)th, (i2 8)th, and (iþ 8)th processors. In the

second SIMD scheme, processors and memory modules communicate with each

other via the interconnection network. Two processors can transfer data between

each other via intermediate memory module(s) or possibly via intermediate

processor(s). The BSP (Burroughs’ Scientific Processor) used the second SIMD

scheme.

1.4 MIMD ARCHITECTURE

Multiple-instruction multiple-data streams (MIMD) parallel architectures are made

of multiple processors and multiple memory modules connected together via some

Figure 1.4 SIMD architecture model.

6 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING



interconnection network. They fall into two broad categories: shared memory or

message passing. Figure 1.6 illustrates the general architecture of these two cat-

egories. Processors exchange information through their central shared memory in

shared memory systems, and exchange information through their interconnection

network in message passing systems.

A shared memory system typically accomplishes interprocessor coordination

through a global memory shared by all processors. These are typically server sys-

tems that communicate through a bus and cache memory controller. The bus/
cache architecture alleviates the need for expensive multiported memories and inter-

face circuitry as well as the need to adopt a message-passing paradigm when devel-

oping application software. Because access to shared memory is balanced, these

systems are also called SMP (symmetric multiprocessor) systems. Each processor

has equal opportunity to read/write to memory, including equal access speed.

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Figure 1.5 Two SIMD schemes.

1.4 MIMD ARCHITECTURE 7



Commercial examples of SMPs are Sequent Computer’s Balance and Symmetry,

Sun Microsystems multiprocessor servers, and Silicon Graphics Inc. multiprocessor

servers.

Amessage passing system (also referred to as distributed memory) typically com-

bines the local memory and processor at each node of the interconnection network.

There is no global memory, so it is necessary to move data from one local memory to

another by means of message passing. This is typically done by a Send/Receive pair
of commands, which must be written into the application software by a programmer.

Thus, programmers must learn the message-passing paradigm, which involves data

copying and dealing with consistency issues. Commercial examples of message pas-

sing architectures c. 1990 were the nCUBE, iPSC/2, and various Transputer-based

systems. These systems eventually gave way to Internet connected systems whereby

the processor/memory nodes were either Internet servers or clients on individuals’

desktop.

It was also apparent that distributed memory is the only way efficiently to

increase the number of processors managed by a parallel and distributed system.

If scalability to larger and larger systems (as measured by the number of processors)

was to continue, systems had to use distributed memory techniques. These two

forces created a conflict: programming in the shared memory model was easier,

and designing systems in the message passing model provided scalability. The

Interconnection Network

P

MM M M

P P P

Interconnection Network

P P P P

MM M M

Shared Memory MIMD Architecture

Message Passing MIMD Architecture

Figure 1.6 Shared memory versus message passing architecture.

8 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING



distributed-shared memory (DSM) architecture began to appear in systems like the

SGI Origin2000, and others. In such systems, memory is physically distributed; for

example, the hardware architecture follows the message passing school of design,

but the programming model follows the shared memory school of thought. In

effect, software covers up the hardware. As far as a programmer is concerned, the

architecture looks and behaves like a shared memory machine, but a message pas-

sing architecture lives underneath the software. Thus, the DSM machine is a hybrid

that takes advantage of both design schools.

1.4.1 Shared Memory Organization

A shared memory model is one in which processors communicate by reading and

writing locations in a shared memory that is equally accessible by all processors.

Each processor may have registers, buffers, caches, and local memory banks as

additional memory resources. A number of basic issues in the design of shared

memory systems have to be taken into consideration. These include access control,

synchronization, protection, and security. Access control determines which process

accesses are possible to which resources. Access control models make the required

check for every access request issued by the processors to the shared memory,

against the contents of the access control table. The latter contains flags that

determine the legality of each access attempt. If there are access attempts to

resources, then until the desired access is completed, all disallowed access attempts

and illegal processes are blocked. Requests from sharing processes may change the

contents of the access control table during execution. The flags of the access control

with the synchronization rules determine the system’s functionality. Synchroniza-

tion constraints limit the time of accesses from sharing processes to shared

resources. Appropriate synchronization ensures that the information flows properly

and ensures system functionality. Protection is a system feature that prevents pro-

cesses from making arbitrary access to resources belonging to other processes. Shar-

ing and protection are incompatible; sharing allows access, whereas protection

restricts it.

The simplest shared memory system consists of one memory module that can be

accessed from two processors. Requests arrive at the memory module through its

two ports. An arbitration unit within the memory module passes requests through

to a memory controller. If the memory module is not busy and a single request

arrives, then the arbitration unit passes that request to the memory controller and

the request is granted. The module is placed in the busy state while a request is

being serviced. If a new request arrives while the memory is busy servicing a

previous request, the requesting processor may hold its request on the line until

the memory becomes free or it may repeat its request sometime later.

Depending on the interconnection network, a shared memory system leads to

systems can be classified as: uniform memory access (UMA), nonuniform

memory access (NUMA), and cache-only memory architecture (COMA). In the

UMA system, a shared memory is accessible by all processors through an intercon-

nection network in the same way a single processor accesses its memory. Therefore,

1.4 MIMD ARCHITECTURE 9



all processors have equal access time to any memory location. The interconnection

network used in the UMA can be a single bus, multiple buses, a crossbar, or a

multiport memory. In the NUMA system, each processor has part of the shared

memory attached. The memory has a single address space. Therefore, any processor

could access any memory location directly using its real address. However, the

access time to modules depends on the distance to the processor. This results in a

nonuniform memory access time. A number of architectures are used to interconnect

processors to memory modules in a NUMA. Similar to the NUMA, each processor

has part of the shared memory in the COMA. However, in this case the shared

memory consists of cache memory. A COMA system requires that data be migrated

to the processor requesting it. Shared memory systems will be discussed in more

detail in Chapter 4.

1.4.2 Message Passing Organization

Message passing systems are a class of multiprocessors in which each processor has

access to its own local memory. Unlike shared memory systems, communications in

message passing systems are performed via send and receive operations. A node in

such a system consists of a processor and its local memory. Nodes are typically able

to store messages in buffers (temporary memory locations where messages wait until

they can be sent or received), and perform send/receive operations at the same time

as processing. Simultaneous message processing and problem calculating are

handled by the underlying operating system. Processors do not share a global

memory and each processor has access to its own address space. The processing

units of a message passing system may be connected in a variety of ways ranging

from architecture-specific interconnection structures to geographically dispersed

networks. The message passing approach is, in principle, scalable to large pro-

portions. By scalable, it is meant that the number of processors can be increased

without significant decrease in efficiency of operation.

Message passing multiprocessors employ a variety of static networks in local

communication. Of importance are hypercube networks, which have received

special attention for many years. The nearest neighbor two-dimensional and

three-dimensional mesh networks have been used in message passing systems as

well. Two important design factors must be considered in designing interconnection

networks for message passing systems. These are the link bandwidth and the net-

work latency. The link bandwidth is defined as the number of bits that can be trans-

mitted per unit time (bits/s). The network latency is defined as the time to complete

a message transfer. Wormhole routing in message passing was introduced in 1987 as

an alternative to the traditional store-and-forward routing in order to reduce the size

of the required buffers and to decrease the message latency. In wormhole routing, a

packet is divided into smaller units that are called flits (flow control bits) such that

flits move in a pipeline fashion with the header flit of the packet leading the way to

the destination node. When the header flit is blocked due to network congestion, the

remaining flits are blocked as well. More details on message passing will be

introduced in Chapter 5.

10 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING



1.5 INTERCONNECTION NETWORKS

Multiprocessors interconnection networks (INs) can be classified based on a number

of criteria. These include (1) mode of operation (synchronous versus asynchronous),

(2) control strategy (centralized versus decentralized), (3) switching techniques

(circuit versus packet), and (4) topology (static versus dynamic).

1.5.1 Mode of Operation

According to the mode of operation, INs are classified as synchronous versus asyn-

chronous. In synchronous mode of operation, a single global clock is used by all

components in the system such that the whole system is operating in a lock–step

manner. Asynchronous mode of operation, on the other hand, does not require a

global clock. Handshaking signals are used instead in order to coordinate the

operation of asynchronous systems. While synchronous systems tend to be slower

compared to asynchronous systems, they are race and hazard-free.

1.5.2 Control Strategy

According to the control strategy, INs can be classified as centralized versus decen-

tralized. In centralized control systems, a single central control unit is used to over-

see and control the operation of the components of the system. In decentralized

control, the control function is distributed among different components in the

system. The function and reliability of the central control unit can become the bottle-

neck in a centralized control system. While the crossbar is a centralized system, the

multistage interconnection networks are decentralized.

1.5.3 Switching Techniques

Interconnection networks can be classified according to the switching mechanism as

circuit versus packet switching networks. In the circuit switching mechanism,

a complete path has to be established prior to the start of communication between

a source and a destination. The established path will remain in existence during

the whole communication period. In a packet switching mechanism, communication

between a source and destination takes place via messages that are divided into

smaller entities, called packets. On their way to the destination, packets can be

sent from a node to another in a store-and-forward manner until they reach their des-

tination. While packet switching tends to use the network resources more efficiently

compared to circuit switching, it suffers from variable packet delays.

1.5.4 Topology

An interconnection network topology is a mapping function from the set of pro-

cessors and memories onto the same set of processors and memories. In other

words, the topology describes how to connect processors and memories to other

1.5 INTERCONNECTION NETWORKS 11



processors and memories. A fully connected topology, for example, is a mapping in

which each processor is connected to all other processors in the computer. A ring

topology is a mapping that connects processor k to its neighbors, processors

(k2 1) and (kþ 1).

In general, interconnection networks can be classified as static versus dynamic

networks. In static networks, direct fixed links are established among nodes to

form a fixed network, while in dynamic networks, connections are established as

needed. Switching elements are used to establish connections among inputs and

outputs. Depending on the switch settings, different interconnections can be estab-

lished. Nearly all multiprocessor systems can be distinguished by their inter-

connection network topology. Therefore, we devote Chapter 2 of this book to

study a variety of topologies and how they are used in constructing a multiprocessor

system. However, in this section, we give a brief introduction to interconnection

networks for shared memory and message passing systems.

Shared memory systems can be designed using bus-based or switch-based INs.

The simplest IN for shared memory systems is the bus. However, the bus may get

saturated if multiple processors are trying to access the shared memory (via the

bus) simultaneously. A typical bus-based design uses caches to solve the bus conten-

tion problem. Other shared memory designs rely on switches for interconnection.

For example, a crossbar switch can be used to connect multiple processors to

multiple memory modules. A crossbar switch, which will be discussed further in

Chapter 2, can be visualized as a mesh of wires with switches at the points of

intersection. Figure 1.7 shows (a) bus-based and (b) switch-based shared memory

systems. Figure 1.8 shows bus-based systems when a single bus is used versus the

case when multiple buses are used.

Message passing INs can be divided into static and dynamic. Static networks

form all connections when the system is designed rather than when the connection

is needed. In a static network, messages must be routed along established links.

P C

P C

P C

P C

M M M M

Global Memory

P

 C

P

 C

P

 C

(a) (b)

Figure 1.7 Shared memory interconnection networks.

12 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING


