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RYSZARD TANAŚ, Nonlinear Optics Division, Institute of Physics, Adam
Mickiewicz University, Poznań, Poland
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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE
STUART A. RICE

vii





PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the

series,Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume

119 is largely a dialogue between two schools of thought, one school concerned

with quantum optics and Abelian electrodynamics, the other with the emerging

subject of non-Abelian electrodynamics and unified field theory. In one of the

review articles in the third part of this volume, the Royal Swedish Academy

endorses the complete works of Jean-Pierre Vigier, works that represent a view

of quantum mechanics opposite that proposed by the Copenhagen School. The

formal structure of quantum mechanics is derived as a linear approximation for

a generally covariant field theory of inertia by Sachs, as reviewed in his article.

This also opposes the Copenhagen interpretation. Another review provides

reproducible and repeatable empirical evidence to show that the Heisenberg

uncertainty principle can be violated. Several of the reviews in Part 1 contain

developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories

distinct from the Maxwell–Heaviside theory, the predominant paradigm at this

stage in the development of science. Other review articles develop electro-

dynamics from a topological basis, and other articles develop conventional or

U(1) electrodynamics in the fields of antenna theory and holography. There are

also articles on the possibility of extracting electromagnetic energy from

Riemannian spacetime, on superluminal effects in electrodynamics, and on

unified field theory based on an SU(2) sector for electrodynamics rather than a

U(1) sector, which is based on the Maxwell–Heaviside theory. Several effects

that cannot be explained by the Maxwell–Heaviside theory are developed using

various proposals for a higher-symmetry electrodynamical theory. The volume

is therefore typical of the second stage of a paradigm shift, where the prevailing

paradigm has been challenged and various new theories are being proposed. In

this case the prevailing paradigm is the great Maxwell–Heaviside theory and its

quantization. Both schools of thought are represented approximately to the same

extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of

opinion is represented so that a consensus will eventually emerge. The

prevailing paradigm (Maxwell–Heaviside theory) is ably developed by several

groups in the field of quantum optics, antenna theory, holography, and so on, but

the paradigm is also challenged in several ways: for example, using general

relativity, using O(3) electrodynamics, using superluminal effects, using an

ix



extended electrodynamics based on a vacuum current, using the fact that

longitudinal waves may appear in vacuo on the U(1) level, using a reproducible

and repeatable device, known as the motionless electromagnetic generator,

which extracts electromagnetic energy from Riemannian spacetime, and in

several other ways. There is also a review on new energy sources. Unlike

Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and

many thousands of papers are reviewed by both schools of thought. Much of the

evidence for challenging the prevailing paradigm is based on empirical data,

data that are reproducible and repeatable and cannot be explained by the Max-

well–Heaviside theory. Perhaps the simplest, and therefore the most powerful,

challenge to the prevailing paradigm is that it cannot explain interferometric and

simple optical effects. A non-Abelian theory with a Yang–Mills structure is

proposed in Part 2 to explain these effects. This theory is known as O(3)

electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous

logistical support and to the Fellows and Emeriti of the Alpha Foundation’s

Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at

the U.S. Department of Energy is thanked for a Website reserved for some of

this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MYRON W. EVANS

Ithaca, New York
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I. INTRODUCTION

More than a century has passed since Planck discovered that it is possible to

explain properties of the blackbody radiation by introducing discrete packets of

energy, which we now call photons. The idea of discrete or quantized nature of

energy had deep consequences and resulted in development of quantum mecha-

nics. The quantum theory of optical fields is called quantum optics. The cons-

truction of lasers in the 1960s gave impulse to rapid development of nonlinear

optics with a broad variety of nonlinear optical phenomena that have been
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experimentally observed and described theoretically and now are the subject of

textbooks [1,2]. In early theoretical descriptions of nonlinear optical phenom-

ena, the quantum nature of optical fields has been ignored on the grounds that

laser fields are so strong, that is, the number of photons associated with them are

so huge, that the quantum properties assigned to individual photons have no

chances to manifest themselves. However, it turned out pretty soon that

quantum noise associated with the vacuum fluctuations can have important

consequences for the course of nonlinear phenomena. Moreover, it appeared

that the quantum noise itself can change essentially when the quantum field is

subject to the nonlinear transformation that is the essence of any nonlinear

process. The quantum states with reduced quantum noise for a particular

physical quantity can be prepared in various nonlinear processes. Such states

have no classical counterparts; that is, the results of some physical measure-

ments cannot be explained without explicit recall to the quantum character of

the field. The methods of theoretical description of quantum noise are the

subject of Gardiner’s book [3]. This chapter is not intended as a presentation of

general methods that can be found in the book; rather, we want to compare the

results obtained with a few chosen methods for the two, probably most

important, nonlinear processes: second-harmonic generation and downconver-

sion with quantum pump.

Why have we chosen the second-harmonic generation and the downconver-

sion to illustrate consequences of field quantization, or a role of quantum noise,

in nonlinear optical processes? The two processes are at the same time similar

and different. Both of them are described by the same interaction Hamiltonian,

so in a sense they are similar and one can say that they show different faces of

the same process. However, they are also different, and the difference between

them consists in the different initial conditions. This difference appears to be

very important, at least at early stages of the evolution, and the properties of the

fields produced in the two processes are quite different. With these two best-

known and practically very important examples of nonlinear optical processes,

we would like to discuss several nonclassical effects and present the most

common theoretical approaches used to describe quantum effects. The chapter

is not intended to be a complete review of the results concerning the two

processes that have been collected for years. We rather want to introduce the

reader who is not an expert in quantum optics into this fascinating field by

presenting not only the results but also how they can be obtained with presently

available computer software. The results are largely illustrated graphically for

easier comparisons. In Section II we introduce basic definitions and the most

important formulas required for later discussion. Section III is devoted to

presentation of results for second-harmonic generation, and Section IV results

for downconversion. In the Appendixes A and B we have added examples of

computer programs that illustrate usage of really existing software and were

2 ryszard tanaś



actually used in our calculations. We draw special attention to symbolic

calculations and numerical methods, which can now be implemented even on

small computers.

II. BASIC DEFINITIONS

In classical optics, a one mode electromagnetic field of frequency o, with the

propagation vector k and linear polarization, can be represented as a plane wave

Eðr; tÞ ¼ 2E0 cosðk � r� ot þ jÞ ð1Þ
where E0 is the amplitude and j is the phase of the field. Assuming the linear

polarization of the field, we have omitted the unit polarization vector to simplify

the notation. Classically, both the amplitude E0 and the phase j can be well-

defined quantities, with zero noise. Of course, the two quantities can be

considered as classical random variables with nonzero variances; thus, they

can be noisy in a classical sense, but there is no relation between the two

variances and, in principle, either of them can be rendered zero giving the

noiseless classical field. Apart from a constant factor, the squared real ampli-

tude, E2
0, is the intensity of the field. In classical electrodynamics there is no real

need to use complex numbers to describe the field. However, it is convenient to

work with exponentials rather than cosine and sine functions and the field (1) is

usually written in the form

Eðr; tÞ ¼ EðþÞeiðk � r�otÞ þ Eð�Þe�iðk � r�otÞ ð2Þ

with the complex amplitudes E� = E 0e
�ij. The modulus squared of such an

amplitude is the intensity of the field, and the argument is the phase. Both

intensity and the phase can be measured simultaneously with arbitrary accuracy.

In quantum optics the situation is dramatically different. The electromagnetic

field E becomes a quantum quantity; that is, it becomes an operator acting in a

Hilbert space of field states, the complex amplitudes E� become the annihilation

and creation operators of the electromagnetic field mode, and we have

Ê ¼
ffiffiffiffiffiffiffiffiffiffi
�ho
2e0V

r
½âeiðk � r�otÞ þ âþe�iðk � r�otÞ� ð3Þ

with the bosonic commutation rules

½â; âþ� ¼ 1 ð4Þ

for the annihilation (â) and creation (âþ) operators of the field mode, where e0 is
the electric permittivity of free space and V is the quantization volume. Because

quantum noise in nonlinear optical phenomena 3



of laws of quantum mechanics, optical fields exhibit an inherent quantum

indeterminacy that cannot be removed for principal reasons no matter how

smart we are. The quantity

E0 ¼
ffiffiffiffiffiffiffiffiffiffi
�ho
2e0V

r
ð5Þ

appearing in (3) is a measure of the quantum optical noise for a single mode of

the field. This noise is present even if the field is in the vacuum state, and for this

reason it is usually referred to as the vacuum fluctuations of the field [4].

Quantum noise associated with the vacuum fluctuations, which appears because

of noncommuting character of the annihilation and creation operators expressed

by (4), is ubiquitous and cannot be eliminated, but we can to some extent

control this noise by ‘squeezing’ it in one quantum variable at the expense of

‘‘expanding’’ it in another variable. This noise, no matter how small it is in

comparison to macroscopic fields, can have very important macroscopic

consequences changing the character of the evolution of the macroscopic fields.

We are going to address such questions in this chapter.

The electric field operator (3) can be rewritten in the form

Ê ¼ E0 Q̂cosðk � r� otÞ þ P̂sinðk � r� otÞ� � ð6Þ

where we have introduced two Hermitian quadrature operators, Q̂ and P̂, defined

as

Q̂ ¼ âþ âþ ; P̂ ¼ �iðâ� âþÞ ð7Þ

which satisfy the commutation relation

½Q̂; P̂� ¼ 2i ð8Þ

The two quadrature operators thus obey the Heisenberg uncertainty relation

hð�Q̂Þ2ihð�P̂Þ2i � 1 ð9Þ

where we have introduced the quadrature noise operators

�Q̂ ¼ Q̂� hQ̂i ; �P̂ ¼ P̂� hP̂i ð10Þ

For the vacuum state or a coherent state, which are the minimum uncertainty

states, the inequality (9) becomes equality and, moreover, the two variances are

equal

hð�Q̂Þ2i ¼ hð�P̂Þ2 ¼ 1 ð11Þ

4 ryszard tanaś



The Heisenberg uncertainty relation (9) imposes basic restrictions on the

accuracy of the simultaneous measurement of the two quadrature components

of the optical field. In the vacuum state the noise is isotropic and the two

components have the same level of quantum noise. However, quantum states

can be produced in which the isotropy of quantum fluctuations is broken—the

uncertainty of one quadrature component, say, Q̂, can be reduced at the expense

of expanding the uncertainty of the conjugate component, P̂. Such states are

called squeezed states [5,6]. They may or may not be the minimum uncertainty

states. Thus, for squeezed states

hð�Q̂Þ2i < 1 or hð�P̂Þ2i < 1 ð12Þ

Squeezing is a unique quantum property that cannot be explained when the field

is treated as a classical quantity—field quantization is crucial for explaining this

effect.

Another nonclassical effect is referred to as sub-Poissonian photon statistics

(see, e.g., Refs. 7 and 8 and papers cited therein). It is well known that in a

coherent state defined as an infinite superposition of the number states

jai ¼ exp � jaj2
2

 !X1
n¼0

anffiffiffiffi
n!

p jni ð13Þ

the photon number distribution is Poissonian

pðnÞ ¼ jhnjaij2 ¼ expð�jaj2Þ jaj
2n

n!
¼ expð�hn̂iÞ hn̂i

n

n!
ð14Þ

which means

hð�n̂Þ2i ¼ hn̂2i � hn̂i2 ¼ hn̂i ð15Þ

If the variance of the number of photons is smaller than its mean value, the field

is said to exhibit the sub-Poissonian photon statistics. This effect is related to the

second-order intensity correlation function

Gð2ÞðtÞ ¼ h: n̂ðtÞn̂ðt þ tÞ :i ¼ hâþðtÞâþðt þ tÞâðt þ tÞâðtÞi ð16Þ

where : : indicate the normal order of the operators. This function describes the

probability of counting a photon at t and another one at t + t. For stationary
fields, this function does not depend on t but solely on t. The normalized

quantum noise in nonlinear optical phenomena 5



second-order correlation function, or second-order degree of coherence, is

defined as

gð2ÞðtÞ ¼ Gð2ÞðtÞ
hn̂i2 ð17Þ

If gð2Þ(t)< gð2Þ( 0) , the probability of detecting the second photon decreases

with the time delay t, indicating bunching of photons. On the other hand, if

gð2Þ(t)> gð2Þ( 0) , we have the effect of antibunching of photons. Photon anti-

bunching is another signature of quantum character of the field. For t =  0, we
have

gð2Þð0Þ ¼ hâþâþâ âi
hâþâi2 ¼ hn̂ðn̂� 1Þi

hn̂i2 ¼ 1þ hð�n̂Þ2i � hn̂i
hn̂i2 ð18Þ

which gives the relation between the photon statistics and the second-order

correlation function. Another convenient parameter describing the deviation of

the photon statistics from the Poissonian photon number distribution is the

Mandel q parameter defined as [9]

q ¼ hð�n̂Þ2i
hn̂i � 1 ¼ hn̂iðgð2Þð0Þ � 1Þ ð19Þ

Negative values of this parameter indicate sub-Poissonian photon statistics,

namely, nonclassical character of the field. One obvious example of the

nonclassical field is a field in a number state jni for which the photon number

variance is zero, and we have gð2Þ( 0)=  1 –  1/n and q  =  – 1. For coherent

states, gð2Þ(0)=  1 and q =  0. In this context, coherent states draw a somewhat

arbitrary line between the quantum states that have ‘‘classical analogs’’ and the

states that do not have them. The coherent states belong to the former category,

while the states for which gð2Þ( 0)< 1 or q < 0 belong to the latter category.

This distinction is better understood when the Glauber–Sudarshan quasidistri-

bution function P(a) is used to describe the field.

The coherent states (13) can be used as a basis to describe states of the field.

In such a basis for a state of the field described by the density matrix r, we can
introduce the quasidistribution function P(a) in the following way:

r ¼
ð
d2aPðaÞjaihaj ð20Þ

where d2a =  d Re(a)d Im(a) . In terms of P(a) , the expectation value of the

normally ordered products (creation operators to the left and annihilation

6 ryszard tanaś



operators to the right) has the form

hðâþÞmâni ¼ Tr ½rðâþÞmân� ¼
ð
d2aPðaÞða�Þman ð21Þ

For a coherent state ja0i, r =  ja0iha0j, and the quasiprobability distribution

P(a)=  dð2Þ(a –  a 0) giving h(aþ) mani =  (a�) mani. When P(a) is a well-be-

haved, positive definite function, it can be considered as a probability distribu-

tion function of a classical stochastic process, and the field with such a P

function is said to have ‘‘classical analog.’’ However, the P function can be

highly singular or can take negative values, in which case it does not satisfy

requirements for the probability distribution, and the field states with such a P

function are referred to as nonclassical states.

From the definition (13) of coherent state it is easy to derive the complete-

ness relation

1

p

ð
d2a jaihaj ¼ 1 ð22Þ

and find that the coherent states do not form an orthonormal set

jhajbij2 ¼ expð�ja� bj2Þ ð23Þ

and only for ja – bj2 � 1 they are approximately orthogonal. In fact, coherent

states form an overcomplete set of states.

To see the nonclassical character of squeezed states better, let us express the

variance h(�Q̂) 2i in terms of the P function

hð�Q̂Þ2i ¼ hðâþ âþÞ2i � hðâþ âþÞi2

¼ hâ2 þ âþ2 þ 2âþâþ 1i � hâþ âþi2

¼ 1þ
ð
d2aPðaÞ½ðaþ a�Þ2 � haþ a�i2� ð24Þ

which shows that h(� Q̂) 2i < 1 is possible only if P( a) is not a positive definite
function. The unity on the right-hand side of (24) comes from applying the

commutation relation (4) to put the formula into its normal form, and it is thus a

manifestation of the quantum character of the field (‘‘shot noise’’).

Similarly, for the photon number variance, we get

hð�n̂Þ2i ¼ hn̂i þ hâþ2â2i � hâþâi2

¼ hn̂i þ
ð
d2aPðaÞ½jaj2 � hjaj2i�2 ð25Þ
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Again, h(� n̂) 2i<hn̂i only if P( a) is not positive definite, and thus sub-

Poissonian photon statistics is a nonclassical feature.

In view of (24), one can write

hð�Q̂Þ2i ¼ 1þ h: ð�Q̂Þ2 :i ; hð�P̂Þ2i ¼ 1þ h: ð�P̂Þ2 :i ð26Þ

where : : indicate the normal form of the operator. Using the normal form of the

quadrature component variances squeezing can be conveniently defined by the

condition

h: ð�Q̂Þ2 :i < 0 or h: ð�P̂Þ2 :i < 0 ð27Þ

Therefore, whenever the normal form of the quadrature variance is negative, this

component of the field is squeezed or, in other words, the quantum noise in this

component is reduced below the vacuum level. For classical fields, there is no

unity coming from the boson commutation relation, and the normal form of the

quadrature component represents true variance of the classical stochastic

variable, which must be positive.

The Glauber–Sudarshan P representation of the field state is associated with

the normal order of the field operators and is not the only c-number represen-

tation of the quantum state. Another quasidistribution that is associated with

antinormal order of the operators is the Q representation, or the Husimi function,

defined as

QðaÞ ¼ 1

p
hajrjai ð28Þ

and in terms of this function the expectation value of the antinormally ordered

product of the field operators is calculated according to the formula

hâmðâþÞni ¼ 1

p

ð
d2a hajrjaiamða�Þn ð29Þ

It is clear from (28) that Q( a) is always positive, since r is a positive definite

operator. For a coherent state ja0i, Q( a)=  ( 1/p)  exp (– ja  – a0j2)  is a Gaussian
in the phase space {Re a, Im a} which is centered at a0. The section of this

function, which is a circle, represents isotropic noise in the coherent state (the

same as for the vacuum). The anisotropy introduced by squeezed states means a

deformation of the circle into an ellipse or another shape.

Generally, according to Cahill and Glauber [10], one can introduce the s-

parametrized quasidistribution function WðsÞ( a) defined as

WðsÞðaÞ ¼ 1

p
Trfr T̂ ðsÞðaÞg ð30Þ
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where the operator T̂ðsÞ( a) is given by

T̂ ðsÞðaÞ ¼ 1

p

ð
d2x expðax� � a�xÞD̂ðsÞðxÞ ð31Þ

and

D̂ðsÞðxÞ ¼ exp
sx2

2

� �
D̂ðxÞ ð32Þ

where D̂( x)  is the displacement operator and r is the density matrix of the field.

The operator T̂ ðsÞ( a) can be rewritten in the form

T̂ ðsÞðaÞ ¼ 2

1� s

X1
n¼0

D̂ðaÞjni sþ 1

s� 1

� �n

hnjD̂þðaÞ ð33Þ

which gives explicitly its s dependence. So, the s-parametrized quasidistribution

function WðsÞ( a) has the following form in the number-state basis

WðsÞðaÞ ¼ 1

p

X
m;n

rmnhnjT̂ðsÞðaÞjmi ð34Þ

where the matrix elements of the operator (31) are given by

hnjT̂ðsÞðaÞjmi ¼
ffiffiffiffiffi
n!

m!

r
2

1� s

� �m�nþ1
sþ 1

s� 1

� �n

e�iðm�nÞyjajm�n

� exp � 2jaj2
1� s

 !
Lm�n
n

4jaj2
1� s2

 !
ð35Þ

in terms of the associate Laguerre polynomials Lm�n
n ( x) . In this equation we

have also separated explicitly the phase of the complex number a by writing

a ¼ jajeiy ð36Þ

The phase y is the quantity representing the field phase.

With the quasiprobability distributionsWðsÞ( a) , the expectation values of the
s-ordered products of the creation and annihilation operators can be obtained by

proper integrations in the complex a plane. In particular, for s =  1, 0, –1, the s-
ordered products are normal, symmetric, and antinormal ordered products of the

creation and annihilation operators, and the corresponding distributions are the

Glauber–Sudarshan P function, Wigner function, and Husimi Q function. By
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virtue of the relation inverse to (34), the field density matrix can be retrieved

from the quasiprobability function

r ¼
ð
d2a T̂ ð�sÞðaÞWðsÞðaÞ ð37Þ

Polar decomposition of the field amplitude, as in (36), which is trivial for

classical fields becomes far from being trivial for quantum fields because of the

problems with proper definition of the Hermitian phase operator. It was quite

natural to associate the photon number operator with the intensity of the field

and somehow construct the phase operator conjugate to the number operator.

The latter task, however, turned out not to be easy. Pegg and Barnett [11–13]

introduced the Hermitian phase formalism, which is based on the observation

that in a finite-dimensional state space, the states with well-defined phase

exist [14]. Thus, they restrict the state space to a finite (s +  1)-dimensional

Hilbert space HðsÞ spanned by the number states j0i, j1i, . . . , jsi. In this space

they define a complete orthonormal set of phase states by

jymi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
Xs
n

expðinymÞjni ; m ¼ 0; 1; . . . ;s ð38Þ

where the values of ym are given by

ym ¼ y0 þ 2pm
sþ 1

ð39Þ

The value of y0 is arbitrary and defines a particular basis set of (s + 1) mutually

orthogonal phase states. The number state jni can be expanded in terms of the

jymi phase-state basis as

jni ¼
Xs
m¼0

jymihymjni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
Xs
m¼0

expð�inymÞjymi ð40Þ

From Eqs. (38) and (40) we see that a system in a number state is equally likely

to be found in any state jymi, and a system in a phase state is equally likely to be

found in any number state jni.
The Pegg–Barnett Hermitian phase operator is defined as

�̂y ¼
Xs
m¼0

ymjymihymj ð41Þ
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Of course, the phase states (38) are eigenstates of the phase operator (40) with

the eigenvalues ym restricted to lie within a phase window between y0 and

y0  +  2ps/(s +  1) . The Pegg–Barnett prescription is to evaluate any observable
of interest in the finite basis (38), and only after that to take the limit s ! 1.

Since the phase states (38) are orthonormal, hymjym0 i = dmm0 , the kth power

of the Pegg–Barnett phase operator (41) can be written as

�̂k
y ¼

Xs
m¼0

ykmjymihymj ð42Þ

Substituting Eqs. (38) and (39) into Eq. (41) and performing summation over m

yields explicitly the phase operator in the Fock basis:

�̂y ¼ y0 þ sp
sþ 1

þ 2p
sþ 1

X
n 6¼n0

exp ½iðn� n0Þy0�jnihn0j
exp ½iðn� n0Þ2p=ðsþ 1Þ� � 1

ð43Þ

It is readily apparent that the Hermitian phase operator �̂y has well-defined

matrix elements in the number-state basis and does not suffer from the problems

as those the original Dirac phase operator suffered. Indeed, using the Pegg–

Barnett phase operator (43) one can readily calculate the phase-number commu-

tator [13]

�̂y; n̂
� � ¼ � 2p

sþ 1

X
n 6¼n0

ðn� n0Þexp ½iðn� n0Þy0�
exp ½iðn� n0Þ2p=ðsþ 1Þ� � 1

jnihn0j ð44Þ

This equation looks very different from the famous Dirac postulate for the

phase-number commutator.

The Pegg–Barnett Hermitian phase formalism allows for direct calculations

of quantum phase properties of optical fields. As the Hermitian phase operator is

defined, one can calculate the expectation value and variance of this operator for

a given state j f i. Moreover, the Pegg–Barnett phase formalism allows for the

introduction of the continuous phase probability distribution, which is a re-

presentation of the quantum state of the field and describes the phase properties

of the field in a very spectacular fashion. For so-called physical states, that is,

states of finite energy, the Pegg–Barnett formalism simplifies considerably. In

the limit as s ! 1 one can introduce the continuous phase distribution

PðyÞ ¼ lim
s!1

sþ 1

2p
jhymj f ij2 ð45Þ

where (s +  1) /2p is the density of states and the discrete variable y m is

replaced by a continuous phase variable y. In the number-state basis the
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Pegg–Barnett phase distribution takes the form [15]

PðyÞ ¼ 1

2p
1þ 2Re

X
m>n

rmn exp ½�iðm� nÞy�
( )

ð46Þ

where rmn =  hmjrjni are the density matrix elements in the number-state basis.

The phase distribution (46) is 2p-periodic, and for all states with the density

matrix diagonal in the number-state basis, the phase distribution is uniform over

the 2p-wide phase window. Knowing the phase distribution makes the calcula-

tion of the phase operator expectation values quite simple; it is simply the

calculation of all integrals over the continuous phase variable y. For example,

h f j�̂k
yj f i ¼

ðy0þ2p

y0
dy ykPðyÞ ð47Þ

When the phase window is chosen in such a way that the phase distribution is

symmetrized with respect to the initial phase of the partial phase state, the phase

variance is given by the formula

hð��̂yÞ2i ¼
ðp
�p

dy y2PðyÞ ð48Þ

For a partial phase state with the decomposition

j f i ¼
X
n

bne
injjni ð49Þ

the phase variance has the form

hð��̂yÞ2i ¼ p2

3
þ 4

X
n>k

bnbk
ð�1Þn�k

ðn� kÞ2 ð50Þ

The value p2/3 is the variance for the uniformly distributed phase, as in the case

of a single-number state.

On integrating the quasiprobability distribution WðsÞ( a) , given by (34), over

the ‘‘radial’’ variable jaj, we get a ‘‘phase distribution’’ associated with this

quasiprobability distribution. The s-parametrized phase distribution is thus

given by

PðsÞðyÞ ¼
ð1
0

djajWðsÞðaÞjaj ð51Þ
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which, after performing of the integrations, gives the formula similar to the

Pegg–Barnett phase distribution

PðsÞðyÞ ¼ 1

2p
1þ 2Re

X
m>n

rmn e
�iðm�nÞyGðsÞðm; nÞ

( )
ð52Þ

The difference between the Pegg–Barnett phase distribution (46) and the

distribution (52) lies in the coefficients GðsÞ( m, n) , which are given by [16]

GðsÞðm; nÞ ¼ 2

1� s

� �ðmþnÞ=2 Xminðm;nÞ

l¼0

ð�1Þl 1þ s

2

� �l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

l

� � m

l

� �r �

�
mþ n

2
� lþ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� lÞ!ðn� lÞ!p ð53Þ

The phase distributions obtained by integration of the quasidistribution func-

tions are different for different s, and all of them are different from the Pegg–

Barnett phase distribution. The Pegg–Barnett phase distribution is always

positive while the distribution associated with the Wigner distribution (s = 0)

may take negative values. The distribution associated with the Husimi Q

function is much broader than the Pegg–Barnett distribution, indicating that

some phase information on the particular quantum state has been lost. Quantum

phase fluctuations as fluctuations associated with the operator conjugate to the

photon-number operator are important for complete picture of the quantum

noise of the optical fields (for more details, see, e.g., Refs. 16 and 17).

III. SECOND-HARMONIC GENERATION

Second-harmonic generation, which was observed in the early days of lasers [18]

is probably the best known nonlinear optical process. Because of its simplicity

and variety of practical applications, it is a starting point for presentation of

nonlinear optical processes in the textbooks on nonlinear optics [1,2]. Classi-

cally, the second-harmonic generation means the appearance of the field at

frequency 2o (second harmonic) when the optical field of frequency o
(fundamental mode) propagates through a nonlinear crystal. In the quantum

picture of the process, we deal with a nonlinear process in which two photons of

the fundamental mode are annihilated and one photon of the second harmonic is

created. The classical treatment of the problem allows for closed-form solutions

with the possibility of energy being transferred completely into the second-

harmonic mode. For quantum fields, the closed-form analytical solution of the
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problem has not been found unless some approximations are made. The early

numerical solutions [19,20] showed that quantum fluctuations of the field

prevent the complete transfer of energy into the second harmonic and the

solutions become oscillatory. Later studies showed that the quantum states of

the field generated in the process have a number of unique quantum features

such as photon antibunching [21] and squeezing [9,22] for both fundamental

and second harmonic modes (for a review and literature, see Ref. 23). Nikitin

and Masalov [24] discussed the properties of the quantum state of the

fundamental mode by calculating numerically the quasiprobability distribution

function Q( a) . They suggested that the quantum state of the fundamental mode

evolves, in the course of the second-harmonic generation, into a superposition

of two macroscopically distinguishable states, similar to the superpositions

obtained for the anharmonic oscillator model [25–28] or a Kerr medium [29,30].

Bajer and Lisoněk [31] and Bajer and Peřina [32] have applied a symbolic

computation approach to calculate Taylor series expansion terms to find

evolution of nonlinear quantum systems. A quasiclassical analysis of the second

harmonic generation has been done by Alvarez-Estrada et al. [33]. Phase

properties of fields in harmonics generation have been studied by Gantsog et

al. [34] and Drobný and Jex [35]. Bajer et al. [36] and Bajer et al. [37] have

discussed the sub-Poissonian behavior in the second- and third-harmonic

generation. More recently, Olsen et al. [38,38] have investigated quantum-

noise-induced macroscopic revivals in second-harmonic generation and criteria

for the quantum nondemolition measurement in this process.

Quantum description of the second harmonic generation, in the absence of

dissipation, can start with the following model Hamiltonian

Ĥ ¼ Ĥ0 þ ĤI ð54Þ

where

Ĥ0 ¼ �hoâþâþ 2�hob̂þb̂ ; ĤI ¼ �hkðâ2b̂þ þ âþ2b̂Þ ð55Þ

and â (âþ), b̂ (b̂þ) are the annihilation (creation) operators of the fundamental

mode of frequency o and the second harmonic mode at frequency 2o,
respectively. The coupling constant k, which is real, describes the coupling

between the two modes. Since Ĥ0 and ĤI commute, there are two constants of

motion: Ĥ0 and ĤI , Ĥ0 determines the total energy stored in both modes, which

is conserved by the interaction ĤI . The free evolution associated with the

Hamiltonian Ĥ0 leads to â( t) =  ̂a( 0) exp (– iot) and b̂( t)=  ̂b( 0) exp (– i2ot) .
This trivial exponential evolution can always be factored out and the important

part of the evolution described by the interaction Hamiltonian ĤI , for the slowly
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varying operators in the Heisenberg picture, is given by a set of equations

d

dt
âðtÞ ¼ 1

i�h
½â; ĤI � ¼ �2ik âþðtÞb̂ðtÞ

d

dt
b̂ðtÞ ¼ 1

i�h
½b̂; ĤI � ¼ �ik â2ðtÞ ð56Þ

where for notational convenience we use the same notation for the slowly

varying operators as for the original operators — it is always clear from the

context which operators are considered. In deriving the equations of motion (56),

it is assumed that the operators associated with different modes commute, while

for the same mode they obey the bosonic commutation rules (4).

Usually, the second-harmonic generation is considered as a propagation

problem, not a cavity field problem, and the evolution variable is rather the path

z the two beams traveled in the nonlinear medium. In the simplest, discrete two

mode description of the process the transition from the cavity to the propagation

problem is done by the replacement t =  – z/v, where v denotes the velocity of

the beams in the medium (we assume perfect matching conditions). We will use

here time as the evolution variable, but it is understood that it can be equally

well the propagation time in the propagation problem. So, we basically consider

an idealized, one-pass problem. In fact, in the cavity situation the classical field

pumping the cavity as well as the cavity damping must be added into the simple

model to make it more realistic. Quantum theory of such a model has been

developed by Drummond et al. [39,40]. Another interesting possibility is to

study the second harmonic generation from the point of view of the chaotic

behavior [41]. Such effects,however, will not be the subject of our concern here.

A. Classical Fields

Before we start with quantum description, let us recollect the classical solutions

which will be used later in the method of classical trajectories to study some

quantum properties of the fields. Equations (56) are valid also for classical fields

after replacing the field operators â and b̂ by the c-number field amplitudes a
and b, which are generally complex numbers. They can be derived from the

Maxwell equations in the slowly varying amplitude approximation [1] and have

the form.

d

dt
aðtÞ ¼ �2ika�ðtÞbðtÞ

d

dt
bðtÞ ¼ �ika2ðtÞ ð57Þ

For classical fields the closed-form analytical solutions to equations (57) are

known. Assuming that initially there is no second-harmonic field (b( 0)=  0),
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and the fundamental field amplitude is real and equal to a( 0)=  a 0 the solutions

for the classical amplitudes of the second harmonic and fundamental modes are

given by [1]

aðtÞ ¼ a0 sechð
ffiffiffi
2

p
a0ktÞ

bðtÞ ¼ a0ffiffiffi
2

p tanhð
ffiffiffi
2

p
a0ktÞ ð58Þ

The solutions (58) are monotonic and eventually all the energy present initially

in the fundamental mode is transferred to the second-harmonic mode.

In a general case, when both modes initially have nonzero amplitudes, a0 6¼ 0

and b0 6¼ 0, introducing a = jajeifa and b = jbjeifb , we obtain the following set

of equations:

d

dt
jaj ¼ �2kjajjbjsin#

d

dt
jbj ¼ kjaj2 sin#
d

dt
# ¼ k

jaj2
jbj � 4jbj

 !
cos#

d

dt
fa ¼ �2kjbjcos#

d

dt
fb ¼ �k

jaj2
jbj cos# ð59Þ

where # =  2fa – fb. The system (59) has two integrals of motion

C0 ¼ jaj2 þ 2jbj2 ; CI ¼ jaj2jbjcos# ð60Þ

which are classical equivalents of the quantum constants of motion Ĥ0 and ĤI

(C0 = hĤ0i, CI = hĤIi). Depending on the values of the constants of motion C0

and CI , the dynamics of the system (59) can be classified into several cate-

gories [42,43]:

1. Phase-stable motion, CI = 0, in which the phases of each mode are

preserved and the modes move radially in the phase space. The phase

difference # is also preserved, which appears for cos# = 0 and

# =  ± p/2. The solutions (58) belong to this category.

2. Phase-changing motion, CI 6¼ 0, in which the dynamics of each mode

involves both radial and phase motion. In this case both modes must be

initially excited and their phase difference cannot be equal to ±p/2.
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