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Foreword

Parallel systems are typically difficult to construct, to analyse, and to opti-
mize. One way forward is to focus on stylized forms. This is the approach
taken here, for Pipelined Processor Farms (PPF). The target domain is that
of embedded systems with continuous flow of data, often with real-time con-
straints.

This volume brings together the results of ten years study and development
of the PPF approach and is the first comprehensive treatment beyond the
original research papers. The overall methodology is illustrated throughout
by a range of examples drawn from real applications. These show both the
scope for practical application and the range of choices for parallelism both
in the pipelining and in the processor farms at each pipeline stage. Freedom
to choose the numbers of processors for each stage is then a key factor for
balancing the system and for optimizing performance characteristics such as
system throughput and latency. Designs may also be optimized in other ways,
e.g. for cost, or tuned for alternative choices of processor, including future
ones, providing a high degree of future-proofing for PPF designs.
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vi FOREWORD

An important aspect is the ability to do "what if analysis, assisted in part
by a prototype toolkit, and founded on validation of predicted performance
against real.

As the exposition proceeds, the reader will get an emerging understanding
of designs being crafted quantitatively for desired performance characteristics.
This in turn feeds in to larger scale issues and trade-offs between requirements,
functionality, benefits, performance, and cost. The essence for me is captured
by the phrase "engineering in the performance dimension".

CHRIS WADSWORTH
TECHNICAL CO-ORDINATOR

EPSRC PROGRAMME ON
PORTABLE SOFTWARE TOOLS

FOR PARALLEL ARCHITECTURES

Wantage, Nov.2000



Preface

In the 1980s, the advent of the transputer led to widespread investigation of
the potential of parallel computing in embedded applications. Application
areas included signal processing, control, robotics, real-time systems, image
processing, pattern analysis and computer vision. It quickly became apparent
that although the transputer provided an effective parallel hardware compo-
nent, and its associated language Occam provided useful low-level software
tools, there was also a need for higher-level tools together with a systematic
design methodology that addressed the additional design parameters intro-
duced by parallelism.

Our work at that time was concerned with implementing real-time docu-
ment processing systems which included significant computer vision problems
requiring multiple processors to meet throughput and latency constraints.
Reviews of similar work highlighted the fact that processor farms were of-
ten favored as an effective practical parallel implementation architecture, and
that many applications embodied an inherent pipeline processing structure.
After analyzing a number of our own systems and those reported by others
we concluded that a combination of the pipeline structure with a generalized
processor farm implementation at each pipeline stage offered a flexible general-
purpose architecture for soft real-time systems. We embarked upon a major
project, PSTESPA (Portable Software Tools for Embedded Signal Processing
Applications) to investigate the scope of the Pipeline Processor Farm (PPF)
design model, both in terms of its application potential and the supporting
software tools it required. Because the project focused mostly upon high-level
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viii PREFACE

design issues, its outcome largely remains valid despite seismic changes within
the parallel computing industry.

By the end of our PSTESPA project, notwithstanding its successful out-
come, the goalposts of parallel systems had moved, and it was becoming
apparent that many of the ambitious and idealistic goals of general-purpose
parallel computing had been tempered by the pragmatic reality of market
forces. Companies such as Inmos, Meiko, Parsys and Parsytec (producing
transputer-based machines), and ICL, AMT, MasPar and Thinking Machines
(producing SIMD machines), found that the market for parallel applications
was too fragmented to support high-volume sales of large-scale parallel ma-
chines based upon specialized processing elements, and that application devel-
opment was slow and difficult with limited supporting software tools. Shared-
memory machines produced by major uniprocessor manufacturers such as
IBM, DEC, Intel and Silicon Graphics, and distributed Networks of Work-
stations (NOWs) had however established a foothold in the market, because
they are based around high-volume commercial off-the-shelf (COTS) proces-
sors, and achieved penetration in markets such as database and file-serving
where parallelism could be supported within the operating system.

In our own application field of embedded systems, NOWs and shared-
memory machines have a significant part to play in supporting the parallel
logic development process, but implementation is now increasingly geared to-
wards hardware-software co-design. Co-design tools may currently be based
around heterogeneous computing elements ranging from conventional RISC
and DSP processors at one end of the spectrum, through embedded processor
cores such as ARM, to FPGAs and ASICs at the other. Historically, such
tools have been developed bottom-up, and therefore currently betray a strong
hardware design ethos, and a correspondingly weak high-level software design
model. Our current research (also funded by EPSRC) is investigating how to
extend the PPF design methodology to address this rapidly developing embed-
ded applications market using a software component-based approach, which
we believe can provide a valuable method of unifying current disparate low-
level hardware-software co-design models. Such solutions will surely become
essential as complex multimedia embedded applications become widespread
in consumer, commercial and industrial markets over the next decade.

ANDY DOWNTON

Colchester, Oct. 2000
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1
Introduction

1.1 OVERVIEW

Much of the success of computers can be attributed to their generality, which
allows different problems to be compiled and executed in different languages
on the same or different processors. Parallel processing currently does not pos-
sess the generality of sequential processing1 because new degrees of freedom,
such as the programming paradigm, topology (the connection pattern between
processors [170, 199]), and number of processors, have been introduced into
the design process. It appears that the potential offered by these additional
design choices has led to an insistence by designers on obtaining maximum per-
formance, with a consequent loss of generality. This is not surprising, because
parallel solutions are typically investigated for the very reason that conven-
tional sequential systems do not provide sufficient performance, but it ignores
the benefits of generality which are accepted by sequential programmers. The
sequential programming paradigm, or rather the abstract model of a computer
on which it rests, was introduced by von Neumann [45] and has persisted ever
since despite the evident internal parallelism in most microprocessor designs
(pipelined, vector, and superscalar [115]) and the obvious bottleneck if there is
just one memory-access path from the central processing unit (CPU) for data

1 Strictly, the term serial processing is more appropriate, as processing takes place on a serial
machine or processor. The term sequential processing implies that the algorithms being
processed are inherently sequential, whereas in fact they may contain parallel components.
However, this book retains common usage and takes sequential processing to be synonymous
with serial processing.

1



2 INTRODUCTION

and instructions alike. The model suits the way many programmers envisage
the execution of their programs (a single step at a time), perhaps because
errors are easier to find than when there is an interleaving of program order
as in parallel or concurrent programming paradigms.2

The Pipelined Processor Farms (PPF) design model, the subject of this
book, can be applied in its simplest form to any Multiple Instruction Mul-
tiple Data streams (MIMD) [114] multiprocessor system.3 Single Instruc-
tion Multiple Data streams (SIMD) computer architecture, though current at
the very-large scale integration (VLSI) chip-level, and to a lesser extent in
multimedia-extension (MMX) microprocessor instructions for graphics sup-
port at the processor level [212], is largely defunct at the processor level,
with a few honorable exceptions such as Cambridge Memory System's DAP
and the MasPar series of machines [13].4 Of the two categories of MIMD
machines, the primary concentration is upon distributed-memory machines,
where the address space is partitioned logically and physically between pro-
cessors. However, it is equally possible to logically partition shared-memory
machines, where there is a global address space. The boundaries between
distributed and shared-memory machines have dissolved in recent times [70],
a point to be returned to in Chapter 13.

1.2 ORIGINS

The origins of the PPF design method arose in the late 1980s as a result
of research carried out at the University of Essex to design and implement
a real-time postcode/address recognition system for the British Post Office
(see Chapter 3 for a description of the outcome of this process). Initial in-
vestigation of the image analysis and pattern recognition problems demon-
strated that significant research and development was needed before any kind
of working demonstrator could be produced, and that, of necessity, the first
demonstrator would need to be a non-real-time software simulation running
on a workstation. This provided the flexibility to enable easy experimental
evaluation and algorithm updates using offline databases of address images,

2Shared-memory machines can also relax read-write access across the processor set ranging
from strong to weak consistency, presenting a continuum of programming paradigms [259].
3Categorization of processors by the multiplicity of parallel data and instruction streams
supported is a well-known extension of von Neumann's model [65].
4Systolic arrays are also used for fine-grained, signal processing [200] though largely again
at the VLSI level. In systolic designs, data are pumped synchronously across an array
of processing elements (PEs). At each step a different stage in processing takes place.
Wavefront processors are an asynchronous version of the systolic architecture. Other forms
of instruction level parallelism are very-large instruction word (VLIW) DSPs (digital signal
processors) and its variant explicitly parallel instruction computing (EPIC) [319]. The idea
of transferring SIMD arrays such as the DAP to VLSI has also been mooted. The DIP 'chip
[66] is an experimental and novel SIMD VLSI array.
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and also a starting point for consideration of real-time implementation issues.
In short, solving the problem at all was very difficult; generating a real-time
solution (requiring a throughput of 10 envelope images/second, with a la-
tency of no more than 8 seconds for processing each image) introduced an
additional dimension of processing speed which was beyond the bounds of
available workstations.

A literature survey of the field of parallel processing at that time showed
that numerous papers had been published on parallelization of individual im-
age processing, image coding and image analysis algorithms (see, e.g. , [362]),
many inspired by the success of the transputer [136]. Most of these papers
were of limited generality however, since they reported bespoke paralleliza-
tion of specific well-known algorithms such as 2-D filters, FFTs, DCTs, edge
detectors, component labeling, Hough transforms, wavelets, segmentation al-
gorithms, etc. Significantly, examination of many of these customized parallel
algorithms revealed, in essence, the same solution; that of the single, demand-
based, data farm.

Practical image analysis and pattern recognition applications, however,
typically contain a number of algorithms implemented together as a complete
system. Like the postal address reading application, the CCITT H.261 en-
coder/decoder algorithm [49] is also a good illustration of this characteristic,
since it includes algorithms for discrete cosine transformation (DOT), mo-
tion estimation and compensation, various filters, quantizers, variable length
coding, and inverse versions of several of these algorithms. Very few papers
addressed the issue of parallelizing complete systems, in which individual al-
gorithm parallelization could be exploited as components. Therefore, a clue to
an appropriate generic parallel architecture for embedded applications was to
view the demand-based processor farm as a component within a higher-level
system framework.

From our point of view, parallel processing was also simply a means to an
end, rather than an end in itself. Our interest was in developing a general
system design method for MIMD parallel processors, which could be applied
after or during the initial iterative algorithm development phase. Too great
a focus on performance at the expense of generality would inevitably have
resulted in both implementations and design skills that rapidly became ob-
solete. We therefore aimed to support the early, architecture independent
stages of the design process, where parallelization of complete image process-
ing applications is considered, by a process analogous to stepwise refinement
in sequential program design [312, 335]. Among the advantages of the PPF
design methodology which resulted are the following:

• Upper bound (idealized) throughput scaling of the application is easily
defined, and aspects of the application which limit scaling are identified.

• Input/output latency is also defined and can be controlled.
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• Performance is incrementally scalable up to the upper bound (i.e. there
are no quantization restrictions on the number of processors which can
be used), so that real-time performance requirements can be met exactly.

• The granularity of parallelism is maximized, thus minimizing the design
effort required to move from the sequential to the parallel implementa-
tion.

• Design effort is focused on each performance bottleneck of each pipeline
stage in turn, by identifying the throughput, latency, and scalability.

1.3 AMDAHL'S LAW AND STRUCTURED PARALLEL DESIGN

Amdahl's law [15, 16] is the Ohm's law of parallel computing. It predicts an
upper bound to the performance of systems which contain both parallelization
and inherently sequential components. Amdahl's law states that the scaling
performance of a parallel algorithm is limited by the number of inherently
sequential operations in that algorithm. Consider a problem where a fraction
/of the work must be performed sequentially. The speed-up, S, possible from
a machine with N processors is:

I f / — 0.2 for example (i.e 20% of the algorithm is inherently sequential),
then the maximum speedup however many processors are added is 5.

As will be shown in later chapters, applying Amdahl's law to multi-algorithm
embedded systems demonstrates that the scaling which can be achieved is
largely defined, not by the number of processors used, but by any residual
sequential elements within the complete application algorithm. Thus effective
system parallelization requires a method of minimizing the impact of residual
sequential code, as well as of parallelizing the bulk of the application algo-
rithm. In the PPF design methodology, pipelining is used to overlap residual
sequential code execution with other forms of parallelism.

1.4 INTRODUCTION TO PPF SYSTEMS

A PPF is a software pipeline intended for recent, accessible, parallel machines.
Examples of such lowly parallel machines [278], which now abound, are net-
works of workstations (NOW), processor farms, symmetric multiprocessors
(SMP) and small-scale message-passing machines. A feature of such ma-
chines is that scalability is localized [93] and consequently the communication
diameter is also restricted. The commercial off-the-shelf (COTS) processors
used within such machines will outstrip the available interconnect bandwidth
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if combined in large configurations since such processors were not designed
with modularity in mind. To avoid this problem in PPF, a pipeline is parti-
tioned into a number of stages, each one of which may be parallel. PPF is
primarily aimed at continuous-flow systems in the field of signal processing,
image-processing, and multimedia in general.

A continuous-flow system is one in which data never cease to arrive, for ex-
ample a radar processor which must always monitor air traffic. These systems
frequently need to meet a variety of throughput, latency, and output-ordering
specifications. It becomes necessary to be able to predict performance, and
to provide a structure which permits performance scaling, by incremental
addition of processors and/or transfer to higher performance hardware once
the initial design is complete. The hard facts of achievable performance in a
parallel system are further discussed in Section 2.4.

There are two basic or elementary types of pipeline components: asyn-
chronous and synchronous, though many pipelined systems will contain some
segments of each type. PPF caters for any type of pipeline, whether syn-
chronous, asynchronous or mixed; their performance characteristics are dis-
cussed in detail in Section 2.2. Pipeline systems are a natural choice for
some synchronous applications. For example, a systolic pipeline-partitioning
methodology exists for signal-processing algorithms with a regular pattern
[237]. Alternatively, [8] notice that there is an asynchronous pipeline struc-
ture to the mind's method of processing visual input which also maps onto
computer hardware. If all information flow is in the forward direction [8] then
the partitions of the pipeline mirror the peripheral, attentive, and cognitive
stages of human vision [232]. The CMU Warp [18], the Cytocomputer [341],
PETAL and VAP [56] are early examples of machines used in pipelined fash-
ion for image processing.5 Input to the pipeline either takes the form of a
succession of images grouped into a batch (medical slides, satellite images,
video frames and the like) or raster-scan in which a stream of pixels is input
in the same order as a video camera scans a scene that is in horizontal, zig-
zag fashion. PPF generalizes the pipeline away from bespoke hardware and
away to some extent from regular problems. Examples of applicable irregu-
lar, continuous-flow systems can be found in vision [50] (see Chapter 3), radar
[97], speech-recognition processing [133], and data compression [52]. Chap-
ters 8 and 9 give further detailed case studies where PPF has been consciously
applied.

PPF is very much a systems approach to design, that is, it considers the
entire system before the individual components. Another way of saying this is
that PPF is a top-down as opposed to a bottom-up design methodology. For
some years it has been noted [214] that many reported algorithm examples
merely form a sub-system of a vision-processing system while it is a complete

5The common idea across these machines is to avoid the expense of a 2D systolic array by
using a linear systolic array.


