HIGH INTEGRITY DIE CASTING PROCESSES

EDWARD J. VINARCIK

HIGH INTEGRITY DIE CASTING PROCESSES

HIGH INTEGRITY DIE CASTING PROCESSES

EDWARD J. VINARCIK

This book is printed on acid-free paper. ⊚

Copyright © 2003 by John Wiley & Sons, New York. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Vinarcik, Edward J.
High integrity die casting processes / Edward J. Vinarcik.
p. cm.
Includes index.
ISBN 0-471-20131-6
1. Die-casting. I. Title.
TS239.V56 2002
671.2'53—dc21

2002009957

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To My Dearest Friend

Ad Majorem Dei Gloriam

CONTENTS

Pre	face		XV
Fig	Figures and Tables		xvii
INT	ROD	UCTION	1
1	Intro	duction to High Integrity Die Casting Processes	3
	1.1	Origins of High Pressure Die Casting	3

2	Molte Proce	en Metal Flow in High Integrity Die Casting esses	13
		References	11
	1.5	High Integrity Die Casting Processes	10
	1.4	Strategies to Improve Die Casting Capabilities	10
	1.3	Problems with Conventional Die Casting	7
	1.2	Conventional High Pressure Die Casting	5

		10
2.	1 Introduction	13
2.	2 Flow within a Fluid	13
2.	3 Flow at the Metal Fill Front	15
2.	4 Metal Flow in Vacuum Die Casting	19
2.	5 Metal Flow in Squeeze Casting	21
2.	6 Metal Flow in Semi-Solid Metalworking	22

vii

viii CONTENTS

	2.7	Predicting Metal Flow in High Integrity Die Casting Processes	24
		References	24
HIC	GH IN	TEGRITY DIE CASTING PROCESSES	27
3	Vacu	um Die Casting	29
	3.1	Vacuum Die Casting Defined	29
	3.2	Managing Gases in the Die	29
	3.3	Managing Shrinkage in the Die	34
	3.4	Elements of Vacuum Die Casting Manufacturing Equipment	35
	3.5	Applying Vacuum Die Casting	40
		References	42
		Case Studies: Vacuum Die Casting	42
		Introduction	42
		B Post	43
		Transmission Cover	44
		Engine Component Mounting Bracket	45
		Marine Engine Lower Mounting Bracket	46
		Reference	49
4	Sque	eze Casting	51
	4.1	Squeeze Casting Defined	51
	4.2	Managing Gases in the Die	53
	4.3	Managing Shrinkage in the Die	54
	4.4	Elements of Squeeze Casting Manufacturing Equipment	56
	4.5	Applying Squeeze Casting	57
		References	58
		Case Studies: Squeeze Casting	58

	Introduction	58
	Steering Knuckle	60
	Valve Housing	61
	Steering Column Housing	62
	High Performance Engine Block	63
	References	65
Semi	-Solid Metalworking	67
5.1	Semi-Solid Metalworking Defined	67
5.2	Managing Gases in the Die	70
5.3	Managing Shrinkage in the Die	70
5.4	Microstructures in Semi-Solid Metalworking	71
5.5	Semi-Solid Metalworking Equipment	72
	 5.5.1 Billet-Type Indirect Semi-Solid Metalworking 5.5.2 Thixomolding® Direct Semi-Solid 	73
	Metalworking	79
5.6	Applying Semi-Solid Metalworking	82
	References	83
	Case Studies: Aluminum Semi-Solid Metalworking	84
	Introduction	
	Fuel Rails	84
	Control Arm	
	Swivel Bracket	89
	Idler Housing	90
	References	91
	Case Studies: Magnesium Semi-Solid Metalworking	91
	Introduction	91
	Automotive Seat Frame	93
	Wireless Telephone Face Plates	95

5

x CONTENTS

	Video Projector Case	96
	Camera Housing	97
	Laptop Computer Case	97
	Power Hand Tool Housing	98
	References	100
6 Ther Proc	mal Balancing and Powder Die Lubricant esses	101
6.1	Thermal Cycling Inherent to High Integrity Die Casting Processes	101
6.2	Heat Checking and Soldering	102
6.3	Containing the Effects of Heat Checking and Soldering	103
6.4	Repercussion of Heat Checking and Soldering Containment Actions	105
6.5	Thermal Management of High Integrity Die Casting Process Tooling	105
6.6	Minimization of Thermal Cycling Effects with Powder Lubricants	106
6.7	Applying Thermal Management Methods in Real World Applications	108
	References	109
DESIGN DIE CAS	CONSIDERATIONS FOR HIGH INTEGRITY TINGS	111
7 Desig Cast	gn for Manufacturability of High Integrity Die ings	113
7.1	Introduction to Design for Manufacturability	113
7.2	High Integrity Die Casting Design for Manufacturability Guidelines	113
7.3	Automotive Fuel Rail Case Study Review	114

		7.3.1 Fuel Rail Functional Requirements	115
		7.3.2 Case Study Analysis Method	115
		7.3.3 Review of the Z-1 Fuel Rail Design	116
		7.3.4 Review of the Z-2 Fuel Rail Design	118
		7.3.5 Further Design for Manufacturability	121
	71	Conclusions of the Case Study	121
	/.+		122
		References	123
8	Com Casti	ponent Integration Using High Integrity Die ng Processes	125
	8.1	Introduction to Component Integration	125
	8.2	Hidden Costs in Every Component	125
	8.3	Analyzing Integration Potential	127
	8.4	Component Integration Using High Integrity Die Casting Processes	127
	8.5	Component Integration Case Study	129
		References	130
9	Value Proce	e Added Simulations of High Integrity Die Casting esses	131
	9.1	Introduction to Applied Computer Simulations	131
	9.2	Computer Simulations of High Integrity Die Casting Processes	134
	9.3	Applying Simulations Effectively	136
		9.3.1 Resources	138
		9.3.2 Planning	139
		9.3.3 Coupling Product and Process Simulations	140
	9.4	Commitment	140
	9.5	A Case for Sharing Simulation Data across Organizations	140
		References	141

CONTROLLING QUALITY IN HIGH INTEGRITY DIE CASTING PROCESSES			143
10	Apply Die C	ying Statistical Process Control to High Integrity Casting Processes	145
	10.1	Introduction to Statistical Process Control	145
	10.2	SPC Characteristic Types	148
	10.3	SPC Applied to Dynamic Process Characteristics	149
	10.4	Die Surface Temperature Case Study	151
	10.5	Applying SPC to High Integrity Die Casting Processes References	154 155
11	Defec	ets in High Pressure Casting Processes	157
	11.1	Introduction	157
	11.2	 Conventional Die Casting Defects 11.2.1 Surface Defects 11.2.2 Internal Defects 11.2.3 Dimensional Defects 	157 158 159 161
	11.3	Defects Occurring during Secondary Processing	161
	11.4	Defects Unique to Squeeze Casting and Semi-Solid Metalworking 11.4.1 Contaminant Veins 11.4.2 Phase Separation	162 163 165
	11.5	Predicting Defects	167
		References	168
VIS	IONS	OF THE FUTURE	169
12	Futu	re Developments in High Integrity Die Casting	171
	12.1	Continual Development	171

12.2	New High Integrity Die Casting Process Variants	171
12.3	Refinements of Magnesium Alloys	172

219

12.4	Emerging Alloys for Use with High Integrity Die Casting Processes	173
12.5	Metal Matrix Composites for Use with High Integrity Die Casting Processes	173
12.6	Reducing Tooling Lead Times	175
12.7	Lost-Core Technologies	176
12.8	Controlled Porosity	177
12.9	Innovations Continue	178
	References	178
STUDY Q	UESTIONS	181
Appendix .	A Common Nomenclature Related to High Integrity Die Casting Processes	201
Appendix	B Recommended Reading	207
	B.1 Books	207
	B.2 Papers	208
	B.3 Periodicals	209
Appendix	C Material Properties of Aluminum	211
	References	211
Appendix 1	D Die Cast Magnesium Material Properties	215
	Reference	218

Index

PREFACE

This book has grown largely out of lectures given for a continuing education seminar titled "Advanced Die Casting Processes" presented at the University of Wisconsin-Milwaukee. It is intended for use as a supplement to such a course and as a reference to practicing process engineers, product engineers, and component designers. The content of this book focuses on presenting the concepts behind advanced die casting technologies, specifically vacuum die casting, squeeze casting, and semi-solid metalworking. Moreover, several sections within the book are dedicated to examining case studies that illustrate the practical nature of these processes.

The book is divided into five distinct sections. The initial two chapters of the book are intended to present the basic concepts related to die casting processes and the flow of molten metal. The second portion of the book examines each of the high integrity casting process along with case studies. Three chapters are dedicated to product design as applied to high integrity die casting processes as well as two chapters focusing on quality and defects. An understanding of the defects and their causes can aid in their avoidance. The final chapter of the book deals with future advances under development.

Included with this book is a compact disk containing Microsoft PowerPoint presentations for each chapter. These presentations can be used for training and teaching purposes, or select slides can be extracted from the presentation for use in engineering proposals, customer education seminars, or marketing presentations. To assist the presenter, detailed speaker notes are available for each chapter slide. To view the chapter notes for any given slide, one must right click the computer mouse and select "speaker notes" while running the slide show.

The author wishes to express his gratitude to several colleagues who provided figures, supporting data, and encouragement that made the publication of this book possible. Specifically, the author wishes to thank Joseph Benedyk, Henry Bakemeyer of Die Casting Design and Consulting, John Jorstad of Formcast, Robert Tracy of Foundarex Corporation, Paul Mikkola of Hitchner Manufacturing, Robert Wolfe of Madison-Kipp Corporation, Craig Nelson of IdraPrince, Rath DasGupta of SPX Contech, Charles Van Schilt of Thixocast, Steve LeBeau of Thixomat, Michael Lessiter of the American Foundry Society, and Matsuru Adachi of Ube Machinery.

FIGURES AND TABLES

Figure 1.1	Diagrams filed with Doehler's patent for a
	production die casting machine. 4
Figure 1.2	Graphical illustration of a hot-chamber die casting
	machine. 6
Figure 1.3	Graphical illustration of a cold-chamber die
	casting machine. 7
Figure 1.4	Casting cycle for cold-chamber die casting. 8
Figure 2.1	Comparison of (a) laminar flow and (b) turbulent
	flow. 14
Figure 2.2	Illustration of the experiment demonstrating the
	difference between (a) laminar flow and (b)
	turbulent flow. 15
Figure 2.3	Graphical illustration of planar flow. 16
Figure 2.4	Graphical illustration showing the progression of a
	die cavity filling with a planar metal front. 17
Figure 2.5	Graphical illustration showing nonplanar flow.
	17
Figure 2.6	Graphical illustration showing the progression of a
	die cavity filling with a nonplanar metal front.
	18
Figure 2.7	Graphical illustration showing the progression of
	nonplanar fill. 18
Figure 2.8	Illustration showing atomized flow typical in
	conventional die casting. 19
Figure 2.9	Graphical illustration of die fill with atomized
	metal flow in conventional die casting. 20

xviii FIGURES AND TABLES

- Figure 2.10 Short shots of identical castings illustrating the difference between (*a*) planar filling and (*b*) nonplanar filling. 21
- Figure 3.1 Graphical illustration showing the progression of a die cavity filling with (*a*) improper vacuum valve placement and (*b*) proper vacuum valve placement. 33
- Figure 3.2 Graphical progression showing liquid metal wave cresting and gas entrapment in the shot sleeve: (*a*) pour hole open; (*b*) pour hole closed; (*c*) wave cresting; (*d*) gases trapped. 34
- Figure 3.3 Example operating curve for a vacuum pump. 35
- Figure 3.4 Illustration of a rotary vane vacuum pump. 36
- Figure 3.5 Examples of portable vacuum systems for use in vacuum die casting. 37
- Figure 3.6 Schematic of a corrugated chill-block-type vacuum shut-off valve. 38
- Figure 3.7 Experimental test data showing the pressure lag when using a corrugated chill-block shut-off valve (1200 cm³ volume with 0.4 cm² X section). 39
- Figure 3.8 Example of a mechanical vacuum shut-off valve. 40
- Figure 3.9 Example of a hydraulic vacuum shut-off valve. 41
- Figure 3.10 Experimental test data showing the pressure response in using a dynamic vacuum shut-off valve (1200 cm³ volume with 1.6 cm² valve X section). 41
- Figure 3.11 Components manufactured using vacuum die casting. 43
- Figure 3.12 Automotive B post manufactured using vacuum die casting. 44
- Figure 3.13 Transmission cover manufactured using vacuum die casting. 45
- Figure 3.14 Vacuum die cast engine component mounting bracket. 46
- Figure 3.15 Marine engine using a vacuum die cast lower motor mounting bracket. 47

Figure 3.16	Impact properties obtained from test samples;
	process comparison: $\frac{1}{4}$ -in. impact samples
	machined from casting. 48
Figure 3.17	Actual impact properties obtained for the vacuum
	die cast marine engine lower motor mounting
F ' 2 10	brackets: heat treatment benefit. 48
Figure 3.18	Marine engine lower motor mounting bracket
F '	manufactured using vacuum die casting. 49
Figure 4.1	Schematic of the squeeze forming process. 52
Figure 4.2	Comparisons of casting pressures to gate
	53
Figure 4.3	Microstructural comparisons between conventional
8	die casting and squeeze casting. 54
Figure 4.4	Graphical illustration showing the progression of a
C	die cavity filling with (<i>a</i>) atomized filling and (<i>b</i>)
	a planar metal front. 55
Figure 4.5	Comparisons of conventional die casting and
	squeeze casting. 57
Figure 4.6	Components manufactured using the squeeze
	casting process. 59
Figure 4.7	Steering knuckle manufactured using the squeeze
	casting process. 60
Figure 4.8	Squeeze cast valve housing. 62
Figure 4.9	Steering column housing produced using the
T ' (10	squeeze casting process. 63
Figure 4.10	Porsche Boxter engine block produced using the
TT 1 1 7 1	squeeze casting process. 64
Table 5.1	Freezing ranges for common die cast aluminum
Eigung 5 1	Alloys. 08
Figure 5.1	Aluminum billet in the semi-solid state. 08
Figure 5.2	value tions for numerous die easting processes
	69
Figure 5.3	Process comparison between (a) direct semi-solid
0	metalworking, (b) indirect semi-solid
	metalworking, and (c) conventional casting
	processes. 72

Figure 5.4	Microstructure of an aluminum component produced with a direct semi-solid metalworking
Figure 5.5	process. 73 Microstructure of an aluminum component
	produced with an indirect semi-solid metalworking
Figure 5.6	Graphical representation of a typical indirect semi- solid metalworking manufacturing cell. 75
Figure 5.7	Continuously cast semi-solid metalworking feedstock. 76
Figure 5.8	Anatomy of a continuously cast semi-solid metalworking billet (<i>a</i>) before heating and (<i>b</i>) after heating. 77
Figure 5.9	Plunger tip and die design for capturing the dendritic case of a continuously cast semi-solid metalworking billet. 78
Figure 5.10	Anatomy of an extruded semi-solid metalworking billet (<i>a</i>) before heating and (<i>b</i>) after heating. 78
Figure 5.11	Schematic of Thixomolding [®] machine use in direct semi-solid metalworking. 79
Figure 5.12	Graphical representation of a typical manufacturing cell. 80
Figure 5.13	Schematic of the metal injection screw used in Thixomolding [®] . 81
Figure 5.14	Die design for capturing the frozen screw plug. 81
Figure 5.15	Multiple microstructures may be obtained by varying the percent solid during metal injection when using the Thixomolding [®] process. 82
Figure 5.16	Comparisons between conventional die casting, semi-solid metalworking, and squeeze casting. 83
Figure 5.17	Automotive components manufactured using semi- solid metalworking processes. 85
Figure 5.18	Components manufactured using semi-solid metalworking processes. 85
Figure 5.19	Fuel rails manufactured using semi-solid metalworking (bottom) and brazing (top). 86

Figure 5.20	Fuel rail for use on 2.0-liter and 2.2-liter engines manufactured using an indirect semi-solid
	metalworking process. 87
Figure 5.21	Control arm manufactured using an indirect semi- solid metalworking processes. 88
Figure 5.22	Outboard motor swivel bracket manufactured using semi-solid metalworking. 89
Figure 5.23	Automotive idler housing manufactured using an indirect semi-solid metalworking process. 90
Figure 5.24	Magnesium die casting shipments in the United States, 1990–2001. 92
Figure 5.25	Magnesium components manufactured using semi- solid metalworking processes. 93
Figure 5.26	Magnesium automotive seat frame manufactured using semi-solid metalworking. 94
Figure 5.27	Wireless telephone face plates manufactured in magnesium using semi-solid metalworking. 95
Figure 5.28	Magnesium LCD projector case manufactured in three sections using semi-solid metalworking. 96
Figure 5.29	Hand-held video camera housing produced using a magnesium semi-solid metalworking process. 98
Figure 5.30	Compact laptop personal computer case manufactured using semi-solid metalworking in lightweight magnesium. 99
Figure 5.31	Power hand tool housing produced in magnesium using semi-solid metalworking. 100
Figure 6.1	Die cavity surface temperature over a single processing cycle. 102
Figure 6.2	Die surface cross section illustrating heat-checking formation and progression 103
Figure 6.3	Die surface cross section illustrating microstructural weaknesses in a welded die surface. 104
Figure 6.4	Shot sleeve and tool design for use with closed die powder lubricant application. 107
Figure 6.5	Processing cycle for closed die powder lubricant application. 108

Figure 7.1	Production fuel rails Z-1 (top) and Z-2 (bottom). 114
Figure 7.2	Diagram of Z-1 fuel rail design. 116
Figure 7.3	Shrinkage porosity found in the regulator pocket of the Z-1 fuel rail. 117
Figure 7.4	Diagram of Z-2 fuel rail design. 118
Figure 7.5	Z-2 end-flange evolution: (<i>a</i>) initial asymmetric design; (<i>b</i>) symmetric design; (<i>c</i>) symmetric webbed design. 120
Figure 7.6	Shrinkage porosity and contaminant vein oxide inclusions found in the second flange design of Z-2 fuel rail. 120
Figure 7.7	Shrinkage porosity found in the body of a production Z-2 fuel rail. 122
Figure 8.1	Component integration analysis flow chart. 128
Figure 8.2	Four-cylinder fuel rail produced by brazing a fabricated assembly. 129
Figure 8.3	Four-cylinder fuel rail produced using the semi- solid metalworking process. 130
Figure 9.1	Control factors and potential problems in the product development cycle. 132
Figure 9.2	Project cost lever illustrating returns as a function of when an investment is made. 133
Figure 9.3	Computer simulation of die filling during metal injection. 135
Figure 9.4	Computer simulation illustrating areas in the die cavity prone to solidification shrinkage porosity. 136
Figure 9.5	Computer simulation showing variation in residual stress that forms during solidification and cooling. 137
Figure 9.6	Computer simulation showing component distortion (exaggerated) during cooling. 138
Figure 9.7	Qualitative illustration grouping the number of organizations to the effectiveness of their simulation efforts. 139
Figure 10.1	Dart board comparison of (<i>a</i>) common-cause variation and (<i>b</i>) special-cause variation. 146
Figure 10.2	Dart board comparison showing a reduction in common-cause variation from (a) to (b) . 147

- Figure 10.3 Example \overline{x} chart commonly used for SPC. 149
- Figure 10.4 Process data curve for die surface temperature over one cycle. 151
- Figure 10.5 Thirty discrete process data curves for die surface temperature over one cycle (equal number of elements for each cycle). 152
- Table 10.1Calculation of upper and lower control limits for
element 0.0.153
- Figure 10.6 Process average curve, upper control limit curve, and lower control limit curve for die surface temperature over one cycle. 154
- Figure 10.7 Process average curve, upper control limit curve, and lower control limit curve for die surface temperature during die lubricant spray. 154
- Figure 10.8 Process data curve exhibiting an "out-of-control" condition (cycle exhibits special-cause variation). 155
- Figure 11.1 Contaminant veins form as (*a*) a clean planar fill front collects contaminants and (*b*) the metal progresses through the die cavity. 163
- Figure 11.2 Characteristic features prone to contaminant vein formation. 164
- Figure 11.3 Graphical illustration showing the effects of phase separation in semi-solid metalworking. 166
- Figure 12.1 Four-step process for producing a semi-solid slurry on demand. 172
- Figure 12.2 Motor cycle sprocket die cast using an SiC particulate reinforced aluminum matrix composite. 174
- Figure 12.3 Hollow (*a*) aluminum automotive suspension arm and (*b*) resin-bonded sand core. 177
- Figure SQ1 Three different types of metal flow behavior. 181
- Figure S1 Illustration of (*a*) atomized metal flow, (*b*) nonplanar metal flow, and (*c*) planar metal flow. 182
- Figure SQ2 Illustration of metal behavior in three processes requiring vacuum valve placement. 183
- Figure S2 Illustrations showing optimum vacuum valve placement for three metal flow patterns. 184