


Pipelined Processor Farms



WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Surviving the Design of Microprocessor and Multimicroprocessor Systems:
Lessons Learned / Veljko Milutinovic

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

New Parallel Algorithms for Direct Solution of Linear Equations / C. Siva Ram
Murthy, K. N. Balasubramanya Murthy, and Srinivas Aluru

Practical PRAM Programming / Joerg Keller, Christoph Kessler, and
Jesper Larsson Traeff

Computational Collective Intelligence / Tadeusz M. Szuba

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton



Pipelined Processor Farms
Structured Design for Embedded Parallel Systems

Martin Fleury

Andrew Downton

A Wiley-lnterscience Publication
JOHN WILEY & SONS, INC.

New York / Chichester / Weinheim / Brisbane / Singapore / Toronto



This text is printed on acid-free paper. ©

Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York,
NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY.

Library of Congress Cataloging in Publication Data is available.

ISBN 0-471-38860-2

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1



Foreword

Parallel systems are typically difficult to construct, to analyse, and to opti-
mize. One way forward is to focus on stylized forms. This is the approach
taken here, for Pipelined Processor Farms (PPF). The target domain is that
of embedded systems with continuous flow of data, often with real-time con-
straints.

This volume brings together the results of ten years study and development
of the PPF approach and is the first comprehensive treatment beyond the
original research papers. The overall methodology is illustrated throughout
by a range of examples drawn from real applications. These show both the
scope for practical application and the range of choices for parallelism both
in the pipelining and in the processor farms at each pipeline stage. Freedom
to choose the numbers of processors for each stage is then a key factor for
balancing the system and for optimizing performance characteristics such as
system throughput and latency. Designs may also be optimized in other ways,
e.g. for cost, or tuned for alternative choices of processor, including future
ones, providing a high degree of future-proofing for PPF designs.

v



vi FOREWORD

An important aspect is the ability to do "what if analysis, assisted in part
by a prototype toolkit, and founded on validation of predicted performance
against real.

As the exposition proceeds, the reader will get an emerging understanding
of designs being crafted quantitatively for desired performance characteristics.
This in turn feeds in to larger scale issues and trade-offs between requirements,
functionality, benefits, performance, and cost. The essence for me is captured
by the phrase "engineering in the performance dimension".

CHRIS WADSWORTH
TECHNICAL CO-ORDINATOR

EPSRC PROGRAMME ON
PORTABLE SOFTWARE TOOLS

FOR PARALLEL ARCHITECTURES

Wantage, Nov.2000



Preface

In the 1980s, the advent of the transputer led to widespread investigation of
the potential of parallel computing in embedded applications. Application
areas included signal processing, control, robotics, real-time systems, image
processing, pattern analysis and computer vision. It quickly became apparent
that although the transputer provided an effective parallel hardware compo-
nent, and its associated language Occam provided useful low-level software
tools, there was also a need for higher-level tools together with a systematic
design methodology that addressed the additional design parameters intro-
duced by parallelism.

Our work at that time was concerned with implementing real-time docu-
ment processing systems which included significant computer vision problems
requiring multiple processors to meet throughput and latency constraints.
Reviews of similar work highlighted the fact that processor farms were of-
ten favored as an effective practical parallel implementation architecture, and
that many applications embodied an inherent pipeline processing structure.
After analyzing a number of our own systems and those reported by others
we concluded that a combination of the pipeline structure with a generalized
processor farm implementation at each pipeline stage offered a flexible general-
purpose architecture for soft real-time systems. We embarked upon a major
project, PSTESPA (Portable Software Tools for Embedded Signal Processing
Applications) to investigate the scope of the Pipeline Processor Farm (PPF)
design model, both in terms of its application potential and the supporting
software tools it required. Because the project focused mostly upon high-level

VII



viii PREFACE

design issues, its outcome largely remains valid despite seismic changes within
the parallel computing industry.

By the end of our PSTESPA project, notwithstanding its successful out-
come, the goalposts of parallel systems had moved, and it was becoming
apparent that many of the ambitious and idealistic goals of general-purpose
parallel computing had been tempered by the pragmatic reality of market
forces. Companies such as Inmos, Meiko, Parsys and Parsytec (producing
transputer-based machines), and ICL, AMT, MasPar and Thinking Machines
(producing SIMD machines), found that the market for parallel applications
was too fragmented to support high-volume sales of large-scale parallel ma-
chines based upon specialized processing elements, and that application devel-
opment was slow and difficult with limited supporting software tools. Shared-
memory machines produced by major uniprocessor manufacturers such as
IBM, DEC, Intel and Silicon Graphics, and distributed Networks of Work-
stations (NOWs) had however established a foothold in the market, because
they are based around high-volume commercial off-the-shelf (COTS) proces-
sors, and achieved penetration in markets such as database and file-serving
where parallelism could be supported within the operating system.

In our own application field of embedded systems, NOWs and shared-
memory machines have a significant part to play in supporting the parallel
logic development process, but implementation is now increasingly geared to-
wards hardware-software co-design. Co-design tools may currently be based
around heterogeneous computing elements ranging from conventional RISC
and DSP processors at one end of the spectrum, through embedded processor
cores such as ARM, to FPGAs and ASICs at the other. Historically, such
tools have been developed bottom-up, and therefore currently betray a strong
hardware design ethos, and a correspondingly weak high-level software design
model. Our current research (also funded by EPSRC) is investigating how to
extend the PPF design methodology to address this rapidly developing embed-
ded applications market using a software component-based approach, which
we believe can provide a valuable method of unifying current disparate low-
level hardware-software co-design models. Such solutions will surely become
essential as complex multimedia embedded applications become widespread
in consumer, commercial and industrial markets over the next decade.

ANDY DOWNTON

Colchester, Oct. 2000



Acknowledgments

Although this book has only two named authors, many others have con-
tributed to its content, both by carrying out experimental work and by col-
laborating in writing the journal and conference papers from which the book
is derived.

Early work on real-time handwritten address recognition, which highlighted
the problem to be addressed, was funded by the British Post Office, supported
by Roger Powell, Robin Birch and Duncan Chapman. Algorithmic develop-
ments were carried out by Ehsan Kabir and Hendrawan, and initial investiga-
tions of parallel implementations were made by Robert Tregidgo and Aysegul
Cuhadar, all of whom received doctorates for their work. In an effort to gen-
eralise the ideas thrown up by Robert's work in particular, further industrial
contract work in a different field, image coding, was carried out, funded by
BT Laboratories through the support of Mike Whybray.

Many people at BT contributed to this work through the provision of H.261
image coding software, and (later) other application codes for speech recog-
nition and microphone beam forming. Other software applications, including
those for model-based coding, H.263, and Eigenfaces were also investigated
in collaboration with BT. In addition to Mike Whybray, many others at BT
laboratories provided valuable support for work there, including Pat Mulroy,
Mike Nilsson, Bill Welsh, Mark Shackleton, John Talintyre, Simon Ringland
and Alwyn Lewis. BT also donated equipment, including a Meiko CS2 and
Texas TMS320C40 DSP systems to support our activities.



X

As a result of these early studies, funding was obtained from the EPSRC
(the UK Engineering and Physical Sciences Research Council) to investigate
the emergent PPF design methodology under a directed program on Portable
Software Tools for Parallel Architectures (PSTPA). This project — PSTESPA
(Parallel Software Tools for Embedded Signal Processing Applications) — en-
abled us not only to generalise the earlier work, but also to start investigating
and prototyping software tools to support the PPF design process. Chris
Wadsworth from Rutherford Appleton Laboratories was the technical coor-
dinator of this program, and has our heartfelt thanks for the support and
guidance he provided over a period of nearly four years. Adrian Clark, with
extensive previous experience of parallel image processing libraries, acted as
a consultant on the PSTESPA project, and Martin Fleury was appointed as
our first research fellow, distinguishing himself so much that before the end of
the project he had been appointed to the Department's academic staff. Sev-
eral other research fellows also worked alongside Martin during the project:
Herkole Sava, Nilufer Sarvan, Richard Durrant and Graeme Sweeney, and all
contributed considerably to its successful outcome, as is evidenced by their
co-authorship of many of the publications which were generated.

Publication of this book is possible not only because of the contributions
of the many collaborators listed above, but also through the kind permission
of the publishers of our journal papers, who have permitted us to revise our
original publications to present a complete and coherent picture of our work
here. We particularly wish to acknowledge the following sources of tables,
figures and text extracts which are reproduced from previous publications:

The Institution of Electrical Engineers (IEE), for permission to reprint:

• portions of A. C. Downton, R. W. S. Tregidgo, and A. Quhadar, Top-
down Structured parallelization of embedded image processing applica-
tions. IEE Proceedings Part I (Vision, Image, and Signal Processing),
141(6):438-445, 1994 as text in Chapter 1, as Figure 1.1 and A.1-A.4,
and as Table A.I;

• portions of M. Fleury, A. C. Downton, and A. F. Clark, Scheduling
schems for data farming, IEE Proceedings Part E (Computers and Dig-
ital Techniques), in press at the time of writing, as text in Chapter 6,
as Figures 6.1-6.9, and as Tables 6.1 and 6.2;

• portions of A. C. Downton, Generalised approach to parallelising im-
age sequence coding algorithms, IEE Proceedings I (Vision, Image, and
Signal Processing), 141(6):438-445, 1994 as text in Section 8.1, as Fig-
ures A.6-8.12, and as Tables 8.1 and 8.2;

• portions of H. P. Sava, M. Fleury, A. C. Downton, and A. F. Clark,
Parallel pipeline implementation of wavelet transforms, IEE Proceedings
Part I (Vision, Image, and Signal Processing), 144(6):355-359, 1997 as
text in Section 9.2, and as Figures 9.6-9.10;



xi

• portions of M. Fleury, A. C. Downton, and A. F. Clark, Scheduling
schemes for data farming, IEE Proceedings Part E (Computers and
Digital Techniques), 146(5):227-234, 1994 as text in Section 11.9, as
Figures 11.11-11.17, and as Table 11.6;

• portions of M. Fleury, H. Sava, A. C. Downton, and A. F. Clark, De-
sign of a clock synchronization sub-system for parallel embedded sys-
tems, IEE Proceedings Part E (Computers and Digital Techniques),
144(2):65-73, 1997 as text in Chapter 12, as Figures 12.1-12.4, and
as Tables 12. land 12.2.

Elsevier Science, for inclusion of the following:

• portions reprinted from Microprocessors and Microsystems, 21, A. Quhadar,
A. C. Downton, and M. Fleury, A structured parallel design for embed-
ded vision systems: A case study, 131-141, Copyright 1997, with per-
mission from Elsevier Science, as text in Chapter 3, as Figures 3.1-3.10,
and as Table 3.1 and 3.2;

• portions reprinted from Image and Vision Computing, M. Fleury, A.
F. Clark, and A. C. Downton, Prototyping optical-flow algorithms on a
parallel machine, in press at the time of writing, Copyright 2000, with
permission from Elsevier Science, as text in Section 8.4, as Figures 8.19-
8.28, and as Tables 8.8-8.12;

• portions of Signal Processing: Image Communications, 7, A. C. Down-
ton, Speed-up trend analysis for H.261 and model-based image coding al-
gorithms using a parallel-pipeline model, 489-502, Copyright 1995, with
permission from Elsevier Science, as text in Section 10.2, Figures 10.5-
10.7, and Table 10.2.

Springer Verlag, for permission to reprint:

• portions of H. P. Sava, M. Fleury, A. C. Donwton, and A. F. Clark,
A case study in pipeline processor farming: Parallelising the H.263 en-
coder, in UK Parallel'96, 196-205, 1996, as text in Section 8.2, as Fig-
ures 8.13-8.15, and as Tables 8.3-8.5;

• portions of M. Fleury, A. C. Downton, and A. F. Clark, Pipelined par-
allelization of face recognition, Machine Vision Applications, in press
at the time of writing, as text in Section 8.3, Figures 5.1 and 5.2, Fig-
ures 8.16-8.18, and Tables 8.6 and 8.7;

• portions of M. Fleury, A. C. Downton, and A. F. Clark, Karhunen-Loeve
transform: An exercise in simple image-processing parallel pipelines, in
Euro-Par'97, 815-819, 1997, as text in Section 9.1, Figures 9.4-9.5;

• portions of M. Fleury, A. C. Downton, and A. F. Clark, Parallel struc-
ture in an integrated speech-recognition network, in Euro-Par'99, 995-
1004, 1999, as text in Section 10.1, Figures 10.1-10.4, and Table 10.1.



xii

Academic Press, for permission to reprint:

• portions of A. Cuhadar, D. G. Sampson, and A. C. Downton, A scalable
parallel approach to vector quantization, Real-Time Imaging, 2:241-247,
1995, as text in Section 9.3, Figures 9.11-9.19, and Table 9.2.

The Institute of Electrical and Electronic Engineers (IEEE), for permission
to reprint:

• portions of M. Fleury, A. C. Downton, and A. F. Clark, performance
metrics for embedded parallel pipelines, IEEE Transactions in Parallel
and Distributed Systems, in press at the time of writing, as text in
Chapter 11, Figures 2.2-2.4, Figures 11.1-11.10, and as and Tables 11.1-
11.5.

John Wiley & Sons Limited, for inclusion of:

• portions of Constructing generic data-farm templates, M. Fleury, A.
C. Downton, and A. F. Clark, Concurrency: Practice and Experience,
11 (9): 1-20, 1999, ©John Wiley & Sons Limited, reproduced with per-
mission, as text in Chapter 7 and Figures 7.1-7.7.

The typescript of this book was typeset by the authors using I^I^X, MikTex
and WinEdt.

A. C. D. and M. F.



Contents

Foreword v

Preface vii

Acknowledgments ix

Acronyms xix

Part I Introduction and Basic Concepts

1 Introduction 1
1.1 Overview 1
1.2 Origins 2
1.3 Amdahl's Law and Structured Parallel Design 4
1.4 Introduction to PPF Systems 4
1.5 Conclusions 8

Appendix 10
A.I Simple Design Example: The H.261 Decoder 10

2 Basic Concepts 17
2.1 Pipelined Processing 20

XIII



xiv CONTENTS

2.2 Pipeline Types 24
2.2.1 Asynchronous PPF 25
2.2.2 Synchronous PPF 26

2.3 Data Farming and Demand-based Scheduling 27
2.4 Data-farm Performance Criteria 28
2.5 Conclusion 30

Appendix 31
A.I Short case studies 31

3 PPF in Practice 37
3.1 Application Overview 38

3.1.1 Implementation issues 39
3.2 Parallelization of the Postcode Recognizer 39

3.2.1 Partitioning the postcode recognizer 40
3.2.2 Scaling the postcode recognizer 41
3.2.3 Performance achieved 4%

3.3 Parallelization of the address verifier ^7
3.3.1 Partitioning the address verifier ^7
3.3.2 Scaling the address verifier 49
3.3.3 Address verification farms 50
3.3.4 Overall performance achieved 50

3.4 Meeting the Specification 51
3.5 Conclusion 53

Appendix 53
A.I Other Parallel Postcode Recognition Systems 53

4 Development of PPF Applications 57
4-1 Analysis Tools 58
4.2 Tool Characteristics 59
4-3 Development Cycle 60
4-4 Conclusion 62

Part II Analysis and Partitioning of
Sequential Applications

5 Initial Development of an Application 67
5.1 Confidence Building 67
5.2 Automatic and Semi-automatic Parallelization 69



CONTENTS xv

5.3 Language Proliferation 71
5.4 Size of Applications 12
5.5 Semi-automatic Partitioning 73
5.6 Porting Code 75
5.7 Checking a Decomposition 77
5.8 Optimizing Compilers 77
5.9 Conclusion 79

Graphical Simulation and Performance Analysis
ofPPFs 81
6.1 Simulating Asynchronous Pipelines 82
6.2 Simulation Implementation 82
6.3 Graphical Representation 84
6.4 Display Features 88
6.5 Cross-architectural Comparison 89
6.6 Conclusion 93

Template-based Implementation 95
7.1 Template Design Principles 96
7.2 Implementation Choices 99
7.3 Parallel Logic Implementation 100
7.4 Target Machine Implementation 101

7.4-1 Common implementation issues 102
7.5 'NOW Implementation for Logic Debugging 104
7.6 Target Machine Implementations for Performance

Tuning 109
7.7 Patterns and Templates 112
7.8 Conclusion 113

Part III Case Studies

8 Application Examples 117
8.1 Case Study 1: H.261 Encoder 118

8.1.1 Purpose of parallelization 119
8.1.2 'Per macroblock' quantization without

motion estimation 119
8.1.3 'Per picture' quantization without motion

estimation 123



xvi CONTENTS

8.1.4 'Per picture' quantization with motion
estimation 125

8.1.5 Implementation of the parallel encoders 126
8.1.6 H.261 encoders without motion estimation 128
8.1.7 H.261 encoder with motion estimation 129
8.1.8 Edge data exchange 131

8.2 Case Study 2: H263 Encoder/Decoder 132
8.2.1 Static analysis of H.263 algorithm 134
8.2.2 Results from parallelizing H.263 135

8.3 Case Study 3: 'Eigenfaces' — Face Detection 139
8.3.1 Background 139
8.3.2 Eigenf aces algorithm 140
8.3.3 Parallelization steps 141
8.3.4 Introduction of second and third farms 143

8.4 Case Study 4- Optical Flow 145
8.4.1 Optical flow 145
8.4-2 Existing sequential implementation 147
8.4-3 Gradient-based routine 14?
8.4-4 Multi-resolution routine 150
8.4-5 Phase-based routine 154
8.4.6 LK results 156
8.4.7 Other methods 158
8.4-8 Evaluation 160

8.5 Conclusion 161

9 Design Studies 163
9.1 Case Study 1: Karhunen-Loeve Transform

(KIT) 164
9.1.1 Applications of the KLT 164
9.1.2 Features of the KLT 165
9.1.3 Parallelization of the KLT 165
9.1.4 PPF parallelization 168
9.1.5 Implementation 171

9.2 Case Study 2: 2D- Wavelet Transform 171
9.2.1 Wavelet Transform 172
9.2.2 Computational algorithms 173
9.2.3 Parallel implementation of Discrete

Wavelet Transform (DWT) 173



CONTENTS xvii

9.2.4 Parallel implementation of oversampled
WT 176

9.3 Case Study 3: Vector Quantization 179
9.3.1 Parallelization of VQ 180
9.3.2 PPF schemes for VQ 181
9.3.3 VQ implementation 183

9-4 Conclusion 186

10 Counter Examples 189
10.1 Case Study 1: Large Vocabulary Continuous-

Speech Recognition 190
10.1.1 Background 190
10.1.2 Static analysis of the LVCR system 191
10.1.3 Parallel design 193
10.1.4 Implementation on an SMP 195

10.2 Case Study 2: Model-based Coding 196
10.2.1 Parallelization of the model-based coder 196
10.2.2 Analysis of results 198

10.3 Case Study 3: Microphone Beam Array 202
10.3.1 Griffiths-Jim beam-former 202
10.3.2 Sequential implementation 203
10.3.3 Parallel implementation of the G-J

Algorithm 204
10.4 Conclusion 206

Part IV Underlying Theory and Analysis

11 Performance of PPFs 211
11.1 Naming Conventions 212
11.2 Performance Metrics 212

11.2.1 Order statistics 213
11.2.2 Asymptotic distribution 216
11.2.3 Characteristic maximum 217
11.2.4 Sample estimate 219

11.3 Gathering Performance Data 220
11.4 Performance Prediction Equations 221
11.5 Results 223

11.5.1 Prediction results 224



xviii CONTENTS

11.6 Simulation Results 225
11.7 Asynchronous Pipeline Estimate 227
11.8 Ordering Constraints 230
11.9 Task Scheduling 235

11.9.1 Uniform task size 236
11.9.2 Decreasing task size 236
11.9.3 Heuristic scheduling schemes 237
11.9.4 Validity of Factoring 238

11.10 Scheduling Results 238
11.10.1 Timings 238
11.10.2Simulation results 240

11.11 Conclusion 241
Appendix 242

A.I Outline derivation of Kruskal-Weiss prediction
equation 242

A.2 Factoring regime derivation 243

12 Instrumentation of Templates 247
12.1 Global Time 248
12.2 Processor Model 249
12.3 Local Clock Requirements 249
12.4 Steady-state Behavior 250
12.5 Establishing a Refresh Interval 253
12.6 Local Clock Adjustment 256
12.7 Implementation on the Paramid 257
12.8 Conclusion 259

Part V Future Trends

13 Future Trends 263
13.1 Designing for Differing Embedded Hardware 265
13.2 Adapting to Mobile Networked Computation 265
13.3 Conclusion 267

References 269

Index 299



Acronyms

AGP Advanced Graphics Protocol

API Application Programming Interface

APTT Analysis, Prediction, Template Toolkit

AR Autoregressive

ASIC Application Specific Integrated Circuits

ATR Automatic Target Recognition

AWT Abstract Window Toolkit

BSD Berkeley Standard Distribution

BSP Bulk Synchronous Parallel

CCITT International Consultative Committee for Telephone and
Telegraph

cdf Cumulative Distribution Function

CDT Categorical Data Type

GIF Common Intermediate Format

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSP Communicating Sequential Processes

CSS Central Synchronization Server

xix



xx Acronyms

CWT Continuous Wavelet Transform

DAG Directed Acyclic Graph

DOOM Distributed Component Object Model

DCT Discrete Cosine Transform

DSP Digital Signal Processor

DVD Digital Versatile Disc

DWT Discrete Wavelet Transform

FDDI Fibre Distributed Data Interface

FFT Fast Fourier Transform

FIFO First-In-First-Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Arrays

G-J Griffiths-Jim

HMM Hidden Markov Model

HP Hewlett-Packard

HPF High Performance Fortran

I/O Input/Output

IBM International Business Machines

IFFT Inverse Fast Fourier Transform

IFR Increasing Failure Rate

ISO International Standards Organization

ITU International Telecommunications Union

JIT Just-in-Time

JPEG Joint Photographic Experts Group

KLT Karhunen-Loeve Transform

LAN Local Area Network

LVCR Large Vocabulary Continuous-Speech Recognition

LWP Light-Weight Process

MAC Multiply Accumulate Operation

ME Motion Estimation

MIMD Multiple Instruction Multiple Data Streams

MIT Massachusetts Institute of Technology

MMX Multimedia Extension

MPEG Motion Picture Experts Group



Acronyms xxi

MPI Message-Passing Interface

NOW Network of Workstations

NP Non-polynomial

NT New Technology

NUMA Non-Uniform Memory Access

OCR Optical Character Recognition

OF Optical Flow

OOC Object-oriented Coding

PC Personal Computer

PCA Principal Components Algorithm

pdf Probability Distribution Function

PE Processing Element

PK Pollaczek-Khintchine

POSIX Portable Operating System-IX

PPF Pipelined Processor Farms

PSNR Peak Signal-to-Noise Ratio

PSTN Public System Telephone Network

PVM Parallel Virtual Machine

RISC Reduced Instruction Set Computer

RMI Remote Method Invocation

RPC Remote Procedure Call

RTE Run-time Executive

RTOS Real-time Operating System

SAR Synthetic Aperture Radar

SCSI Small Computer System Interface

SIMD Single Instruction Multiple Data Streams

SMP Symmetric Multiprocessor

SNN Semantic Neural Network

SPG Series Parallel Graph

SSD Sum-of-Squared-Differences

SSS Safe Self-Scheduling

STFT Short-Time Fourier Transform

TM Trademark

UTC Universal Time Coordinated



xxii Acronyms

VCS Virtual Channel System

VLC Variable Length Encoder

VLIW Very-Large Instruction Word

VLSI Very-Large Scale Integration

VQ Vector Quantization

w.r.t. with respect to

WS Wavelet Series

WWW World Wide Web



Parti

Introduction and Basic
Concepts



This page intentionally left blank



1
Introduction

1.1 OVERVIEW

Much of the success of computers can be attributed to their generality, which
allows different problems to be compiled and executed in different languages
on the same or different processors. Parallel processing currently does not pos-
sess the generality of sequential processing1 because new degrees of freedom,
such as the programming paradigm, topology (the connection pattern between
processors [170, 199]), and number of processors, have been introduced into
the design process. It appears that the potential offered by these additional
design choices has led to an insistence by designers on obtaining maximum per-
formance, with a consequent loss of generality. This is not surprising, because
parallel solutions are typically investigated for the very reason that conven-
tional sequential systems do not provide sufficient performance, but it ignores
the benefits of generality which are accepted by sequential programmers. The
sequential programming paradigm, or rather the abstract model of a computer
on which it rests, was introduced by von Neumann [45] and has persisted ever
since despite the evident internal parallelism in most microprocessor designs
(pipelined, vector, and superscalar [115]) and the obvious bottleneck if there is
just one memory-access path from the central processing unit (CPU) for data

1 Strictly, the term serial processing is more appropriate, as processing takes place on a serial
machine or processor. The term sequential processing implies that the algorithms being
processed are inherently sequential, whereas in fact they may contain parallel components.
However, this book retains common usage and takes sequential processing to be synonymous
with serial processing.

1



2 INTRODUCTION

and instructions alike. The model suits the way many programmers envisage
the execution of their programs (a single step at a time), perhaps because
errors are easier to find than when there is an interleaving of program order
as in parallel or concurrent programming paradigms.2

The Pipelined Processor Farms (PPF) design model, the subject of this
book, can be applied in its simplest form to any Multiple Instruction Mul-
tiple Data streams (MIMD) [114] multiprocessor system.3 Single Instruc-
tion Multiple Data streams (SIMD) computer architecture, though current at
the very-large scale integration (VLSI) chip-level, and to a lesser extent in
multimedia-extension (MMX) microprocessor instructions for graphics sup-
port at the processor level [212], is largely defunct at the processor level,
with a few honorable exceptions such as Cambridge Memory System's DAP
and the MasPar series of machines [13].4 Of the two categories of MIMD
machines, the primary concentration is upon distributed-memory machines,
where the address space is partitioned logically and physically between pro-
cessors. However, it is equally possible to logically partition shared-memory
machines, where there is a global address space. The boundaries between
distributed and shared-memory machines have dissolved in recent times [70],
a point to be returned to in Chapter 13.

1.2 ORIGINS

The origins of the PPF design method arose in the late 1980s as a result
of research carried out at the University of Essex to design and implement
a real-time postcode/address recognition system for the British Post Office
(see Chapter 3 for a description of the outcome of this process). Initial in-
vestigation of the image analysis and pattern recognition problems demon-
strated that significant research and development was needed before any kind
of working demonstrator could be produced, and that, of necessity, the first
demonstrator would need to be a non-real-time software simulation running
on a workstation. This provided the flexibility to enable easy experimental
evaluation and algorithm updates using offline databases of address images,

2Shared-memory machines can also relax read-write access across the processor set ranging
from strong to weak consistency, presenting a continuum of programming paradigms [259].
3Categorization of processors by the multiplicity of parallel data and instruction streams
supported is a well-known extension of von Neumann's model [65].
4Systolic arrays are also used for fine-grained, signal processing [200] though largely again
at the VLSI level. In systolic designs, data are pumped synchronously across an array
of processing elements (PEs). At each step a different stage in processing takes place.
Wavefront processors are an asynchronous version of the systolic architecture. Other forms
of instruction level parallelism are very-large instruction word (VLIW) DSPs (digital signal
processors) and its variant explicitly parallel instruction computing (EPIC) [319]. The idea
of transferring SIMD arrays such as the DAP to VLSI has also been mooted. The DIP 'chip
[66] is an experimental and novel SIMD VLSI array.



ORIGINS 3

and also a starting point for consideration of real-time implementation issues.
In short, solving the problem at all was very difficult; generating a real-time
solution (requiring a throughput of 10 envelope images/second, with a la-
tency of no more than 8 seconds for processing each image) introduced an
additional dimension of processing speed which was beyond the bounds of
available workstations.

A literature survey of the field of parallel processing at that time showed
that numerous papers had been published on parallelization of individual im-
age processing, image coding and image analysis algorithms (see, e.g. , [362]),
many inspired by the success of the transputer [136]. Most of these papers
were of limited generality however, since they reported bespoke paralleliza-
tion of specific well-known algorithms such as 2-D filters, FFTs, DCTs, edge
detectors, component labeling, Hough transforms, wavelets, segmentation al-
gorithms, etc. Significantly, examination of many of these customized parallel
algorithms revealed, in essence, the same solution; that of the single, demand-
based, data farm.

Practical image analysis and pattern recognition applications, however,
typically contain a number of algorithms implemented together as a complete
system. Like the postal address reading application, the CCITT H.261 en-
coder/decoder algorithm [49] is also a good illustration of this characteristic,
since it includes algorithms for discrete cosine transformation (DOT), mo-
tion estimation and compensation, various filters, quantizers, variable length
coding, and inverse versions of several of these algorithms. Very few papers
addressed the issue of parallelizing complete systems, in which individual al-
gorithm parallelization could be exploited as components. Therefore, a clue to
an appropriate generic parallel architecture for embedded applications was to
view the demand-based processor farm as a component within a higher-level
system framework.

From our point of view, parallel processing was also simply a means to an
end, rather than an end in itself. Our interest was in developing a general
system design method for MIMD parallel processors, which could be applied
after or during the initial iterative algorithm development phase. Too great
a focus on performance at the expense of generality would inevitably have
resulted in both implementations and design skills that rapidly became ob-
solete. We therefore aimed to support the early, architecture independent
stages of the design process, where parallelization of complete image process-
ing applications is considered, by a process analogous to stepwise refinement
in sequential program design [312, 335]. Among the advantages of the PPF
design methodology which resulted are the following:

• Upper bound (idealized) throughput scaling of the application is easily
defined, and aspects of the application which limit scaling are identified.

• Input/output latency is also defined and can be controlled.



INTRODUCTION

• Performance is incrementally scalable up to the upper bound (i.e. there
are no quantization restrictions on the number of processors which can
be used), so that real-time performance requirements can be met exactly.

• The granularity of parallelism is maximized, thus minimizing the design
effort required to move from the sequential to the parallel implementa-
tion.

• Design effort is focused on each performance bottleneck of each pipeline
stage in turn, by identifying the throughput, latency, and scalability.

1.3 AMDAHL'S LAW AND STRUCTURED PARALLEL DESIGN

Amdahl's law [15, 16] is the Ohm's law of parallel computing. It predicts an
upper bound to the performance of systems which contain both parallelization
and inherently sequential components. Amdahl's law states that the scaling
performance of a parallel algorithm is limited by the number of inherently
sequential operations in that algorithm. Consider a problem where a fraction
/of the work must be performed sequentially. The speed-up, S, possible from
a machine with N processors is:

I f / — 0.2 for example (i.e 20% of the algorithm is inherently sequential),
then the maximum speedup however many processors are added is 5.

As will be shown in later chapters, applying Amdahl's law to multi-algorithm
embedded systems demonstrates that the scaling which can be achieved is
largely defined, not by the number of processors used, but by any residual
sequential elements within the complete application algorithm. Thus effective
system parallelization requires a method of minimizing the impact of residual
sequential code, as well as of parallelizing the bulk of the application algo-
rithm. In the PPF design methodology, pipelining is used to overlap residual
sequential code execution with other forms of parallelism.

1.4 INTRODUCTION TO PPF SYSTEMS

A PPF is a software pipeline intended for recent, accessible, parallel machines.
Examples of such lowly parallel machines [278], which now abound, are net-
works of workstations (NOW), processor farms, symmetric multiprocessors
(SMP) and small-scale message-passing machines. A feature of such ma-
chines is that scalability is localized [93] and consequently the communication
diameter is also restricted. The commercial off-the-shelf (COTS) processors
used within such machines will outstrip the available interconnect bandwidth



INTRODUCTION TO PPF SYSTEMS 5

if combined in large configurations since such processors were not designed
with modularity in mind. To avoid this problem in PPF, a pipeline is parti-
tioned into a number of stages, each one of which may be parallel. PPF is
primarily aimed at continuous-flow systems in the field of signal processing,
image-processing, and multimedia in general.

A continuous-flow system is one in which data never cease to arrive, for ex-
ample a radar processor which must always monitor air traffic. These systems
frequently need to meet a variety of throughput, latency, and output-ordering
specifications. It becomes necessary to be able to predict performance, and
to provide a structure which permits performance scaling, by incremental
addition of processors and/or transfer to higher performance hardware once
the initial design is complete. The hard facts of achievable performance in a
parallel system are further discussed in Section 2.4.

There are two basic or elementary types of pipeline components: asyn-
chronous and synchronous, though many pipelined systems will contain some
segments of each type. PPF caters for any type of pipeline, whether syn-
chronous, asynchronous or mixed; their performance characteristics are dis-
cussed in detail in Section 2.2. Pipeline systems are a natural choice for
some synchronous applications. For example, a systolic pipeline-partitioning
methodology exists for signal-processing algorithms with a regular pattern
[237]. Alternatively, [8] notice that there is an asynchronous pipeline struc-
ture to the mind's method of processing visual input which also maps onto
computer hardware. If all information flow is in the forward direction [8] then
the partitions of the pipeline mirror the peripheral, attentive, and cognitive
stages of human vision [232]. The CMU Warp [18], the Cytocomputer [341],
PETAL and VAP [56] are early examples of machines used in pipelined fash-
ion for image processing.5 Input to the pipeline either takes the form of a
succession of images grouped into a batch (medical slides, satellite images,
video frames and the like) or raster-scan in which a stream of pixels is input
in the same order as a video camera scans a scene that is in horizontal, zig-
zag fashion. PPF generalizes the pipeline away from bespoke hardware and
away to some extent from regular problems. Examples of applicable irregu-
lar, continuous-flow systems can be found in vision [50] (see Chapter 3), radar
[97], speech-recognition processing [133], and data compression [52]. Chap-
ters 8 and 9 give further detailed case studies where PPF has been consciously
applied.

PPF is very much a systems approach to design, that is, it considers the
entire system before the individual components. Another way of saying this is
that PPF is a top-down as opposed to a bottom-up design methodology. For
some years it has been noted [214] that many reported algorithm examples
merely form a sub-system of a vision-processing system while it is a complete

5The common idea across these machines is to avoid the expense of a 2D systolic array by
using a linear systolic array.


