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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE

STUART A. RICE
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INTRODUCTION TO THE ADVANCES OF

CHEMICAL PHYSICS VOLUME ON:

THE ROLE OF DEGENERATE STATES IN CHEMISTRY

The study of molecular systems is based on the Born–Oppenheimer
treatment, which can be considered as one of the most successful theories in
physics and chemistry. This treatment, which distinguishes between the fast-
moving electrons and the slow-moving nuclei leads to electronic (adiabatic)
eigenstates and the non-adiabatic coupling terms. The existence of the
adiabatic states was verified in numerous experimental studies ranging from
photochemical processes through photodissociation and unimolecular
processes and finally bimolecular interactions accompanied by exchange
and/or charge-transfer processes. Having the well-established adiabatic
states many studies went one step further and applied the Born–
Oppenheimer approximation, which assumes that for low enough energies
the dynamics can be carried out on the lower surface only, thus neglecting
the coupling to the upper states. Although on numerous occasions, this
approximation was found to yield satisfactory results, it was soon realized
that the relevance of this approximation is quite limited and that the
interpretation of too many experiments whether based on spectroscopy or
related to scattering demand the inclusion of several electronic states. For a
while, it was believed that perturbation theory may be instrumental in this
respect but this idea was not found in many cases to be satisfactory and
therefore was only rarely employed.

In contrast to the successful introduction, of the electronic adiabatic states
into physics and mainly into chemistry, the incorporation of the comple-
mentary counterpart of the Born–Oppenheimer treatment, that is, the
electronic non-adiabatic coupling terms, caused difficulties (mainly due to
their being ‘‘extended’’ vectors) and therefore were ignored. The non-
adiabatic coupling terms are responsible for the coupling between the
adiabatic states, and since for a long time most studies were related to the
ground state, it was believed that the Born–Oppenheimer approximation
always holds due to the weakness of the non-adiabatic coupling terms. This
belief persisted although it was quite early recognized, due to the Hellmann–
Feynman theorem, that non-adiabatic coupling terms are not necessarily
weak, on the contrary, they may be large and eventually become infinite.
They become infinite (or singular) at those instances when two successive
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adiabatic states turn out to be degenerate. Having singular non-adiabatic
coupling terms not only leads to the breakdown of the Born–Oppenheimer
approximation but also rules out the possibility of keeping it while applying
perturbation theory. Nevertheless the Born–Oppenheimer approximation can
be partly ‘‘saved,’’ in particular while studying low-energy processes, by
extending it to include the relevant non-adiabatic coupling terms. In this
way, a new equation is obtained, for which novel methods to solve it were
developed—some of them were discussed in this volume.

This volume in the series of Advances of Chemical Physics centers on
studies of effects due to electronic degenerate states on chemical processes.
However, since the degenerate states affect chemical processes via the
singular non-adiabatic coupling terms, a major part of this volume is
devoted to the study of features of the non-adiabatic coupling terms. This is
one aspect related to this subject. Another aspect is connected with the
Born–Oppenheimer Schrödinger equation which, if indeed degenerate states
are common in molecular systems, frequently contains singular terms that
may inhibit the possibility of solving this equation within the original Born–
Oppenheimer adiabatic framework. Thus, an extensive part of this volume is
devoted to various transformations to another framework—the diabatic
framework—in which the adiabatic coupling terms are replaced by potential
coupling—all analytic smoothly behaving functions.

In Chapter I, Child outlines the early developments of the theory of the
geometric phase for molecular systems and illustrates it primarily by
application to doubly degenerate systems. Coverage will include applica-
tions to given to (E � E) Jahn–Teller systems with linear and quadratic
coupling, and with spin–orbit coupling. The origin of vector potential
modifications to the kinetic energy operator for motion on well-separated
lower adiabatic potential surfaces is also be outlined.

In Chapter II, Baer presents the transformation to the diabatic framework
via a matrix—the adiabatic-to-diabatic transformation matrix—calculated
employing a line-integral approach. This chapter concentrates on the
theoretical–mathematical aspects that allow the rigorous derivation of this
transformation matrix and, following that, the derivation of the diabatic
potentials. An interesting finding due to this treatment is that, once the non-
adiabatic coupling terms are arranged in a matrix, this matrix has to fulfill
certain quantization conditions in order for the diabatic potentials to be
single valued. Establishing the quantization revealed the existence of the
topological matrix, which contains the topological features of the electronic
manifold as related to closed contours in configuration space. A third feature
fulfilled by the non-adiabatic coupling matrix is the curl equation, which
is reminiscent of the Yang–Mills field. This suggests, among other things,
that pseudomagnetic fields may ‘‘exist’’ along seams that are the lines
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formed by the singular points of the non-adiabatic coupling terms. Finally,
having the curl equation leads to the proposal of calculating non-adiabatic
coupling terms by solving this equation rather than by performing the
tedious ab initio treatment. The various theoretical derivations are
accompanied by examples that are taken from real molecular systems.

In Chapter III, Adhikari and Billing discuss chemical reactions in systems
having conical intersections. For these situations they suggest to incorporate
the effect of a geometrical phase factor on the nuclear dynamics, even at
energies well below the conical intersection. It is suggested that if this phase
factor is incorporated, the dynamics in many cases, may still be treated
within a one-surface approximation. In their chapter, they discuss the effect
of this phase factor by first considering a model system for which the two-
surface problem can also easily be solved without approximation. Since
many calculations involving heavier atoms have to be considered using
approximate dynamical theories such as classical or quantum classical, it
is important to be able to include the geometric phase factor into these
theories as well. How this can be achieved is discussed for the three-particle
problem. The connection between the so-called extended Born–Oppenheimer
approach and the phase angles makes it possible to move from two-surface
to multisurface problems. By using this approach a three-state model system
is considered. Finally, the geometric phase effect is formulated within the
so-called quantum dressed classical mechanics approach.

In Chapter IV, Englman and Yahalom summarize studies of the last
15 years related to the Yang–Mills (YM) field that represents the interaction
between a set of nuclear states in a molecular system as have been discussed
in a series of articles and reviews by theoretical chemists and particle
physicists. They then take as their starting point the theorem that when the
electronic set is complete so that the Yang–Mills field intensity tensor
vanishes and the field is a pure gauge, and extend it to obtain some new
results. These studies throw light on the nature of the Yang–Mills fields in
the molecular and other contexts, and on the interplay between diabatic and
adiabatic representations.

In Chapter V, Kuppermann and Abrol present a detailed formulation of
the nuclear Schrödinger equation for chemical reactions occurring on
multiple potential energy surfaces. The discussion includes triatomic and
tetraatomic systems. The formulation is given in terms of hyperspherical
coordinates and accordingly the scattering equations are derived. The effect
of first and second derivative coupling terms are included, both in the
adiabatic and the diabatic representations. In the latter, the effect of the non-
removable (transverse) part of the first derivative coupling vector are
considered. This numerical treatment led, finally, to the potential energy
surfaces that are then employed for the scattering calculations. The coverage
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includes a detailed asymptotic analysis and expressions for the reactive
scattering matrices, the associated scattering amplitudes and differential
cross-sections. The inclusion of the geometric phase in these equations is
discussed, as well as results of representative calculations.

In Chapter VI, Ohrn and Deumens present their electron nuclear
dynamics (END) time-dependent, nonadiabatic, theoretical, and computa-
tional approach to the study of molecular processes. This approach stresses
the analysis of such processes in terms of dynamical, time-evolving states
rather than stationary molecular states. Thus, rovibrational and scattering
states are reduced to less prominent roles as is the case in most modern
wavepacket treatments of molecular reaction dynamics. Unlike most
theoretical methods, END also relegates electronic stationary states,
potential energy surfaces, adiabatic and diabatic descriptions, and
nonadiabatic coupling terms to the background in favor of a dynamic,
time-evolving description of all electrons.

In Chapter VII, Worth and Robb discuss techniques known as direct, or
on-the-fly, molecular dynamics and their application to non-adiabatic
processes. In contrast to standard techniques, which require a predefined
potential energy surfaces, here the potential function, is provided by explicit
evaluation of the electronic wave function for the states of interest. This fact
makes the method very general and powerful, particularly for the study of
polyatomic systems where the calculation of a multidimensional potential
function is expected to be a complicated task. The method, however, has a
number of difficulties that need to be solved. One is the sheer size of the
problem—all nuclear and electronic degrees of freedom are treated
explicitly. A second is the restriction placed on the form of the nuclear wave
function as a local- or trajectory-based representation is required. This intro-
duces the problem of including quantum effects into methods that are often
based on classical mechanics. For non-adiabatic processes, there is the addi-
tional complication of the treatment of the non-adiabatic coupling. In this
chapter these authors show how progress has been made in this new and
exciting field, highlighting the different problems and how they are being
solved.

In Chapter VIII, Haas and Zilberg propose to follow the phase of the
total electronic wave function as a function of the nuclear coordinates with
the aim of locating conical intersections. For this purpose, they present
the theoretical basis for this approach and apply it for conical intersect-
ions connecting the two lowest singlet states (S1 and S0). The analysis
starts with the Pauli principle and is assisted by the permutational symmetry
of the electronic wave function. In particular, this approach allows the
selection of two coordinates along which the conical intersections are to be
found.
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In Chapter IX, Liang et al. present an approach, termed as the ‘‘crude
Born–Oppenheimer approximation,’’ which is based on the Born–Oppen-
heimer approximation but employs the straightforward perturbation method.
Within their chapter they develop this approximation to become a practical
method for computing potential energy surfaces. They show that to carry out
different orders of perturbation, the ability to calculate the matrix elements
of the derivatives of the Coulomb interaction with respect to nuclear
coordinates is essential. For this purpose, they study a diatomic molecule,
and by doing that demonstrate the basic skill to compute the relevant matrix
elements for the Gaussian basis sets. Finally, they apply this approach to the
H2 molecule and show that the calculated equilibrium position and force
constant fit reasonable well those obtained by other approaches.

In Chapter X, Matsika and Yarkony present an algorithm for locating
points of conical intersection for odd electron molecules. The nature of the
singularity at the conical intersection is determined and a transformation to
locally diabatic states that eliminates the singularity is derived. A rotation of
the degenerate electronic states that represents the branching plane in terms
of mutually orthogonal vectors is determined, which will enable us to search
for confluences intersecting branches of a single seam.

In Chapter XI, Perić and Peyerimhoff discuss the Renner–Teller coupling
in triatomic and tetraatomic molecules. For this purpose, they describe some
of their theoretical tools to investigate this subject and use the systems FeH2,
CNC, and HCCS as adequate examples.

In Chapter XII, Varandas and Xu discuss the implications of permuta-
tional symmetry on the total wave function and its various components for
systems having sets of identical particles. By generalizing Kramers’ theorem
and using double group theory, some drastic consequences are anticipated
when the nuclear spin quantum number is one-half and zero. The material
presented may then be helpful for a detailed understanding of molecular
spectra and collisional dynamics. As case studies, they discuss, in some
detail, the spectra of trimmeric species involving 2S atoms. The effect of
vibronic interactions on the two conical intersecting adiabatic potential
energy surfaces will then be illustrated and shown to have an important role.
In particular, the implications of the Jahn–Teller instability on the calculated
energy levels, as well as the involved dynamic Jahn–Teller and geometric
phase effects, will be examined by focusing on the alkali metal trimmers.
This chapter was planned to be essentially descriptive, with the
mathematical details being gathered on several appendixes.

Michael Baer

Gert Due Billing
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I. INTRODUCTION

Subsequent chapters deal largely with developments in the theory of geometric

phase and non-adiabatic coupling over the past 10 years, but the editors agreed

with me that there would be some value in including a chapter on early contri-

butions to the field, to provide a historical perspective. No doubt the choice of

material will seem subjective to some. Others will find it redundant to repeat

well-established results in an ‘‘Advances’’ volume, but this chapter is not

1



addressed to the experts; it is primarily intended for students seeking a

pedagogical introduction to the subject. Discussion is limited to what is now

known as the quantal adiabatic (Longuet-Higgins or Berry) phase, associated

with motion on a single adiabatic electronic surface, on the assumption that the

nuclear motion occurs far from any points of electronic degeneracy. The geo-

metric phase and an associated vector potential term in the nuclear kinetic energy

operator will be seen to arise from the presence of singularities in the non-

adiabatic coupling operator, at so-called conical intersection points, but the

wave function will appear as a product of a single electronic and a single

nuclear factor.

The story begins with studies of the molecular Jahn–Teller effect in the late

1950s [1–3]. The Jahn–Teller theorems themselves [4,5] are 20 years older and

static Jahn–Teller distortions of electronically degenerate species were well

known and understood. Geometric phase is, however, a dynamic phenomenon,

associated with nuclear motions in the vicinity of a so-called conical inter-

section between potential energy surfaces.

The simplest and most widely studied case is the E � E Jahn–Teller model

[2,6,7] for which a double degeneracy at say an equilateral triangular geometry

is relieved linearly by nuclear distortions in a doubly degenerate nuclear

vibration. In the language of later discussions [8], the nuclear coordinates Q

define a two-dimensional (2D) parameter space containing the intersection point

Q0; and the geometric phase is associated with evolution of the real adiabatic

electronic eigenstates, say jxþðQÞi and jx�ðQÞi, on parameter paths around Q0:
The important points are that jx�ðQÞi are undefined at Q0, but that they can be

taken elsewhere as smooth functions of Q, in the sense that hx�ðQÞjx�ðQþ
dQÞi ! 1 as dQ ! 0, over any region free of other degeneracies. It is then a

simple matter to demonstrate that the linearity of the separation between the two

adiabatic potential surfaces, say W�ðQÞ, also requires a sign change in jx�ðQÞi,
as they are transported around Q0 [2,6,7]. Note that there is no corresponding

geometric phase associated with symmetry determined electronic degeneracies

in linear molecules for which the degeneracy is relieved quadratically in the

bending coordinate [9]; in other words the two linear molecule adiabatic

potential surfaces touch at Q0 but do not intersect. Conical intersections, with

associated geometric phase, do, however, arise at accidental degeneracies in

linear molecules, between, for example, � and � electronic states [6]; they can

also occur in quite general geometries for nonsymmetric species, such as

NaKRb. The latter were taken by Longuet-Higgins [7] as test cases to resolve a

controversy over the ‘‘noncrossing rule’’ in polyatomics.

The next significant development in the history of the geometric phase is due

to Mead and Truhlar [10]. The early workers [1–3] concentrated mainly on the

spectroscopic consequences of localized non-adiabatic coupling between

the upper and lower adiabatic electronic eigenstates, while one now speaks

2 m. s. child



of the geometric phase associated with a well-separated lower adiabatic surface,

such that the nuclear motions revolve around the intersection point Q0, without

passing close to it. Longuet-Higgins et al. [2] treat this situation in a linear

coupling approximation, but Mead and Truhlar [10] were the first to provide a

systematic formulation. Any treatment must recognize that the nature of the

nuclear wave function is necessarily affected by the electronic sign change,

since the total wave function must be a single-valued function of Q. This means

either that the boundary conditions on the nuclear wave function must

incorporate a compensating sign change for circuits around Q0 or that the real

adiabatic eigenstates, jx�i, must be defined with compensating phase factors,

such that

jn�i ¼ eic�ðQÞjx�i

is single valued around Q0: Ham [11] analyses the ordering of vibronic eigen-

values in the presence of geometric phase from the former standpoint, while

Mead and Truhlar [10] adopt the latter formulation, which leads to a vector

potential contribution to the nuclear kinetic energy, dependent on the form of the

chosen phase factor cðQÞ. Residual arbitrariness in the choice of c�ðQÞ, subject

to the single valuedness of jn�i, must cancel out in any consistent treatment of

the nuclear dynamics.

Berry [8] set the theory in a wider context, by defining a ‘‘gauge invariant’’

geometric phase, which is specific to the system in question and to the geometry

of the chosen encircling path, but is also independent of the above residual

arbitrariness. The resulting integrated geometric phase applies to quite general

situations, provided there is a single isolated point of degeneracy. The

degeneracy need not be twofold, nor need the encircling path lie in the plane

containing Q0, as demonstrated by Berry’s [8] explicit treatment of angular

momentum precession, with arbitrary 2 J þ 1 degeneracy, in a slowly rotating

magnetic field.

Macroscopic physical manifestations of the above adiabatic geometric phase

may be found in the Aharonov–Bohm effect [12] and in nuclear magnetic

resonance (NMR) systems subject to slowly rotating magnetic fields [13]. Their

observation in molecular systems is less straightforward. Books have been

written about the multisurface dynamics of Jahn–Teller systems [14,15], but

effects attributable to the geometric phase on the lowest adiabatic potential

surface are quite elusive. One example is an observed energy level dependence

on the square of a half-odd quantum number, j, in Na3 [16,17], as first predicted

by Longuet-Higgins et al. [2]. It depends, however, on the assumption of strictly

linear Jahn–Teller coupling, because j is conserved only in the absence of

corrugations on the lower surface arising from the inclusion of quadratic and

higher Jahn–Teller coupling terms (see Sections V.A and V.C). The strongest

early perspectives on geometric phase 3



general prediction, for C3 point groups, is that geometric phase causes a

systematic inversion in the vibronic tunneling splitting associated with the

above corrugations [11]; thus the levels of the lowest vibronic triplet are

predicted in the order EðEÞ < EðAÞ, an order that is successively reversed and

restored in the higher triplets. The possible observation of similar geometric

phase related effects in molecular scattering situations is discussed in several of

the following chapters.

Section II begins with a general discussion of conical intersections, including

deductions from the point group and time-reversal symmetries, concerning

connections between the nuclear coordinate dependencies of different electronic

Hamiltonian matrix elements. Section III is concerned with the nature of

electronic adiabatic eigenstates close to a conical intersection. The crucial result

for later sections is that an E � E conical intersection gives rise to an adiabatic

eigenvector sign change regardless of the size and shape of the encircling loop,

provided that no other degenerate points are enclosed. Specifically, geometrical

aspects of adiabatic eigenvector evolution are discussed in Section IV, along the

lines of papers by Berry [8] and Aharonov et al. [18]. Different expressions for

its evaluation are also outlined. Various aspects of the E � E Jahn–Teller

problem, with linear and quadratic coupling, including and excluding spin–orbit

coupling, are outlined in Section V. More general aspects of the nuclear

dynamics on the lower potential sheet arising from a conical intersection are

treated in Section VI, from two viewpoints. Section VI.A expounds Ham’s

general conclusions about the order of vibronic tunneling levels from a band

theory standpoint [11], with sign-reversing boundary conditions on the nuclear

wave functions. There is also an appendix for readers unfamiliar with

Floquet theory arguments. By contrast, Section VI.B outlines the elements

of Mead and Truhlar’s theory [10], with normal boundary conditions on the

nuclear wave function and a vector potential contribution to the nuclear kinetic

energy, arising from the compensating phase factor cðQÞ, which was discussed

above. The relationship between the contributions of Aharonov et al. [18]

and Mead and Truhlar [10] are described. Aspects of the symmetry with

respect to nuclear spin exchange in the presence of geometric phase are also

discussed. Section VII collects the main conclusions and draws attention to

related early work on situations with greater complexity than the simple E � E
problem.

II. CONICAL INTERSECTIONS

Molecular aspects of geometric phase are associated with conical intersections

between electronic energy surfaces, WðQÞ, where Q denotes the set of say k

vibrational coordinates. In the simplest two-state case, the WðQÞ are eigen-

surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian
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matrix,

HðQÞ ¼ HAAðQÞ HABðQÞ
HBAðQÞ HBBðQÞ

� �
ð1Þ

namely,

W�ðQÞ ¼ 1

2
½HAAðQÞ þ HBBðQÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HAAðQÞ � HBBðQÞ2 þ 4jHABðQÞj2

q
ð2Þ

Strict degeneracy between the electronic energy surfaces therefore requires the

existence of points Q0 at which HAAðQÞ ¼ HBBðQÞ and HABðQÞ ¼ 0. These two

independent conditions will rarely occur by variation of a single coordinate Q

[unless HABðQÞ ¼ 0 by symmetry]—hence the diatomic ‘‘noncrossing rule.’’

There is, however, no such prohibition in polyatomics. In the common case of a

real representation, degeneracies can clearly lie on a surface of dimensionality

k � 2, where k is the number of vibrations [6,7,19,20]. They are termed conical if

HAAðQÞ � HBBðQÞ and HABðQÞ vanish linearly in Q. Such points are symmetry

determined for Jahn–Teller systems [4], which include all electronically

degenerate nonlinear polyatomics. They also occur as a result of bending at, say

a �� � intersection in a linear molecule [6], and at more general configurations

of nonsymmetrical species. For example, Longuet-Higgins [7] shows that

Heitler–London theory for a system of three dissimilar H-like atoms, such as

LiNaK, has a pair of doublet states with eigensurfaces governed by the

Hamiltonian matrix

H ¼
W � aþ 1

2
ðbþ gÞ

ffiffi
3
2

q
ðb� gÞffiffi

3
2

q
ðb� gÞ W þ a� 1

2
ðbþ gÞ

0
@

1
A ð3Þ

where a, b, and g are exchange integrals for the three interatomic bonds. A

conical intersection therefore occurs at geometries such that a ¼ b ¼ g, which

again implies two independent constraints.

Aspects of the Jahn–Teller symmetry argument will be relevant in later

sections. Suppose that the electronic states are n-fold degenerate, with

symmetry �e at some symmetrical nuclear configuration Q0: The fundamental

question concerns the symmetry of the nuclear coordinates that can split the

degeneracy linearly in Q � Q0, in other words those that appear linearly in

Taylor series for the n2 matrix elements hAjHjBi: Since the bras hAj and kets jBi
both transform as �e and H are totally symmetric, it would appear at first sight

that the Jahn–Teller active modes must have symmetry �Q ¼ �e � �e: There
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are, however, further restrictions, dependent on whether the number of electrons

is even or odd. The following argument [4,5] uses the symmetry of the

electronic states under the time-reversal operator T̂ to establish general relations

between the various matrix elements. The essential properties are that T̂ com-

mutes with the Hamiltonian

ĤT̂ ¼ T̂Ĥ; ð4Þ

that any state jAi has a time-reverse T̂jAi, such that

hT̂bjT̂ai ¼ hbjai�; ð5Þ

and that states with even and odd electrons are symmetric and antisymmetric

under T̂2, respectively. It therefore follows that

hAjHjT̂Bi ¼ hT̂AjT̂HT̂Bi� ¼ hT̂AjHjT̂2bi� ¼ �hBjHjT̂Ai

¼ 1

2
hAjHjT̂Bi � hBjHjT̂Ai
	 


ð6Þ

where the upper and lower signs apply for even and odd electron systems,

respectively.

Suppose now that jAi and jBi belong to an electronic representation �e:
Since H is totally symmetric, Eq. (6) implies that the matrix elements hAjHjT̂Bi
belong to the representation of symmetrized or anti-symmetrized products of

the bras fhAjg with the kets fjT̂Aig: However, the set fjT̂Aig is, however, simply

a reordering of the set fjAig. Hence, the symmetry of the matrix elements in the

even- and odd-electron cases is given, respectively, by the symmetrized

½�e � �e and antisymmetrized f�e � �eg parts of the direct product of �e with

itself. A final consideration is that coordinates belonging to the totally symmetric

representation, �0, cannot break any symmetry determined degeneracy. The

symmetries of the Jahn–Teller active modes are therefore given by

�Q � ½�e � �e � �0 for even electron systems

�Q � f�e � �eg � �0 for odd electron systems

This is the central Jahn–Teller [4,5] result. Three important riders should be

noted. First, �Q ¼ 0 for spin-degenerate systems, because f�e � �eg ¼ �0. This

is a particular example of the fact that Kramer’s degeneracies, arising from spin

alone can only be broken by magnetic fields, in the presence of which H and T̂ no

longer commute. Second, a detailed study of the molecular point groups reveals

that all degenerate nonlinear polyatomics, except those with Kramer’s

6 m. s. child



degeneracy, have at least one vibrational coordinate covered by the above rules.

Finally, no linear polyatom has such coordinates. Hence, there are no symmetry

determined conical intersections in linear molecules. The leading vibronic

coupling terms are quadratic in the nuclear coordinates, giving rise to a Renner–

Teller [9] rather than a Jahn–Teller effect.

The symmetry argument actually goes beyond the above determination of the

symmetries of Jahn–Teller active modes, the coefficients of the matrix element

expansions in different coordinates are also symmetry determined. Consider, for

simplicity, an electronic state of symmetry E in an even-electron molecule with

a single threefold axis of symmetry, and choose a representation in which two

complex electronic components, je�i ¼ 1=
ffiffiffi
2

p
ðjeAi � ijeBiÞ, and two degen-

erate complex nuclear coordinate combinations Q� ¼ re�if each have character

t�1 under the C3 operation, where t ¼ e2pi=3. The bras he�j have character t�1:
Since the Hamiltonian operator is totally symmetric, the diagonal matrix

elements he�jHje�i are totally symmetric, while the characters of the

off-diagonal elements he�jHje�i are t�2: Since t3 ¼ 1, it follows that an

expansion of the complex Hamiltonian matrix to quadratic terms in Q� takes the

form

H ¼ 0 kQ� þ lQ2
þ

kQþ þ lQ2
� 0

� �
ð7Þ

The corresponding expression in the real basis ðjeAi; jeBiÞ is

H ¼ kr cosfþ lr2 cos 2f kr sinf� lr2 sin 2f
kr sinf� lr2 sin 2f �kr cosf� lr2 cos 2f

� �
ð8Þ

after substitution for (Qþ;Q�Þ in terms of ðr;fÞ: Equation (8) defines what is

known as the E � E Jahn–Teller problem, which is discussed in Section V.

More general situations have also been considered. For example, Mead [21]

considers cases involving degeneracy between two Kramers doublets involving

four electronic components jai, ja0i, jbi, and jb0i: Equations (4) and (5),

coupled with antisymmetry under T̂2 lead to the following identities between

the various matrix elements

hajĤjai ¼ hT̂ajT̂Ĥjai� ¼ hT̂ajĤjT̂ai� ¼ ha0jĤja0i� ¼ ha0jĤja0i ð9Þ

hajĤja0i ¼ hajĤjT̂ai ¼ hT̂ajT̂ĤjT̂ai� ¼ hT̂ajĤjT̂2ai� ¼ �ha0jĤjai� ð10Þ

hajĤjbi ¼ hT̂ajT̂Ĥjbi� ¼ hT̂ajĤjT̂bi� ¼ ha0jĤjb0i� ð11Þ

hajĤjb0i ¼ hT̂ajT̂Ĥjb0i� ¼ hT̂ajĤjT̂b0i� ¼ �ha0jĤjbi� ð12Þ
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The conclusion is therefore that the 4� 4 Hamiltonian matrix, which is assumed

to have zero trace, takes the form

HðQÞ ¼

wðQÞ 0 uðQÞ vðQÞ
0 wðQÞ �v�ðQÞ u�ðQÞ

u�ðQÞ �vðQÞ �wðQÞ 0

v�ðQÞ uðQÞ 0 �wðQÞ

0
BB@

1
CCA ð13Þ

where wðQÞ is real. Consequently, there are five independent conditions for a

strict conical intersection between two Kramers doublets, although vðQÞ may, for

example, vanish in model situations (see Section V.B). Moreover, there is no

certainty that the intersection will lie in a dynamically accessible region of the

coordinate space.

III. ADIABATIC EIGENSTATES NEAR A
CONICAL INTERSECTION

Suppose that jxnðQÞi is the adiabatic eigenstate of the Hamiltonian Hðq;QÞ,
dependent on internal variables q (the electronic coordinates in molecular

contexts), and parameterized by external coordinates Q (the nuclear coordi-

nates). Since jxnðQÞi must satisfy

Hðq;QÞjxnðQÞi ¼ EnðQÞjxnðQÞi hxmjxni ¼ dmn ð14Þ

it follows by the Hellman–Feynman theorem that

½Hðq;QÞ � EnðQÞrQjxnðQÞi ¼ ½rQEn �rQHjxnðQÞi ð15Þ

Thus, on expanding

rQjxnðQÞi ¼
X

m

jxmðQÞihxmjrQjxni ð16Þ

the off-diagonal matrix elements of rQ may be derived from Eq. (15) in the form

hxmjrQjxni ¼
hxmjrQHjxni

EnðQÞ � EmðQÞ ð17Þ

The adiabatic approximation involves neglect of these off-diagonal terms, on

the basis that jEnðQÞ � EmðQÞj � jhxmjrQHjxnij: The diagonal elements

hxnjrQjxni are undetermined by this argument, but the gradient of the normali-

zation integral, hxnjxni ¼ 1, shows that

rQhxnjxni ¼ hxnjrQxni þ hrQxnjxni ¼ hxnjrQxni þ hxnjrQxni� ¼ 0 ð18Þ
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Consequently,

hxnjrQxni ¼ �hxnjrQxni� ð19Þ

from which hxnjrQxni ¼ 0, for real jxni:
Equations (16)–(20) show that the real adiabatic eigenstates are everywhere

smooth and continuously differentiable functions of Q, except at degenerate

points, such that EnðQÞ � EmðQÞ ¼ 0, where, of course, the jxni are undefined.

There is, however, no requirement that the jxni should be real, even for a real

Hamiltonian, because the solutions of Eq. (14) contain an arbitrary Q dependent

phase term, eicðQÞ say. Second, as we shall now see, the choice that jxni is real

raises a different type of problem. Consider, for example, the model

Hamiltonian in Eq. (8), with l ¼ 0;

H ¼ kr cosf kr sinf
kr sinf �kr cosf

� �
ð20Þ

with a degeneracy at r ¼ 0 and real eigenvectors

jxþi ¼
cos f

2

sin f
2

 !
jx�i ¼

�sin f
2

cos f
2

 !
ð21Þ

It is readily verified that

hxþj
q
qf

jxþi ¼ hx�j
q
qf

jx�i ¼ 0 ð22Þ

but the new problem is that

jx�ðfþ 2pÞi ¼ �jx�ðfÞi ð23Þ

which means that jx�ðfÞi is double valued with respect to encirclement of the

degeneracy at r ¼ 0. In the molecular context, the assumption of a real adiabatic

electronic eigenstate therefore requires boundary conditions such that the associ-

ated nuclear wave function also changes sign on any path around the origin,

because the total wave function itself must be single valued. A more convenient

alternative, for practical calculations, is often to add a phase modification, such

that the modified eigenstates, jn�i, are single valued [2,10].

jnþi ¼ eicðQÞ cos f
2

sin f
2

 !
jn�i ¼ eicðQÞ �sin f

2

cos f
2

 !
ð24Þ
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with cðQf Þ � cðQiÞ ¼ �p: The simplest choice in the present context is

cðQÞ ¼ f=2 but any phase factor, eicðfÞ, that changes sign around a circuit of f
is equally acceptable. Nevertheless, the geometric phase defined in Section IV

and the associated vector potential theory outlined in Section VI.B are gauge

invariant (i.e., independent of this phase ambiguity).

We should also notice explicitly that [22]

hx�jrQjxþi ¼
ef

2r
ð25Þ

where ef is a unit vector in the direction of increasing f: Equation (25) shows

that the non-adiabatic coupling diverges at the conical intersection point, which

is of course a manifestation of the fact that jx�i are undefined at an exact

degeneracy. It is readily verified that hn�jrQjnþi and hnþjrQjnþi also diverge in

a similar way.

In turn, this leads to an important conclusion, for the general discussion, that

the above sign change, for real eigenstates such that hx�ðQ þ dQÞjx�ðQÞi ! 1

as dQ ! 0, arises solely from the electronic degeneracy—not from the linearity

of Eq. (20), because the adiabatic eigenstates were seen above to be smooth

continuously differentiable functions of the nuclear coordinates Q, except at the

conical intersection Q0, where the divergence occurs. To reverse a famous

argument of Longuet-Higgins [7], suppose that a sign change were observed for

an arbitrarily small path C around Q0, on which the linear approximation (20) is

valid, but not around some larger loop L, which excludes other degeneracies.

Now, imagine a continuous expansion and deformation that takes C into

L, parameterized by a monotonically increasing parameter l: There must be

some point l0, at which jx�ðQÞi, say, is sign reversing on Cðl0Þ but sign pre-

serving on Cðl0 þ dlÞ: In other words, the change from sign reversing to sign

preservation on the larger loop requires the smoothly continuous function

jx�ðQÞi to undergo a discontinuous change at l0—a logical impossibility.

Longuet-Higgins [7] actually uses the argument in reverse to infer the logical

existence of conical intersections, from the observation of sign changes around

arbitrary loops, a test that is now widely used to detect the existence of conical

intersections between ab initio potential energy surfaces [23]. A generalization

of the Longuet-Higgins argument to the case of a spin–orbit coupled doublet has

been given by Stone [24]. As discussed above [see Eq. (13)] the Hamiltonian

matrix is then intrinsically complex, and there are no real adiabatic eigenstates.

Nevertheless one can still find ‘‘parallel transported’’ states jx�i, with vanishing

diagonal elements, as in Eq. (22), which acquire a variable phase change,

according to the radius of the encircling loop. The conical intersection is now

removed by spin–orbit coupling, but it’s influence is still apparent in simple sign

changes of jx�i around very large loops. The difference from the Longuet-

Higgins case is that the phase change falls to zero on very small circles around
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the maximum on the lower adiabatic surface. This situation is further discussed

in Section V.B.

Longuet-Higgins [7] also reinforces the discussion by the following quali-

tative demonstration of a cyclic sign change for the LiNaK like system subject

to Eq. (3), in which rows and columns are labeled by the basis functions

2�1 ¼ 1ffiffiffi
2

p ðcB � cCÞ

2�2 ¼ 1ffiffiffi
6

p ð�2cA þ cB þ cCÞ
ð26Þ

where cA ¼ ð�abcÞ, and so on, with the b spin on atom A. Thus 2�1 may be

recognized as the Heitler–London ground state of BC in the ‘‘reactant’’ AþBC

geometry, at which b ¼ g ¼ 0: Second, there is also a ‘‘transition state’’

geometry B–A–C at which a < b ¼ g, where the lower eigenstate goes over to
2�2: The table below follows changes in the ground-state wave function as the

system proceeds through various permutations of the three possible reactant and

transition state geometries, subject to the constraint that the overlap from one

step to the next is positive.

Geometry Ground-State Wave Function

A þ BC 1ffiffi
2

p ðcB � cCÞ
A–B–C 1ffiffi

6
p ð2cB � cA � cCÞ

AB þ C 1ffiffi
2

p ðcB � cAÞ
B–A–C 1ffiffi

6
p ð�2cA þ cB þ cCÞ

B þ AC 1ffiffi
2

p ð�cA þ cCÞ
B–C–A 1ffiffi

6
p ð�cA � cB þ 2cCÞ

BC þ A 1ffiffi
2

p ð�cB þ cCÞ

Comparison between the first and last lines of the table shows that the sign of

the ground-state wave function has been reversed, which implies the existence

of a conical intersection somewhere inside the loop described by the table.

IV. GEOMETRIC PHASE

While the presence of sign changes in the adiabatic eigenstates at a conical

intersection was well known in the early Jahn–Teller literature, much of the

discussion centered on solutions of the coupled equations arising from non-

adiabatic coupling between the two or more nuclear components of the wave

function in a spectroscopic context. Mead and Truhlar [10] were the first to
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focus on the consequences for both scattering and spectroscopy on a single

adiabatic electronic energy surface, influenced by, but well separated from a

conical intersection (see Section VI). Berry [8], who coined the term geometric

phase, set the argument in a more general context. Given the existence of an

infinity of phase modified adiabatic eigenstates of any given problem, the

questions at issue are

1. Whether there are any physical invariants of the system, independent of

phase modifications.

2. How such invariants can be computed.

Berry [8] starts by assuming the existence of a single-valued adiabatic

eigenstate jnðQÞi, such as that in Eq. (24), subject to

HðQÞjnðQÞi ¼ EnðQÞjnðQÞi hmjni ¼ dnm ð27Þ

Solutions of the time-dependent Schrödinger equation

i�h
dj�ðQðtÞÞi

dt
¼ HðQðtÞÞj�ðQðtÞÞi ð28Þ

are sought then in the form

j�ðQðtÞÞi ¼ jnðQðtÞÞieigðtÞ�ði=�hÞ
Ð

EnðQðtÞÞdt gð0Þ ¼ 0 ð29Þ

as the system is taken slowly round a time dependent path QðtÞ. It readily follows

from Eq. (28) and (29) that

rQjnðQÞi � _Q þ i
dg
dt

jnðQÞi ¼ 0 ð30Þ

from which it follows by integrating around a closed path C in parameter space

that

gC ¼ gðTÞ � gð0Þ ¼ i

þ
C

hnjrQni � _Q dt ¼ i

þ
C

hnjrQni � dQ ð31Þ

It should be noted, by taking the gradient of the normalization identity that

hnjrQni ¼ �hrQnjni ¼ �hnjrQni�: ð32Þ
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