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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

1. PRIGOGINE
STUART A. RicE
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the
series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume
119 is largely a dialogue between two schools of thought, one school concerned
with quantum optics and Abelian electrodynamics, the other with the emerging
subject of non-Abelian electrodynamics and unified field theory. In one of the
review articles in the third part of this volume, the Royal Swedish Academy
endorses the complete works of Jean-Pierre Vigier, works that represent a view
of quantum mechanics opposite that proposed by the Copenhagen School. The
formal structure of quantum mechanics is derived as a linear approximation for
a generally covariant field theory of inertia by Sachs, as reviewed in his article.
This also opposes the Copenhagen interpretation. Another review provides
reproducible and repeatable empirical evidence to show that the Heisenberg
uncertainty principle can be violated. Several of the reviews in Part 1 contain
developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories
distinct from the Maxwell-Heaviside theory, the predominant paradigm at this
stage in the development of science. Other review articles develop electro-
dynamics from a topological basis, and other articles develop conventional or
U(1) electrodynamics in the fields of antenna theory and holography. There are
also articles on the possibility of extracting electromagnetic energy from
Riemannian spacetime, on superluminal effects in electrodynamics, and on
unified field theory based on an SU(2) sector for electrodynamics rather than a
U(1) sector, which is based on the Maxwell-Heaviside theory. Several effects
that cannot be explained by the Maxwell-Heaviside theory are developed using
various proposals for a higher-symmetry electrodynamical theory. The volume
is therefore typical of the second stage of a paradigm shift, where the prevailing
paradigm has been challenged and various new theories are being proposed. In
this case the prevailing paradigm is the great Maxwell-Heaviside theory and its
quantization. Both schools of thought are represented approximately to the same
extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of
opinion is represented so that a consensus will eventually emerge. The
prevailing paradigm (Maxwell-Heaviside theory) is ably developed by several
groups in the field of quantum optics, antenna theory, holography, and so on, but
the paradigm is also challenged in several ways: for example, using general
relativity, using O(3) electrodynamics, using superluminal effects, using an

iX



X PREFACE

extended electrodynamics based on a vacuum current, using the fact that
longitudinal waves may appear in vacuo on the U(1) level, using a reproducible
and repeatable device, known as the motionless electromagnetic generator,
which extracts electromagnetic energy from Riemannian spacetime, and in
several other ways. There is also a review on new energy sources. Unlike
Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and
many thousands of papers are reviewed by both schools of thought. Much of the
evidence for challenging the prevailing paradigm is based on empirical data,
data that are reproducible and repeatable and cannot be explained by the Max-
well-Heaviside theory. Perhaps the simplest, and therefore the most powerful,
challenge to the prevailing paradigm is that it cannot explain interferometric and
simple optical effects. A non-Abelian theory with a Yang—Mills structure is
proposed in Part 2 to explain these effects. This theory is known as O(3)
electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous
logistical support and to the Fellows and Emeriti of the Alpha Foundation’s
Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at
the U.S. Department of Energy is thanked for a Website reserved for some of
this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MyRroN W. EvaNs

Ithaca, New York
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I. INTRODUCTION

More than a century has passed since Planck discovered that it is possible to
explain properties of the blackbody radiation by introducing discrete packets of
energy, which we now call photons. The idea of discrete or quantized nature of
energy had deep consequences and resulted in development of quantum mecha-
nics. The quantum theory of optical fields is called quantum optics. The cons-
truction of lasers in the 1960s gave impulse to rapid development of nonlinear
optics with a broad variety of nonlinear optical phenomena that have been
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experimentally observed and described theoretically and now are the subject of
textbooks [1,2]. In early theoretical descriptions of nonlinear optical phenom-
ena, the quantum nature of optical fields has been ignored on the grounds that
laser fields are so strong, that is, the number of photons associated with them are
so huge, that the quantum properties assigned to individual photons have no
chances to manifest themselves. However, it turned out pretty soon that
quantum noise associated with the vacuum fluctuations can have important
consequences for the course of nonlinear phenomena. Moreover, it appeared
that the quantum noise itself can change essentially when the quantum field is
subject to the nonlinear transformation that is the essence of any nonlinear
process. The quantum states with reduced quantum noise for a particular
physical quantity can be prepared in various nonlinear processes. Such states
have no classical counterparts; that is, the results of some physical measure-
ments cannot be explained without explicit recall to the quantum character of
the field. The methods of theoretical description of quantum noise are the
subject of Gardiner’s book [3]. This chapter is not intended as a presentation of
general methods that can be found in the book; rather, we want to compare the
results obtained with a few chosen methods for the two, probably most
important, nonlinear processes: second-harmonic generation and downconver-
sion with quantum pump.

Why have we chosen the second-harmonic generation and the downconver-
sion to illustrate consequences of field quantization, or a role of quantum noise,
in nonlinear optical processes? The two processes are at the same time similar
and different. Both of them are described by the same interaction Hamiltonian,
so in a sense they are similar and one can say that they show different faces of
the same process. However, they are also different, and the difference between
them consists in the different initial conditions. This difference appears to be
very important, at least at early stages of the evolution, and the properties of the
fields produced in the two processes are quite different. With these two best-
known and practically very important examples of nonlinear optical processes,
we would like to discuss several nonclassical effects and present the most
common theoretical approaches used to describe quantum effects. The chapter
is not intended to be a complete review of the results concerning the two
processes that have been collected for years. We rather want to introduce the
reader who is not an expert in quantum optics into this fascinating field by
presenting not only the results but also how they can be obtained with presently
available computer software. The results are largely illustrated graphically for
easier comparisons. In Section II we introduce basic definitions and the most
important formulas required for later discussion. Section III is devoted to
presentation of results for second-harmonic generation, and Section IV results
for downconversion. In the Appendixes A and B we have added examples of
computer programs that illustrate usage of really existing software and were
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actually used in our calculations. We draw special attention to symbolic
calculations and numerical methods, which can now be implemented even on
small computers.

II. BASIC DEFINITIONS

In classical optics, a one mode electromagnetic field of frequency w, with the
propagation vector Kk and linear polarization, can be represented as a plane wave

E(r,t) =2Eycos(k-r — ot + @) (1)

where Ej is the amplitude and ¢ is the phase of the field. Assuming the linear
polarization of the field, we have omitted the unit polarization vector to simplify
the notation. Classically, both the amplitude Ej and the phase ¢ can be well-
defined quantities, with zero noise. Of course, the two quantities can be
considered as classical random variables with nonzero variances; thus, they
can be noisy in a classical sense, but there is no relation between the two
variances and, in principle, either of them can be rendered zero giving the
noiseless classical field. Apart from a constant factor, the squared real ampli-
tude, E(z), is the intensity of the field. In classical electrodynamics there is no real
need to use complex numbers to describe the field. However, it is convenient to
work with exponentials rather than cosine and sine functions and the field (1) is
usually written in the form

E(I‘,t) — E(+>ei(k-r7mz) +E(*)e*i(k'r7mt) (2)

with the complex amplitudes E* = E ge**®. The modulus squared of such an
amplitude is the intensity of the field, and the argument is the phase. Both
intensity and the phase can be measured simultaneously with arbitrary accuracy.

In quantum optics the situation is dramatically different. The electromagnetic
field E becomes a quantum quantity; that is, it becomes an operator acting in a
Hilbert space of field states, the complex amplitudes E* become the annihilation
and creation operators of the electromagnetic field mode, and we have

~ h . .
E = \/;;Z)‘V[&ez(k-rwt)+&+e1(k»rmt)] (3)

with the bosonic commutation rules
la,a"] =1 4)

for the annihilation (@) and creation (a™) operators of the field mode, where & is
the electric permittivity of free space and V is the quantization volume. Because
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of laws of quantum mechanics, optical fields exhibit an inherent quantum
indeterminacy that cannot be removed for principal reasons no matter how
smart we are. The quantity

ho
280V

6o = (5)

appearing in (3) is a measure of the quantum optical noise for a single mode of
the field. This noise is present even if the field is in the vacuum state, and for this
reason it is usually referred to as the vacuum fluctuations of the field [4].
Quantum noise associated with the vacuum fluctuations, which appears because
of noncommuting character of the annihilation and creation operators expressed
by (4), is ubiquitous and cannot be eliminated, but we can to some extent
control this noise by ‘squeezing’ it in one quantum variable at the expense of
“expanding” it in another variable. This noise, no matter how small it is in
comparison to macroscopic fields, can have very important macroscopic
consequences changing the character of the evolution of the macroscopic fields.
We are going to address such questions in this chapter.
The electric field operator (3) can be rewritten in the form

E = &o[Qcos (k-1 —or) + Psin(k - — ot)] (6)

where we have introduced two Hermitian quadrature operators, Q and P, defined
as

O=a+a", P=-i(a—a") (7)
which satisfy the commutation relation
[0, P =2i (8)
The two quadrature operators thus obey the Heisenberg uncertainty relation
(AQ)((APY) > 1 )
where we have introduced the quadrature noise operators
AQ=0-(0)., AP=P—(P) (10)

For the vacuum state or a coherent state, which are the minimum uncertainty
states, the inequality (9) becomes equality and, moreover, the two variances are
equal

(AQ)") = ((AP)’ =1 (11)
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The Heisenberg uncertainty relation (9) imposes basic restrictions on the
accuracy of the simultaneous measurement of the two quadrature components
of the optical field. In the vacuum state the noise is isotropic and the two
components have the same level of quantum noise. However, quantum states
can be produced in which the isotropy of quantum fluctuations is broken—the
uncertainty of one quadrature component, say, Q, can be reduced at the expense
of expanding the uncertainty of the conjugate component, P. Such states are
called squeezed states [5,6]. They may or may not be the minimum uncertainty
states. Thus, for squeezed states

(AQY) <1 or ((AP)) <1 (12)

Squeezing is a unique quantum property that cannot be explained when the field
is treated as a classical quantity—field quantization is crucial for explaining this
effect.

Another nonclassical effect is referred to as sub-Poissonian photon statistics
(see, e.g., Refs. 7 and 8 and papers cited therein). It is well known that in a
coherent state defined as an infinite superposition of the number states

wﬂm(%j§£m> (13)

the photon number distribution is Poissonian

p(m) = [(nf2) = exp(—[af’) P = exp (- T 14)

which means
((AR)?%) = (@%) = (@)” = () (15)
If the variance of the number of photons is smaller than its mean value, the field

is said to exhibit the sub-Poissonian photon statistics. This effect is related to the
second-order intensity correlation function

G (1) = (a0t +1):) = (@ (Na* (t + v)a(t + t)a(r)) (16)
where : : indicate the normal order of the operators. This function describes the

probability of counting a photon at ¢ and another one at ¢+ t. For stationary
fields, this function does not depend on ¢ but solely on t. The normalized
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second-order correlation function, or second-order degree of coherence, is
defined as

g? (1) = (17)

If g® )< g?(0), the probability of detecting the second photon decreases
with the time delay 7, indicating bunching of photons. On the other hand, if
g? @) > g?(0), we have the effect of antibunching of photons. Photon anti-
bunching is another signature of quantum character of the field. For t =0, we
have

g2(0) = (18)

(ata*taa) (a(h—1))
2 \2 \2
(ara) () ()
which gives the relation between the photon statistics and the second-order
correlation function. Another convenient parameter describing the deviation of
the photon statistics from the Poissonian photon number distribution is the

Mandel g parameter defined as [9]

N2
g="2) 1~ )P 0) - ) (19)
(#)

Negative values of this parameter indicate sub-Poissonian photon statistics,
namely, nonclassical character of the field. One obvious example of the
nonclassical field is a field in a number state |n) for which the photon number
variance is zero, and we have g(0)=1-1/n and ¢ = —1. For coherent
states, g (0)=1 and ¢ = 0. In this context, coherent states draw a somewhat
arbitrary line between the quantum states that have *“classical analogs” and the
states that do not have them. The coherent states belong to the former category,
while the states for which g®(0)< 1 or ¢ < 0 belong to the latter category.
This distinction is better understood when the Glauber—Sudarshan quasidistri-
bution function P(o)is used to describe the field.

The coherent states (13) can be used as a basis to describe states of the field.
In such a basis for a state of the field described by the density matrix p, we can
introduce the quasidistribution function P(o)in the following way:

p= jdzocP<a>|a><oc| (20)

where d?a = d Re(a)d Im(a). In terms of P(o), the expectation value of the
normally ordered products (creation operators to the left and annihilation
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operators to the right) has the form
((@")"a") =Tr[p(a")"a"] = Jd%ﬂP(a)(d*)mG" (21)

For a coherent state |og), p = |oto){o%|, and the quasiprobability distribution
Pe)=8% @0 — o o) giving ((a")™a") = (o*)"a"). When P(a) is a well-be-
haved, positive definite function, it can be considered as a probability distribu-
tion function of a classical stochastic process, and the field with such a P
function is said to have ‘“classical analog.” However, the P function can be
highly singular or can take negative values, in which case it does not satisfy
requirements for the probability distribution, and the field states with such a P
function are referred to as nonclassical states.

From the definition (13) of coherent state it is easy to derive the complete-
ness relation

TR (22)

and find that the coherent states do not form an orthonormal set

|(alB)[* = exp(—Jo — BI) (23)

and only for |o.— [3|2 > 1 they are approximately orthogonal. In fact, coherent
states form an overcomplete set of states.

To see the nonclassical character of squeezed states better, let us express the
variance ((AQ)?) in terms of the P function

(AQ)) = ((@+a")?) — ((a+a"h))’
=(@+a? 42 a+1)—(a+at)?
=1+ szaP(oc)[(oc + o) — (o + o) (24)

which shows that ((A Q)z) < 1 is possible only if P(o) is not a positive definite
function. The unity on the right-hand side of (24) comes from applying the
commutation relation (4) to put the formula into its normal form, and it is thus a
manifestation of the quantum character of the field (‘“‘shot noise”).

Similarly, for the photon number variance, we get

((AR)*) = (i) + {a"2a*) — (a*a)®

= (m) + J612<><P(0L)[|0<|2 —{Jo)? (25)
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Again, ((An)?)< (i) only if P(o) is not positive definite, and thus sub-
Poissonian photon statistics is a nonclassical feature.
In view of (24), one can write

(AQ) =1+(:(A0):),  ((AP)=1+(:(AP)":)  (26)

where : : indicate the normal form of the operator. Using the normal form of the
quadrature component variances squeezing can be conveniently defined by the
condition

((AQ)P:) <0 or (:(AP)*:) <0 (27)

Therefore, whenever the normal form of the quadrature variance is negative, this
component of the field is squeezed or, in other words, the quantum noise in this
component is reduced below the vacuum level. For classical fields, there is no
unity coming from the boson commutation relation, and the normal form of the
quadrature component represents true variance of the classical stochastic
variable, which must be positive.

The Glauber—Sudarshan P representation of the field state is associated with
the normal order of the field operators and is not the only c-number represen-
tation of the quantum state. Another quasidistribution that is associated with
antinormal order of the operators is the Q representation, or the Husimi function,
defined as

0(0) =~ (olpla) (28)

and in terms of this function the expectation value of the antinormally ordered
product of the field operators is calculated according to the formula

@@ =1 | o lpla)anay 29)

It is clear from (28) that Q(a)is always positive, since p is a positive definite
operator. For a coherent state |o), Q(a)= (1/m) exp(—|o — 0(0|2) is a Gaussian
in the phase space {Re a, Im o} which is centered at op. The section of this
function, which is a circle, represents isotropic noise in the coherent state (the
same as for the vacuum). The anisotropy introduced by squeezed states means a
deformation of the circle into an ellipse or another shape.

Generally, according to Cahill and Glauber [10], one can introduce the s-
parametrized quasidistribution function %" '<S>(cx) defined as

WO (o) = ~Te{p T (a)} (30)
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where the operator 7)(o)is given by

19(0) = | e exp (8~ 90D 2) G
and

. séz .

DO(E) = e () D0 (32)

where D(&) is the displacement operator and p is the density matrix of the field.
The operator 7®)( o) can be rewritten in the form

7 2 - ib (S + 1) (nD* (o) (33)

which gives explicitly its s dependence. So, the s-parametrized quasidistribution
function %~ (“>(oc) has the following form in the number-state basis

A Z P (1| T (00) | m) (34)

where the matrix elements of the operator (31) are given by
R ' 2 m—n+1 S+1 n ]
7 = —i(m—n)8 ) m—n
Wt = (2) () e

200\ ey [ 4l
_ Lm n
X exp ( T s> . <1 — (35)

in terms of the associate Laguerre polynomials L7~"(x). In this equation we
have also separated explicitly the phase of the complex number o by writing

o = |ofe® (36)

The phase 0 is the quantity representing the field phase.

With the quasiprobability distributions %"~ (S)(oc), the expectation values of the
s-ordered products of the creation and annihilation operators can be obtained by
proper integrations in the complex o plane. In particular, for s = 1,0,—1, the s-
ordered products are normal, symmetric, and antinormal ordered products of the
creation and annihilation operators, and the corresponding distributions are the
Glauber—Sudarshan P function, Wigner function, and Husimi Q function. By
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virtue of the relation inverse to (34), the field density matrix can be retrieved
from the quasiprobability function

p= szoc T () (o) (37)

Polar decomposition of the field amplitude, as in (36), which is trivial for
classical fields becomes far from being trivial for quantum fields because of the
problems with proper definition of the Hermitian phase operator. It was quite
natural to associate the photon number operator with the intensity of the field
and somehow construct the phase operator conjugate to the number operator.
The latter task, however, turned out not to be easy. Pegg and Barnett [11-13]
introduced the Hermitian phase formalism, which is based on the observation
that in a finite-dimensional state space, the states with well-defined phase
exist [14]. Thus, they restrict the state space to a finite (¢ + 1)-dimensional
Hilbert space H(®) spanned by the number states |0), |1), ...,|o). In this space
they define a complete orthonormal set of phase states by

16, inB,)|n) , m=0,1,...,0 (38)

1 o
)= T o

where the values of 0,, are given by

0,, = 0 + (39)

c+1

The value of 6y is arbitrary and defines a particular basis set of (¢ + 1) mutually
orthogonal phase states. The number state |n) can be expanded in terms of the
|6,,) phase-state basis as

1
c+1

) = 3 18,) Oln) =

m=0

> exp(—inb,)|6,) (40)
m=0

From Egs. (38) and (40) we see that a system in a number state is equally likely
to be found in any state |0,,), and a system in a phase state is equally likely to be
found in any number state |n).

The Pegg—Barnett Hermitian phase operator is defined as

Do = 0,[0,) (6] (41)
m=0
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Of course, the phase states (38) are eigenstates of the phase operator (40) with
the eigenvalues 0,, restricted to lie within a phase window between 0y and
0o + 2nc/(c + 1). The Pegg—Barnett prescription is to evaluate any observable
of interest in the finite basis (38), and only after that to take the limit ¢ — oc.

Since the phase states (38) are orthonormal, (0,,]0,,) = 3,,, the kth power
of the Pegg—Barnett phase operator (41) can be written as

(e}
(I)g = Z e]:n|em><e;n| (42)
m=0
Substituting Eqgs. (38) and (39) into Eq. (41) and performing summation over m

yields explicitly the phase operator in the Fock basis:

by — 0, + or__ 2n e.xp [i(n — n")0o]|n) (n']
o+l o+ 1#", expli(n —n')2n/(c+1)] — 1

(43)

It is readily apparent that the Hermitian phase operator dy has well-defined
matrix elements in the number-state basis and does not suffer from the problems
as those the original Dirac phase operator suffered. Indeed, using the Pegg—
Barnett phase operator (43) one can readily calculate the phase-number commu-
tator [13]

/ . /
[tfe,ﬁ] _ 2 Z (n.—n)e/xp[t(n—n)eo] i) (| (44)
o+l expliln —n')2n/(c+1)] -1
This equation looks very different from the famous Dirac postulate for the
phase-number commutator.

The Pegg—Barnett Hermitian phase formalism allows for direct calculations
of quantum phase properties of optical fields. As the Hermitian phase operator is
defined, one can calculate the expectation value and variance of this operator for
a given state |f). Moreover, the Pegg—Barnett phase formalism allows for the
introduction of the continuous phase probability distribution, which is a re-
presentation of the quantum state of the field and describes the phase properties
of the field in a very spectacular fashion. For so-called physical states, that is,
states of finite energy, the Pegg—Barnett formalism simplifies considerably. In
the limit as 6 — oo one can introduce the continuous phase distribution

1
P(0) = lim 2

G—00 T

(0l f)I? (45)

where (G + 1)/2m is the density of states and the discrete variable 0, is
replaced by a continuous phase variable 0. In the number-state basis the
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Pegg—Barnett phase distribution takes the form [15]

P(0) = 2]7[ {1 +2Re > p,,exp[—i(m— n)@]} (46)

m>n

where p,,, = (m|p|n) are the density matrix elements in the number-state basis.
The phase distribution (46) is 2n-periodic, and for all states with the density
matrix diagonal in the number-state basis, the phase distribution is uniform over
the 2n-wide phase window. Knowing the phase distribution makes the calcula-
tion of the phase operator expectation values quite simple; it is simply the
calculation of all integrals over the continuous phase variable 0. For example,

00+2m
(Flh 1) = L 40 0°P(0) (47)

When the phase window is chosen in such a way that the phase distribution is
symmetrized with respect to the initial phase of the partial phase state, the phase
variance is given by the formula

((Ady)?) = J_ d0 6’P(0) (48)

For a partial phase state with the decomposition

1) = bue™n) (49)
the phase variance has the form
(Adg)?) = ~ +4> byb ()" (50)
g e

The value nt?/3 is the variance for the uniformly distributed phase, as in the case
of a single-number state.

On integrating the quasiprobability distribution %~ (“')(oc), given by (34), over
the “radial” variable |o|, we get a “phase distribution” associated with this
quasiprobability distribution. The s-parametrized phase distribution is thus
given by

P (0) = jw dle| O (@)]of (51)
0
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which, after performing of the integrations, gives the formula similar to the
Pegg—Barnett phase distribution

m>n

‘ 1 , ‘
P (0) = o { 1+2Re> p,,e "G (m, n)} (52)

The difference between the Pegg—Barnett phase distribution (46) and the
distribution (52) lies in the coefficients G*)(im,n), which are given by [16]

Y 2 (m-+n) /2 min(m,n) 1+ 1

=0

NGl it

U\ Jom =Dl 1))

The phase distributions obtained by integration of the quasidistribution func-
tions are different for different s, and all of them are different from the Pegg—
Barnett phase distribution. The Pegg—Barnett phase distribution is always
positive while the distribution associated with the Wigner distribution (s = 0)
may take negative values. The distribution associated with the Husimi Q
function is much broader than the Pegg—Barnett distribution, indicating that
some phase information on the particular quantum state has been lost. Quantum
phase fluctuations as fluctuations associated with the operator conjugate to the
photon-number operator are important for complete picture of the quantum
noise of the optical fields (for more details, see, e.g., Refs. 16 and 17).

III. SECOND-HARMONIC GENERATION

Second-harmonic generation, which was observed in the early days of lasers [18]
is probably the best known nonlinear optical process. Because of its simplicity
and variety of practical applications, it is a starting point for presentation of
nonlinear optical processes in the textbooks on nonlinear optics [1,2]. Classi-
cally, the second-harmonic generation means the appearance of the field at
frequency 2m (second harmonic) when the optical field of frequency
(fundamental mode) propagates through a nonlinear crystal. In the quantum
picture of the process, we deal with a nonlinear process in which two photons of
the fundamental mode are annihilated and one photon of the second harmonic is
created. The classical treatment of the problem allows for closed-form solutions
with the possibility of energy being transferred completely into the second-
harmonic mode. For quantum fields, the closed-form analytical solution of the
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problem has not been found unless some approximations are made. The early
numerical solutions [19,20] showed that quantum fluctuations of the field
prevent the complete transfer of energy into the second harmonic and the
solutions become oscillatory. Later studies showed that the quantum states of
the field generated in the process have a number of unique quantum features
such as photon antibunching [21] and squeezing [9,22] for both fundamental
and second harmonic modes (for a review and literature, see Ref. 23). Nikitin
and Masalov [24] discussed the properties of the quantum state of the
fundamental mode by calculating numerically the quasiprobability distribution
function Q( o). They suggested that the quantum state of the fundamental mode
evolves, in the course of the second-harmonic generation, into a superposition
of two macroscopically distinguishable states, similar to the superpositions
obtained for the anharmonic oscillator model [25-28] or a Kerr medium [29,30].
Bajer and Lisonék [31] and Bajer and Pefina [32] have applied a symbolic
computation approach to calculate Taylor series expansion terms to find
evolution of nonlinear quantum systems. A quasiclassical analysis of the second
harmonic generation has been done by Alvarez-Estrada et al. [33]. Phase
properties of fields in harmonics generation have been studied by Gantsog et
al. [34] and Drobny and Jex [35]. Bajer et al. [36] and Bajer et al. [37] have
discussed the sub-Poissonian behavior in the second- and third-harmonic
generation. More recently, Olsen et al. [38,38] have investigated quantum-
noise-induced macroscopic revivals in second-harmonic generation and criteria
for the quantum nondemolition measurement in this process.

Quantum description of the second harmonic generation, in the absence of
dissipation, can start with the following model Hamiltonian

H=Hy+H, (54)
where
Ho = hioa"a + 2heb*hb,  Hy = hx(@®b" +a*h) (55)

and a (a*), b (l;+) are the annihilation (creation) operators of the fundamental
mode of frequency ® and the second harmonic mode at frequency 2w,
respectively. The coupling constant k, which is real, describes the coupling
between the two modes. Since HO and H, commute, there are two constants of
motion: HO and I:II, Ho determines the total energy stored in both modes, which
is conserved by the interaction H;. The free evolution associated with the
Hamiltonian Hy leads to a(7)= a(0) exp( ior) and b(1)= b(0) exp( i20r1).

This trivial exponential evolution can always be factored out and the important
part of the evolution described by the interaction Hamiltonian H;, for the slowly
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varying operators in the Heisenberg picture, is given by a set of equations

QU

5, a0) == [a, ) = —2ixa* (1)b(r)
d - I . . )
Eb(t) = E[b’Hl] = —ixa (1) (56)

where for notational convenience we use the same notation for the slowly
varying operators as for the original operators — it is always clear from the
context which operators are considered. In deriving the equations of motion (56),
it is assumed that the operators associated with different modes commute, while
for the same mode they obey the bosonic commutation rules (4).

Usually, the second-harmonic generation is considered as a propagation
problem, not a cavity field problem, and the evolution variable is rather the path
z the two beams traveled in the nonlinear medium. In the simplest, discrete two
mode description of the process the transition from the cavity to the propagation
problem is done by the replacement ¢ = — z/v, where v denotes the velocity of
the beams in the medium (we assume perfect matching conditions). We will use
here time as the evolution variable, but it is understood that it can be equally
well the propagation time in the propagation problem. So, we basically consider
an idealized, one-pass problem. In fact, in the cavity situation the classical field
pumping the cavity as well as the cavity damping must be added into the simple
model to make it more realistic. Quantum theory of such a model has been
developed by Drummond et al. [39,40]. Another interesting possibility is to
study the second harmonic generation from the point of view of the chaotic
behavior [41]. Such effects,however, will not be the subject of our concern here.

A. Classical Fields

Before we start with quantum description, let us recollect the classical solutions
which will be used later in the method of classical trajectories to study some
quantum properties of the fields. Equations (56) are valid also for classical fields
after replacing the field operators a and b by the c-number field amplitudes o
and B, which are generally complex numbers. They can be derived from the
Maxwell equations in the slowly varying amplitude approximation [1] and have
the form.

= () = —2ixo* (1)B(t)
d .
E[3(;) = —iko (1) (57)

For classical fields the closed-form analytical solutions to equations (57) are
known. Assuming that initially there is no second-harmonic field (B(0)= 0),
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and the fundamental field amplitude is real and equal to a(0)= o ( the solutions
for the classical amplitudes of the second harmonic and fundamental modes are
given by [1]

a(r) = agsech (V2 oK)

B(1) = j_% tanh (V2 ogt) (58)

The solutions (58) are monotonic and eventually all the energy present initially
in the fundamental mode is transferred to the second-harmonic mode.

In a general case, when both modes initially have nonzero amplitudes, oy # 0
and B, # 0, introducing o = |ot|e’® and B = |B|e'®», we obtain the following set
of equations:

d
E'OL' = —2k]|a||B|sin?d

d
LBl = i|or|* sin o

iﬁ =K w— 4|B| | cos®?
di Bl

%d}a = —2k|B|cosv
d o
Ed)b = —Km cosd (59)

where 9 = 2¢, — ¢,. The system (59) has two integrals of motion
Co= o +2IB*,  Cr = [af’|B|cos¥ (60)

which are classical equivalents of the quantum constants of motion Hy and H,
(Cy= (I:Io> Cr= <I£I1)). Depending on the values of the constants of motion Cy
and Cj, the dynamics of the system (59) can be classified into several cate-
gories [42,43]:

1. Phase-stable motion, C; =0, in which the phases of each mode are
preserved and the modes move radially in the phase space. The phase
difference ¢ is also preserved, which appears for cos? =0 and
9 = £1/2. The solutions (58) belong to this category.

2. Phase-changing motion, C; # 0, in which the dynamics of each mode
involves both radial and phase motion. In this case both modes must be
initially excited and their phase difference cannot be equal to +m/2.



