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Preface

The aim of this book is to provide an overview of statistical methods that are im-
portant in the analysis of epidemiologic data, the emphasis being on nonregression
techniques. The book is intended as a classroom text for students enrolled in an epi-
demiology or biostatistics program, and as a reference for established researchers.
The choice and organization of material is based on my experience teaching bio-
statistics to epidemiology graduate students at the University of Alberta. In that set-
ting I emphasize the importance of exploring data using nonregression methods prior
to undertaking a more elaborate regression analysis. It is my conviction that most of
what there is to learn from epidemiologic data can usually be uncovered using non-
regression techniques.

I assume that readers have a background in introductory statistics, at least to the
stage of simple linear regression. Except for the Appendices, the level of mathemat-
ics used in the book is restricted to basic algebra, although admittedly some of the
formulas are rather complicated expressions. The concept of confounding, which is
central to epidemiology, is discussed at length early in the book. To the extent permit-
ted by the scope of the book, derivations of formulas are provided and relationships
among statistical methods are identified. In particular, the correspondence between
odds ratio methods based on the binomial model, and hazard ratio methods based
on the Poisson model are emphasized (Breslow and Day, 1980, 1987). Historically,
odds ratio methods were developed primarily for the analysis of case-control data.
Students often find the case-control design unintuitive, and this can adversely affect
their understanding of the odds ratio methods. Here, I adopt the somewhat uncon-
ventional approach of introducing odds ratio methods in the setting of closed cohort
studies. Later in the book, it is shown how these same techniques can be adapted
to the case-control design, as well as to the analysis of censored survival data. One
of the attractive features of statistics is that different theoretical approaches often
lead to nearly identical numerical results. I have attempted to demonstrate this phe-
nomenon empirically by analyzing the same data sets using a variety of statistical
techniques.

I wish to express my indebtedness to Allan Donner, Sander Greenland, John Hsieh,
David Streiner, and Stephen Walter, who generously provided comments on a draft
manuscript. I am especially grateful to Sander Greenland for his advice on the topic
of confounding, and to John Hsieh who introduced me to life table theory when I was

xi



xii PREFACE

a student. The reviewers did not have the opportunity to read the final manuscript
and so I alone am responsible for whatever shortcomings there may be in the book.
I also wish to acknowledge the professionalism and commitment demonstrated by
Steve Quigley and Lisa Van Horn of John Wiley & Sons. I am most interested in
receiving your comments, which can be sent by e-mail using a link at the website
www.stephennewman.com.

Prior to entering medicine and then epidemiology, I was deeply interested in a
particularly elegant branch of theoretical mathematics called Galois theory. While
studying the historical roots of the topic, I encountered a monograph having a preface
that begins with the sentence “I wrote this book for myself.” (Hadlock, 1978). After
this remarkable admission, the author goes on to explain that he wanted to construct
his own path through Galois theory, approaching the subject as an enquirer rather
than an expert. Not being formally trained as a mathematical statistician, I embarked
upon the writing of this book with a similar sense of discovery. The learning process
was sometimes arduous, but it was always deeply rewarding. Even though I wrote
this book partly “for myself,” it is my hope that others will find it useful.

STEPHEN C. NEWMAN
Edmonton, Alberta, Canada
May 2001



C H A P T E R 1

Introduction

In this chapter some background material from the theory of probability and statis-
tics is presented that will be useful throughout the book. Such fundamental concepts
as probability function, random variable, mean, and variance are defined, and sev-
eral of the distributions that are important in the analysis of epidemiologic data are
described. The Central Limit Theorem and normal approximations are discussed,
and the maximum likelihood and weighted least squares methods of parameter es-
timation are outlined. The chapter concludes with a discussion of different types of
random sampling. The presentation of material in this chapter is informal, the aim
being to give an overview of some key ideas rather than provide a rigorous mathe-
matical treatment. Readers interested in more complete expositions of the theoretical
aspects of probability and statistics are referred to Cox and Hinkley (1974), Silvey
(1975), Casella and Berger (1990), and Hogg and Craig (1994). References for the
theory of probability and statistics in a health-related context are Armitage and Berry
(1994), Rosner (1995), and Lachin (2000). For the theory of sampling, the reader is
referred to Kish (1965) and Cochran (1977).

1.1 PROBABILITY

1.1.1 Probability Functions and Random Variables

Probability theory is concerned with mathematical models that describe phenomena
having an element of uncertainty. Problems amenable to the methods of probabil-
ity theory range from the elementary, such as the chance of randomly selecting an
ace from a well-shuffled deck of cards, to the exceedingly complex, such as pre-
dicting the weather. Epidemiologic studies typically involve the collection, analysis,
and interpretation of health-related data where uncertainty plays a role. For example,
consider a survey in which blood sugar is measured in a random sample of the pop-
ulation. The aims of the survey might be to estimate the average blood sugar in the
population and to estimate the proportion of the population with diabetes (elevated
blood sugar). Uncertainty arises because there is no guarantee that the resulting esti-

1



2 INTRODUCTION

mates will equal the true population values (unless the entire population is enrolled
in the survey).

Associated with each probability model is a random variable, which we denote by
a capital letter such as X . We can think of X as representing a potential data point for
a proposed study. Once the study has been conducted, we have actual data points that
will be referred to as realizations (outcomes) of X . An arbitrary realization of X will
be denoted by a small letter such as x . In what follows we assume that realizations
are in the form of numbers so that, in the above survey, diabetes status would have
to be coded numerically—for example, 1 for present and 0 for absent. The set of all
possible realizations of X will be referred to as the sample space of X . For blood
sugar the sample space is the set of all nonnegative numbers, and for diabetes status
(with the above coding scheme) the sample space is {0, 1}. In this book we assume
that all sample spaces are either continuous, as in the case of blood sugar, or discrete,
as in the case of diabetes status. We say that X is continuous or discrete in accordance
with the sample space of the probability model.

There are several mathematically equivalent ways of characterizing a probabil-
ity model. In the discrete case, interest is mainly in the probability mass function,
denoted by P(X = x), whereas in the continuous case the focus is usually on the
probability density function, denoted by f (x). There are important differences be-
tween the probability mass function and the probability density function, but for
present purposes it is sufficient to view them simply as formulas that can be used to
calculate probabilities. In order to simplify the exposition we use the term probability
function to refer to both these constructs, allowing the context to make the distinc-
tion clear. Examples of probability functions are given in Section 1.1.2. The notation
P(X = x) has the potential to be confusing because both X and x are “variables.”
We read P(X = x) as the probability that the discrete random variable X has the
realization x . For simplicity it is often convenient to ignore the distinction between
X and x . In particular, we will frequently use x in formulas where, strictly speaking,
X should be used instead.

The correspondence between a random variable and its associated probability
function is an important concept in probability theory, but it needs to be empha-
sized that it is the probability function which is the more fundamental notion. In a
sense, the random variable represents little more than a convenient notation for re-
ferring to the probability function. However, random variable notation is extremely
powerful, making it possible to express in a succinct manner probability statements
that would be cumbersome otherwise. A further advantage is that it may be possi-
ble to specify a random variable of interest even when the corresponding probability
function is too difficult to describe explicitly. In what follows we will use several
expressions synonymously when describing random variables. For example, when
referring to the random variable associated with a binomial probability function we
will variously say that the random variable “has a binomial distribution,” “is binomi-
ally distributed,” or simply “is binomial.”

We now outline a few of the key definitions and results from introductory proba-
bility theory. For simplicity we focus on discrete random variables, keeping in mind
that equivalent statements can be made for the continuous case. One of the defining
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properties of a probability function is the identity∑
x

P(X = x) = 1 (1.1)

where here, and in what follows, the summation is over all elements in the sample
space of X . Next we define two fundamental quantities that will be referred to re-
peatedly throughout the book. The mean of X , sometimes called the expected value
of X , is defined to be

E(X) =
∑

x

x P(X = x) (1.2)

and the variance of X is defined to be

var(X) =
∑

x

[x − E(X)]2 P(X = x). (1.3)

It is important to note that when the mean and variance exist, they are constants,
not random variables. In most applications the mean and variance are unknown and
must be estimated from study data. In what follows, whenever we refer to the mean
or variance of a random variable it is being assumed that these quantities exist—that
is, are finite constants.

Example 1.1 Consider the probability function given in Table 1.1. Evidently
(1.1) is satisfied. The sample space of X is {0, 1, 2}, and the mean and variance of X
are

E(X) = (0 × .20) + (1 × .50) + (2 × .30) = 1.1

and

var(X) = [(0 − 1.1)2.20] + [(1 − 1.1)2.50] + [(2 − 1.1)2.30] = .49.

Transformations can be used to derive new random variables from an existing
random variable. Again we emphasize that what is meant by such a statement is that
we can derive new probability functions from an existing probability function. When
the probability function at hand has a known formula it is possible, in theory, to write
down an explicit formula for the transformed probability function. In practice, this

TABLE 1.1 Probability Function of X

x P(X = x)

0 .20
1 .50
2 .30
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TABLE 1.2 Probability Function of Y

y P(Y = y)

5 .20
7 .50
9 .30

may lead to a very complicated expression, which is one of the reasons for relying
on random variable notation.

Example 1.2 With X as in Example 1.1, consider the random variable Y =
2X + 5. The sample space of Y is obtained by applying the transformation to the
sample space of X , which gives {5, 7, 9}. The values of P(Y = x) are derived as
follows: P(Y = 7) = P(2X + 5 = 7) = P(X = 1) = .50. The probability function
of Y is given in Table 1.2.

The mean and variance of Y are

E(Y ) = (5 × .20) + (7 × .50) + (9 × .30) = 7.2

and

var(Y ) = [(5 − 7.2)2.20] + [(7 − 7.2)2.50] + [(9 − 7.2)2.30] = 1.96.

Comparing Examples 1.1 and 1.2 we note that X and Y have the same probability
values but different sample spaces.

Consider a random variable which has as its only outcome the constant β, that
is, the sample space is {β}. It is immediate from (1.2) and (1.3) that the mean and
variance of the random variable are β and 0, respectively. Identifying the random
variable with the constant β, and allowing a slight abuse of notation, we can write
E(β) = β and var(β) = 0. Let X be a random variable, let α and β be arbitrary
constants, and consider the random variable αX + β. Using (1.2) and (1.3) it can be
shown that

E(αX + β) = αE(X) + β (1.4)

and

var(αX + β) = α2 var(X). (1.5)

Applying these results to Examples 1.1 and 1.2 we find, as before, that E(Y ) =
2(1.1) + 5 = 7.2 and var(Y ) = 4(.49) = 1.96.

Example 1.3 Let X be an arbitrary random variable with mean µ and variance
σ 2, where σ > 0, and consider the random variable (X − µ)/σ . With α = 1/σ and
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β = −µ/σ in (1.4) and (1.5), it follows that

E
( X − µ

σ

)
= 0

and

var
( X − µ

σ

)
= 1.

In many applications it is necessary to consider several related random variables.
For example, in a health survey we might be interested in age, weight, and blood
pressure. A probability function characterizing two or more random variables simul-
taneously is referred to as their joint probability function. For simplicity we discuss
the case of two discrete random variables, X and Y . The joint probability function of
the pair of random variables (X, Y ) is denoted by P(X = x, Y = y). For the present
discussion we assume that the sample space of the joint probability function is the
set of pairs {(x, y)}, where x is in the sample space of X and y is in the sample space
of Y . Analogous to (1.1), the identity∑

x

∑
y

P(X = x, Y = y) = 1 (1.6)

must be satisfied. In the joint distribution of X and Y , the two random variables are
considered as a unit. In order to isolate the distribution of X , we “sum over” Y to
obtain what is referred to as the marginal probability function of X ,

P(X = x) =
∑

y

P(X = x, Y = y).

Similarly, the marginal probability function of Y is

P(Y = y) =
∑

x

P(X = x, Y = y).

From a joint probability function we are to able obtain marginal probability func-
tions, but the process does not necessarily work in reverse. We say that X and Y are
independent random variables if P(X = x, Y = y) = P(X = x) P(Y = y), that is,
if the joint probability function is the product of the marginal probability functions.
Other than the case of independence, it is not generally possible to reconstruct a joint
probability function in this way.

Example 1.4 Table 1.3 is an example of a joint probability function and its as-
sociated marginal probability functions. For example, P(X = 1, Y = 3) = .30. The
marginal probability function of X is obtained by summing over Y , for example,

P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) = .50.



6 INTRODUCTION

TABLE 1.3 Joint Probability Function of X and Y

P(X = x, Y = y)

y

x 1 2 3 P(X = x)

0 .02 .06 .12 .20
1 .05 .15 .30 .50
2 .03 .09 .18 .30

P(Y = y) .10 .30 .60 1

It is readily verified that X and Y are independent, for example, P(X = 1, Y = 2) =
.15 = P(X = 1) P(Y = 2).

Now consider Table 1.4, where the marginal probability functions of X and Y are
the same as in Table 1.3 but where, as is easily verified, X and Y are not independent.

We now present generalizations of (1.4) and (1.5). Let X1, X2, . . . , Xn be arbi-
trary random variables, let α1, α2, . . . , αn, β be arbitrary constants, and consider the
random variable

∑n
i=1 αi Xi + β. It can be shown that

E

( n∑
i=1

αi Xi + β

)
=

n∑
i=1

αi E(Xi ) + β (1.7)

and, if the Xi are independent, that

var

( n∑
i=1

αi Xi + β

)
=

n∑
i=1

α2
i var(Xi ). (1.8)

In the case of two independent random variables X1 and X2,

E(X1 + X2) = E(X1) + E(X2)

E(X1 − X2) = E(X1) − E(X2)

TABLE 1.4 Joint Probability Function of X and Y

P(X = x, Y = y)

y

x 1 2 3 P(X = x)

0 .01 .05 .14 .20
1 .06 .18 .26 .50
2 .03 .07 .20 .30

P(Y = y) .10 .30 .60 1
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and

var(X1 + X2) = var(X1 − X2) = var(X1) + var(X2). (1.9)

If X1, X2, . . . , Xn are independent and all have the same distribution, we say the
Xi are a sample from that distribution and that the sample size is n. Unless stated oth-
erwise, it will be assumed that all samples are simple random samples (Section 1.3).
With the distribution left unspecified, denote the mean and variance of Xi by µ and
σ 2, respectively. The sample mean is defined to be

X = 1

n

n∑
i=1

Xi .

Setting αi = 1/n and β = 0 in (1.7) and (1.8), we have

E(X) = µ (1.10)

and

var(X) = σ 2

n
. (1.11)

1.1.2 Some Probability Functions

We now consider some of the key probability functions that will be of importance in
this book.

Normal (Gaussian)
For reasons that will become clear after we have discussed the Central Limit The-
orem, the most important distribution is undoubtedly the normal distribution. The
normal probability function is

f (z|µ, σ) = 1

σ
√

2π
exp

[−(z − µ)2

2σ 2

]

where the sample space is all numbers and exp stands for exponentiation to the
base e. We denote the corresponding normal random variable by Z . A normal distri-
bution is completely characterized by the parameters µ and σ > 0. It can be shown
that the mean and variance of Z are µ and σ 2, respectively.

When µ = 0 and σ = 1 we say that Z has the standard normal distribution. For
0 < γ < 1, let zγ denote that point which cuts off the upper γ -tail probability of the
standard normal distribution; that is, P(Z ≥ zγ ) = γ . For example, z.025 = 1.96. In
some statistics books the notation zγ is used to denote the lower γ -tail. An important
property of the normal distribution is that, for arbitrary constants α and β > 0,
(Z −α)/β is also normally distributed. In particular this is true for (Z −µ)/σ which,
in view of Example 1.3, is therefore standard normal. This explains why statistics
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books only need to provide values of zγ for the standard normal distribution rather
than a series of tables for different values of µ and σ .

Another important property of the normal distribution is that it is additive. Let
Z1, Z2, . . . , Zn be independent normal random variables and suppose that Zi has
mean µi and variance σ 2

i (i = 1, 2, . . . , n). Then the random variable
∑n

i=1 Zi is
also normally distributed and, from (1.7) and (1.8), it has mean

∑n
i=1 µi and variance∑n

i=1 σ 2
i .

Chi-Square
The formula for the chi-square probability function is complicated and will not be
presented here. The sample space of the distribution is all nonnegative numbers.
A chi-square distribution is characterized completely by a single positive integer r ,
which is referred to as the degrees of freedom. For brevity we write χ2

(r) to indicate
that a random variable has a chi-square distribution with r degrees of freedom. The
mean and variance of the chi-square distribution with r degrees of freedom are r and
2r , respectively.

The importance of the chi-square distribution stems from its connection with the
normal distribution. Specifically, if Z is standard normal, then Z2, the transformation
of Z obtained by squaring, is χ2

(1)
. More generally, if Z is normal with mean µ

and variance σ 2 then, as remarked above, (Z − µ)/σ is standard normal and so
[(Z − µ)/σ ]2 = (Z − µ)2/σ 2 is χ2

(1)
. In practice, most chi-square distributions

with 1 degree of freedom originate as the square of a standard normal distribution.
This explains why the usual notation for a chi-square random variable is X2, or
sometimes χ2.

Like the normal distribution, the chi-square distribution has an additive property.
Let X2

1, X2
2, . . . , X2

n be independent chi-square random variables and suppose that
X2

i has ri degrees of freedom (i = 1, 2, . . . , n). Then
∑n

i=1 X2
i is chi-square with∑n

i=1 ri degrees of freedom. As a special case of this result, let Z1, Z2, . . . , Zn be
independent normal random variables, where Zi has mean µi and variance σ 2

i (i =
1, 2, . . . , n). Then (Zi − µi )

2/σ 2
i is χ2

(1) for all i , and so

X2 =
n∑

i=1

(Zi − µi )
2

σ 2
i

(1.12)

is χ2
(n).

Binomial
The binomial probability function is

P(A = a|π) =
(

r

a

)
πa(1 − π)r−a

where the sample space is the (finite) set of integers {0, 1, 2, . . . , r}. A binomial
distribution is completely characterized by the parameters π and r which, for conve-
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nience, we usually write as (π, r). Recall that, for 0 ≤ a ≤ r , the binomial coefficient
is defined to be (

r

a

)
= r !

a! (r − a)!
where r ! = r (r − 1) · · · 2 · 1. We adopt the usual convention that 0! = 1. The
binomial coefficient

(r
a

)
equals the number of ways of choosing a items out of r

without regard to order of selection. For example, the number of possible bridge
hands is

(52
13

) = 6.35 × 1011. It can be shown that

r∑
a=0

(
r

a

)
πa(1 − π)r−a = [π + (1 − π)]r = 1

and so (1.1) is satisfied. The mean and variance of A are πr and π(1 − π)r , respec-
tively; that is,

E(A) =
r∑

a=0

a

(
r

a

)
πa(1 − π)r−a = πr

and

var(A) =
r∑

a=0

(a − πr)2
(

r

a

)
πa(1 − π)r−a = π(1 − π)r.

Like the normal and chi-square distributions, the binomial distribution is additive.
Let A1, A2, . . . , An be independent binomial random variables and suppose that Ai

has parameters πi = π and ri (i = 1, 2, . . . , n). Then
∑n

i=1 Ai is binomial with
parameters π and

∑n
i=1 ri . A similar result does not hold when the πi are not all

equal.
The binomial distribution is important in epidemiology because many epidemio-

logic studies are concerned with counted (discrete) outcomes. For instance, the bi-
nomial distribution can be used to analyze data from a study in which a group of r
individuals is followed over a defined period of time and the number of outcomes of
interest, denoted by a, is counted. In this context the outcome of interest could be,
for example, recovery from an illness, survival to the end of follow-up, or death from
some cause. For the binomial distribution to be applicable, two conditions need to
be satisfied: The probability of an outcome must be the same for each subject, and
subjects must behave independently; that is, the outcome for each subject must be
unrelated to the outcome for any other subject. In an epidemiologic study the first
condition is unlikely to be satisfied across the entire group of subjects. In this case,
one strategy is to form subgroups of subjects having similar characteristics so that,
to a greater or lesser extent, there is uniformity of risk within each subgroup. Then
the binomial distribution can be applied to each subgroup separately. As an example
where the second condition would not be satisfied, consider a study of influenza in a



10 INTRODUCTION

classroom of students. Since influenza is contagious, the risk of illness in one student
is not independent of the risk in others. In studies of noninfectious diseases, such as
cancer, stroke, and so on, the independence assumption is usually satisfied.

Poisson
The Poisson probability function is

P(D = d|ν) = e−ννd

d! (1.13)

where the sample space is the (infinite) set of nonnegative integers {0, 1, 2, . . .}. A
Poisson distribution is completely characterized by the parameter ν, which is equal
to both the mean and variance of the distribution, that is,

E(D) =
∞∑

d=0

d
(e−ννd

d!
)

= ν

and

var(D) =
∞∑

d=0

(d − ν)2
(e−ννd

d!
)

= ν.

Similar to the other distributions considered above, the Poisson distribution has
an additive property. Let D1, D2, . . . , Dn be independent Poisson random variables,
where Di has the parameter νi (i = 1, 2, . . . , n). Then

∑n
i=1 Di is Poisson with

parameter
∑n

i=1 νi .
Like the binomial distribution, the Poisson distribution can be used to analyze data

from a study in which a group of individuals is followed over a defined period of time
and the number of outcomes of interest, denoted by d, is counted. In epidemiologic
studies where the Poisson distribution is applicable, it is not the number of subjects
that is important but rather the collective observation time experienced by the group
as a whole. For the Poisson distribution to be valid, the probability that an outcome
will occur at any time point must be “small.” Expressed another way, the outcome
must be a “rare” event.

As might be guessed from the above remarks, there is a connection between the
binomial and Poisson distributions. In fact the Poisson distribution can be derived as
a limiting case of the binomial distribution. Let D be Poisson with mean ν, and let
A1, A2, . . . , Ai , . . . be an infinite sequence of binomial random variables, where Ai

has parameters (πi , ri ). Suppose that the sequence satisfies the following conditions:
πi ri = ν for all i , and the limiting value of πi equals 0. Under these circumstances
the sequence of binomial random variables “converges” to D; that is, as i gets larger
the distribution of Ai gets closer to that of D. This theoretical result explains why
the Poisson distribution is often used to model rare events. It also suggests that the
Poisson distribution with parameter ν can be used to approximate the binomial dis-
tribution with parameters (π, r), provided ν = πr and π is “small.”
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TABLE 1.5 Binomial and Poisson Probability Functions (%)

Binomial

π = .2 π = .1 π = .01 Poisson
x r = 10 r = 20 r = 200 ν = 2

0 10.74 12.16 13.40 13.53
1 26.84 27.02 27.07 27.07
2 30.20 28.52 27.20 27.07
3 20.13 19.01 18.14 18.04
4 8.81 8.98 9.02 9.02
5 2.64 3.19 3.57 3.61
6 .55 .89 1.17 1.20
7 .08 .20 .33 .34
8 .01 .04 .08 .09
9 < .01 .01 .02 .02

10 < .01 < .01 < .01 < .01
..
. —

..

.
..
.

..

.

Example 1.5 Table 1.5 gives three binomial distributions with parameters
(.2, 10), (.1, 20), and (.01, 200), so that in each case the mean is 2. Also shown
is the Poisson distribution with a mean of 2. The sample spaces have been truncated
at 10. As can be seen, as π becomes smaller the Poisson distribution provides a
progressively better approximation to the binomial distribution.

1.1.3 Central Limit Theorem and Normal Approximations

Let X1, X2, . . . , Xn be a sample from an arbitrary distribution and denote the com-
mon mean and variance by µ and σ 2. It was shown in (1.10) and (1.11) that X has
mean E(X) = µ and variance var(X) = σ 2/n. So, from Example 1.3, the random
variable

√
n(X −µ)/σ has mean 0 and variance 1. If the Xi are normal then, from the

properties of the normal distribution,
√

n(X − µ)/σ is standard normal. The Central
Limit Theorem is a remarkable result from probability theory which states that, even
when the Xi are not normal,

√
n(X −µ)/σ is “approximately” standard normal, pro-

vided n is sufficiently “large.” We note that the Xi are not required to be continuous
random variables. Probability statements such as this, which become more accurate
as n increases, are said to hold asymptotically. Accordingly, the Central Limit Theo-
rem states that

√
n(X − µ)/σ is asymptotically standard normal.

Let A be binomial with parameters (π, n) and let A1, A2, . . . , An be a sample
from the binomial distribution with parameters (π, 1). Similarly, let D be Poisson
with parameter ν, where we assume that ν = n, an integer, and let D1, D2, . . . , Dn be
a sample from the Poisson distribution with parameter 1. From the additive properties
of binomial and Poisson distributions, A has the same distribution as

∑n
i=1 Ai , and

D has the same distribution as
∑n

i=1 Di . It follows from the Central Limit Theorem
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that, provided n is large, A and D will be asymptotically normal. We illustrate this
phenomenon below with a series of graphs.

Let D1, D2, . . . , Dn be independent Poisson random variables, where Di has the
parameter νi (i = 1, 2, . . . , n). From the arguments leading to (1.12) and the Central
Limit Theorem, it follows that

X2 =
n∑

i=1

(Di − νi )
2

νi
(1.14)

is approximately χ2
(n)

. More generally, let X1, X2, . . . , Xn be independent random

variables where Xi has mean µi and variance σ 2
i (i = 1, 2, . . . , n). If each Xi is

approximately normal then

X2 =
n∑

i=1

(Xi − µi )
2

σ 2
i

(1.15)

is approximately χ2
(n).

Example 1.6 Table 1.6(a) gives the exact and approximate values of the lower
and upper tail probabilities of the binomial distribution with parameters (.3, 10). In
statistics the term “exact” means that an actual probability function is being used to
perform calculations, as opposed to a normal approximation. The mean and variance
of the binomial distribution are .3(10) = 3 and .3(.7)(10) = 2.1. The approximate
values were calculated using the following approach. The normal approximation to
P(A ≤ 2 |.3), for example, equals the area under the standard normal curve to the left
of [(2+.5)−3]/√2.1, and the normal approximation to P(A ≥ 2 |.3) equals the area
under the standard normal curve to the right of [(2 − .5) − 3]/√2.1. The continuity
correction factors ±.5 have been included because the normal distribution, which is
continuous, is being used to approximate a binomial distribution, which is discrete
(Breslow and Day, 1980, §4.3). As can be seen from Table 1.6(a), the exact and
approximate values show quite good agreement. Table 1.6(b) gives the results for the

TABLE 1.6(a) Exact and Approximate Tail Probabilities (%) for the Binomial Distribution
with Parameters (.3,10)

P(A ≤ a |.3) P(A ≥ a |.3)

a Exact Approximate Exact Approximate

2 38.28 36.50 85.07 84.97
4 84.97 84.97 35.04 36.50
6 98.94 99.21 4.73 4.22
8 99.99 99.99 .16 .10
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TABLE 1.6(b) Exact and Approximate Tail Probabilities (%) for the Binomial Distribution
with Parameters (.3,100)

P(A ≤ a |.3) P(A ≥ a |.3)

a Exact Approximate Exact Approximate

20 1.65 1.91 99.11 98.90
25 16.31 16.31 88.64 88.50
30 54.91 54.34 53.77 54.34
35 88.39 88.50 16.29 16.31
40 98.75 98.90 2.10 1.91

binomial distribution with parameters (.3,100), which shows even better agreement
due to the larger sample size.

Arguments were presented above which show that binomial and Poisson distribu-
tions are approximately normal when the sample size is large. The obvious question
is, How large is “large”? We approach this matter empirically and present a sample
size criterion that is useful in practice. The following remarks refer to Figures 1.1(a)–
1.8(a), which show graphs of selected binomial and Poisson distributions. The points
in the sample space have been plotted on the horizontal axis, with the correspond-
ing probabilities plotted on the vertical axis. Magnitudes have not been indicated on
the axes since, for the moment, we are concerned only with the shapes of distribu-
tions. The horizontal axes are labeled with the term “count,” which stands for the
number of binomial or Poisson outcomes. Distributions with the symmetric, bell-
shaped appearance of the normal distribution have a satisfactory normal approxima-
tion.

The binomial and Poisson distributions have sample spaces consisting of con-
secutive integers, and so the distance between neighboring points is always 1.
Consequently the graphs could have been presented in the form of histograms (bar
charts). Instead they are shown as step functions so as to facilitate later comparisons
with the remaining graphs in the same figures. Since the base of each step has a
length of 1, the area of the rectangle corresponding to that step equals the probability
associated with that point in the sample space. Consequently, summing across the
entire sample space, the area under each step function equals 1, as required by (1.1).
Some of the distributions considered here have tails with little associated probability
(area). This is obviously true for the Poisson distributions, where the sample space
is infinite and extreme tail probabilities are small. The graphs have been truncated at
the extremes of the distributions corresponding to tail probabilities of 1%.

The binomial parameters used to create Figures 1.1(a)–1.5(a) are (.3,10), (.5,10),
(.03,100), (.05,100), and (.1,100), respectively, and so the means are 3, 5, and 10.
The Poisson parameters used to create Figures 1.6(a)–1.8(a) are 3, 5, and 10, which
are also the means of the distributions. As can be seen, for both the binomial and
Poisson distributions, a rough guideline is that the normal approximation should be
satisfactory provided the mean of the distribution is greater than or equal to 5.



FIGURE 1.1(a) Binomial distribution with parameters (.3, 10)

FIGURE 1.1(b) Odds transformation of binomial distribution with parameters (.3, 10)

FIGURE 1.1(c) Log-odds transformation of binomial distribution with parameters (.3, 10)
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FIGURE 1.2(a) Binomial distribution with parameters (.5, 10)

FIGURE 1.2(b) Odds transformation of binomial distribution with parameters (.5, 10)

FIGURE 1.2(c) Log-odds transformation of binomial distribution with parameters (.5, 10)
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FIGURE 1.3(a) Binomial distribution with parameters (.03, 100)

FIGURE 1.3(b) Odds transformation of binomial distribution with parameters (.03, 100)

FIGURE 1.3(c) Log-odds transformation of binomial distribution with parameters (.03, 100)
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