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Foreword

When we, in the late 1980s, worked in a European ESPRIT project on what later
became the MUNIN network, expert systems and neural networks were the pre-
dominant new artificial intelligence techniques. However, we felt that the most
important ingredient of medical diagnosis, causality with inherent uncertainty, could
not be captured by these techniques.

Rather than trying to model the experts we felt that we should go back to
the ancient scientific tradition of modeling the domain, and the new challenge
was to incorporate causal uncertainty. We called our models causal probabilistic
networks (CPNs). They are now called Bayesian networks. The task, we thought,
is quite simple: determine a CPN through dialogues with the experts. The rest is
just mathematics and computer power.

We were wrong in two ways. It is not ‘just’ mathematics and computer power.
But even worse, to determine a CPN through dialogues with the experts is much
more intriguing than we anticipated. Over the two decades since the revival of
Bayesian networks, several books have addressed the first problem. Although the
need is widely recognized, no book has so far focused on the second problem.

This book meets the demand for an aid in developing Bayesian network models
in practice. The authors have done a great job in collecting a large sample of
Bayesian network applications from a wide range of domains.

Each chapter tells a story about a particular application. However, they do more
than that. By studying the various chapters, the reader can learn very much about
how to collaborate with domain experts and how to combine domain knowledge
with learning from databases. Furthermore, the reader will be presented to a long
list of advantages, problems and shortcomings of Bayesian network modeling and
inference.

The sample also reflects the two sides of Bayesian network. On the one hand, a
Bayesian network is a causal probabilistic network. On the other hand, a Bayesian
network is a way of decomposing a large joint probability distribution. In some of
the applications, causality is an important part of the model construction, and in
other applications, causality is not an issue.

I hope that this book will be studied by everyone who is about to model a
domain containing causality with inherent uncertainty: this book will teach him/her
if and how to use Bayesian networks.

Finn V. Jensen
Aalborg University





Preface

The spectacular improvements of the technologies to produce, transmit, store and
retrieve information are leading to a paradox: in many circumstances, making the
best use of the available information is much more difficult today than a few
decades ago. Information is certainly abundant and easily accessible, but at the
same time (and to a large extent, consequently) often inconsistent, contradictory,
and of uncertain traceability and reliability. The process of interpreting information
remains an essential one, because uninterpreted information is nothing else than
noise, but becomes more and more delicate. To mention only one domain covered
in this book, striking examples of this phenomenon are the famous criminal cases
which remain unsolved, despite the accumulation over years of evidences, proofs
and expert opinions.

Given this challenge of optimally using information, it is not surprising that
a gain of interest for statistical approaches has appeared in many fields in recent
years: the purpose of statistics is precisely to convert information into a usable
form.

Bayesian networks, named after the works of Thomas Bayes (ca. 1702–1761)
on the theory of probability, have emerged as the result of mathematical research
carried out in the 1980s, notably by Judea Pearl at UCLA, and from that time on,
have proved successful in a large variety of applications.

This book is intended for users, and also potential users of Bayesian networks:
engineers, analysts, researchers, computer scientists, students and users of other
modeling or statistical techniques. It has been written with a dual purpose in mind:

• highlight the versatility and modeling power of Bayesian networks, and also
discuss their limitations and failures, in order to help potential users to assess
the adequacy of Bayesian networks to their needs;

• provide practical guidance on constructing and using of Bayesian networks.

We felt that these goals would be better achieved by presenting real-world appli-
cations, i.e., models actually in use or that have been at least calibrated, tested,
validated, and possibly updated from real-world data – rather than demonstration
models, prototypes, or hypothetical models. Anyone who has constructed and used
models to solve practical problems has learned that the process is never as straight-
forward as in textbook cases, due to some ever-present difficulties: unability of the
model to capture some features of the problem, missing input data, untractability
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(model size/computing time), and non-validable results. Our aim in the book is,
also, to identify and document the techniques invented by practitioners to overcome
or reduce the impact of these difficulties.

Besides a brief theoretical introduction to Bayesian networks, based on some
basic, easily reproducible, examples (Chapter 1), the substance of this book is 20
application chapters (Chapters 2–21), written by invited authors.

In selecting the applications, we strove to achieve the following objectives:

1. cover the major types of applications of Bayesian networks: diagnosis,
explanation, forecasting, classification, data mining, sensor validation, and
risk analysis;

2. cover as many domains of applications as possible: industry (energy,
defense, robotics), computing, natural and social sciences (medicine, biol-
ogy, ecology, geology, geography), services (banking, business, law), while
ensuring that each application is accessible and attractive for nonspecialists
of the domain;

3. invite ‘famous names’ of the field of Bayesian networks, but also authors
who are primarily known as experts of their field, rather than as Bayesian
networks practitioners; find a balance between corporate and academic
applications;

4. describe the main features of the most common Bayesian network software
packages.

Chapter 22 is a synthesis of the application chapters, highlighting the most promis-
ing fields and types of applications, suggesting ways that useful lessons or applica-
tions in one field might be used in another field, and analysing, in the perspective of
artificial intelligence, where the field of Bayesian networks as a whole is heading.

A companion website for this book can be found at: www.wiley.com/go/pourret
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Via Bellini 25 g, 15100 Alessandria, Italy

Roongrasamee Boondao Faculty of Management Science, Ubon Rajathanee Uni-
versity Warinchumrab, Ubon Ratchathani 34190, Thailand

Luis M. de Campos Departamento de Ciencias de la Computación e Inteligencia
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CONTRIBUTORS xv
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Introduction to Bayesian
networks

Olivier Pourret
Electricité de France, 20 Place de la Défense, 92050, Paris la Défense,
France

1.1 Models

1.1.1 Definition

The primary objective of this book is to discuss the power and limits of Bayesian
networks for the purpose of constructing real-world models. The idea of the authors
is not to extensively and formally expound on the formalism of mathematical
models, and then explain that these models have been – or may be – applied in
various fields; the point of view is, conversely, to explain why and how some
recent, real-world problems have been modeled using Bayesian networks, and to
analyse what worked and what did not.

Real-world problems – thus the starting point of this chapter – are often
described as complex. This term is however seldom defined. It probably makes
more sense to say that human cognitive abilities, memory, and reason are limited
and that reality is therefore difficult to understand and manage. Furthermore, in
addition to the biological limitations of human capabilities, a variety of factors,
either cultural (education, ideology), psychological (emotions, instincts), and even
physical (fatigue, stress) tend to distort our judgement of a situation.

One way of trying to better handle reality – in spite of these limitations and
biases – is to use representations of reality called models. Let us a introduce a basic
example.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd



2 INTRODUCTION

Example 1. Consider an everyday life object, such as a DVD recorder. The life
cycle of the device includes its phases of design, manufacture, marketing, sale,
use, possibly break down/repair, and disposal. The owner of a DVD recorder is
involved in a temporally delimited part of its life cycle (i.e., when the object is
in his/her living-room) and has a specific need: being able to use the device. The
user’s instruction manual of a DVD recorder is a description of the device, written
in natural language, which exclusively aims at explaining how the device is to be
operated, and is expressly dedicated to the owner: the manual does not include any
internal description of the device.

In this example, the user’s instruction manual is a model of the DVD recorder.
The 20 application chapters of this book provide numerous examples of models:

models of organizations (Japanese electrical companies), of facts (criminal cases),
of individuals (students in a robotics course, patients suffering from liver disorders),
of devices (a sprinkler system), of places (potentially ‘mineralized’ geographic
areas in India), of documents (texts of the parliament of Andalusia), of commodities
(Chilean wines), or of phenomenons (crime in the city of Bangkok, terrorism threats
against US military assets). These parts of reality are material or immaterial: we
will use the word ‘objects’ to refer to them.

These objects, which are delimited in time and space, have only one common
point: at some stage of their life cycle (either before they actually occurred in
reality, or in ‘real-time’ when they occurred, or after their occurrence) they have
been modeled, and Bayesian networks have been employed to construct the model.

Example 1 suggests that the purpose of a model is to satisfy a need of some
person or organization having a particular interest in one or several aspects of
the object, but not in a comprehensive understanding of its properties. Using the
terminology of corporate finance, we will refer to these individuals or groups of
individuals with the word stakeholders . Examples of stakeholders include users,
owners, operators, investors, authorities, managers, clients, suppliers, competitors.
Depending on the role of the stakeholder, the need can be to:

• document, evaluate, operate, maintain the object;

• explain, simulate, predict, or diagnose its behavior;

• or – more generally – make decisions or prepare action regarding the object.

The very first benefit of the model is often to help the stakeholder to explicitly
state his need: once a problem is explicitly and clearly expressed, it is sometimes
not far from being solved.

The construction of a model involves the intervention of at least one human
expert (i.e., someone with a practical or theoretical experience of the object),
and is sometimes also based upon direct, uninterpreted observations of the object.
Figure 1.1 illustrates this process: in Example 1, the object is the DVD recorder;
the stakeholder is the owner of the device, who needs to be able to perform the
installation, connections, setup and operation of the DVD recorder; the model is
the user’s instruction manual, which is based on the knowledge of some expert
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Real-world
object Stakeholder

ModelExpert
knowledge

observations
theoretical
or practical
experience

model-supported
decision or action

Figure 1.1 Construction and use of a model.

(i.e., the designer), and describes the object from the stakeholder’s point of view,
in an understandable language; the model-supported action is the use of the device.

Based on the experience of the models discussed in this book, we may agree
on the following definition – also fully consistent with Example 1.

Definition 2 (Model) A model is a representation of an object, expressed in a spe-
cific language and in a usable form, and intended to satisfy one or several need(s)
of some stakeholder(s) of the object.

1.1.2 Use of a model: the inference process

Definition 2 specifies that models are written in a usable form. Let us analyse how
models are used, i.e., explicitly state the model-supported decision or action arrow
shown in Figure 1.1.

When the model includes an evaluation of the stakeholder’s situation, or a
recommendation of decision or action, then the stakeholder makes his decision on
the basis of the evaluation or follows the recommendation.

However, most models require – prior to their use – to be adapted to the spe-
cific situation of the stakeholder, by the integration of input data.

In Example 1, the input data are the type of the device, the information dis-
played by the device, and the actions already carried out by the user. The output
information is the next action to be done.

Models are thus used to produce information (evaluations, appropriate decisions
or actions) on the basis of some input information, considered as valid. This process
is called inference.
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Table 1.1 The inference process: given some input data, what can be inferred from
the knowledge of the melting point of gold?

Input data Inferred information

The ring is of solid gold. Temperature is 1000◦C The ring won’t melt.
Temperature is 1000◦C. The ring melts. The ring is not of gold.
Temperature is 1100◦C. The ring does not melt. The ring is not of gold.
Temperature is 1100◦C. The ring melts. The ring is possibly of gold.
The ring is of solid gold. It does not melt. The temperature is lower than Tm.

For example, if we assume that the statement

The melting point of gold is Tm = 1064.18◦C (1.1)

is true, then it constitutes a model which can be used in numerous ways, depending
on the available input data: Table 1.1 shows examples of information that can be
inferred using the model, on the basis of some input data.

The use of real-world models is not always as straightforward as in the example
of Table 1.1. For example, the model user may have some prior belief regarding
whether the ring is of gold or not. Also, whether the rings melts or does not melt
might be difficult to tell; finally, the temperature might not be known with a high
level of precision. In such cases, the use of the model will not produce definitive
‘true’ statement, but just modify one’s assessment of the situation. For instance, if
the ring is believed not to be of gold, the temperature estimated at 1100◦C, and
the ring seems not to melt, then the model output is that the ring is most unlikely
of gold. If the uncertainties in the input data can be quantified with probabilities,
then the use of the model increases the probability that the ring is not of gold. This
is an example of probabilistic inference.

1.1.3 Construction

Definition 2 is extremely general: the way a model is constructed obviously depends
on several factors, such as the nature of the object, the stakeholder’s need(s), the
available knowledge and information, the time and resources devoted to the model
elaboration, etc. Nevertheless, we may identify two invariants in the process of
constructing a model.

1.1.3.1 Splitting the object into elements

One of the precepts of Descartes in his famous Discourse on the Method is ‘to
divide each of the difficulties under examination into as many parts as possible
and as might be necessary for its adequate solution’ [126].

Indeed, modeling an object implies splitting it into elements and identifying a
number of aspects or attributes that characterise the elements.

Deriving a collection of attributes from one single object could at first glance
appear as a poor strategy, but this really helps to simplify the problem of satisfying
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the stakeholder’s need: on one hand, each of the attributes is easier to analyze than
the whole object; on the other hand, only the attributes which are relevant for the
need of the stakeholder are taken into consideration.

1.1.3.2 Saying how it works: the modeling language

To allow inference, the model must include a description of how the elements
interact and influence each other. As said in Definition 2, this involves the use
of a specific language, which is either textual (natural language, formal rules),
mathematical (equations, theorems), or graphical (plans, maps, diagrams).

The well-known consideration ‘A good drawing is better than a long speech’
also applies to models. Figures are more easily and quickly interpreted, understood
and memorized than words. Models which are represented or at least illustrated in a
graphical form tend to be more popular and commonly used. It is possible to admit
that, throughout history, most successful or unsuccessful attempts of mankind to
overcome the complexity of reality have involved, at some stage, a form a graphical
representation. Human paleolithic cave paintings – although their interpretation in
terms of hunting magic is not beyond dispute – may be considered as the first
historical models, in the sense of Definition 2.

1.2 Probabilistic vs. deterministic models

1.2.1 Variables

During the modeling process, the exact circumstances in which the model is going
to be used (especially, what input data the model will process) are, to a large extent,
unknown. Also, some of the attributes remain unknown when the model is used:
the attributes which are at some stage unknown are more conveniently described
by variables .

In the rest of the chapter, we therefore consider an object which is characterized
by a collection of numerical or symbolic variables, denoted X1, X2, . . . , Xn. To
simplify the formalism, we suppose that the domain of each of the Xj variables,
denoted Ej , is discrete.

One may basically distinguish two kinds of variables. The first category is the
variables whose values are specified (typically by the stakeholder) at some stage
of the model use. Such variables typically describe:

• some aspects of the context: the values of such variables are defined prior
to the use of the model and do not change afterwards (in Example 1: which
version of the DVD recorder is being installed?);

• some aspects of the object which are directly ‘controlled’ by the stakeholder:

– attributes of the object the stakeholder can observe (in Example 1: what
is displayed on the control screen of the device?);
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– decisions or actions he or she could carry out (in Example 1: what
button should be pressed?).

The second category of variables are those which are not directly or not com-
pletely controlled – although possibly influenced – by the stakeholder’s will (in
Example 1: Is the device well setup/out of order?).

At any stage of the practical use of a model, the variables under control have
their value fixed, and do not explicitly behave as variables anymore. We may
therefore suppose without any loss of generality that the model only comprises
variables which are not under control.

1.2.2 Definitions

A deterministic model is a collection of statements, or rules regarding the Xi

variables. A sentence (in natural language) such as

Elephants are grey (1.2)

is a deterministic model which can be used to identify the race of an African
mammal, on the basis of its colour. This model can be considered as a more
elegant and intuitive expression of an equation such as

colour(elephant)= grey,

or of the following formal rule:

if animal=elephant then colour=grey.

Also, if X1 and X2 are variables that correspond to the race and colour of a set of
mammals, then the model can be converted in the formalism of this chapter:

if X1 = ‘elephant’, then X2 = ‘grey’. (1.3)

If the number of variables and the number of possible values of each of them are
large, then the object can theoretically reside in a considerable number of states.
Let us suppose however that all of these configurations can be enumerated and
analyzed. Then the probabilistic modeling of the object consists in associating to
any object state (or set of states), a probability , i.e., a number between 0 and 1,
quantifying how plausible the object state (or set of states) is. We thus define the
joint probability distribution of the set of variables X1, X2, . . . , Xn, denoted

IP (X1, X2, . . . , Xn) .

The domain of this function is the Cartesian product E1 × · · · × En and its range
is the interval [0;1].
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1.2.3 Benefits of probabilistic modeling

1.2.3.1 Modeling power

As far as modeling capability is concerned, probabilistic models are undeniably
more powerful than deterministic ones. Indeed, a deterministic model may always
be considered as a particular or simplified case of probabilistic model. For example,
the model of sentence (1.2) above is a particular case of a slightly more compli-
cated, probabilistic one:

x% of elephants are grey (1.4)

where x = 100. This model can also be written using a conditional probability:

IP (X2 = ‘grey’ |X1 = ‘elephant’) = x. (1.5)

Incidentally, the probabilistic model is a more appropriate representation of reality
in this example, since, for instance, a rare kind of elephant is white.

1.2.3.2 The power of doubt – exhaustiveness

Doubt is a typically human faculty which can be considered as the basis of any
scientific process. This was also pointed out by Descartes, who recommended
‘never to accept anything for true which is not clearly known to be such; that is to
say, carefully to avoid precipitancy and prejudice, and to comprise nothing more in
one’s judgement than what was presented to one’s mind so clearly and distinctly as
to exclude all ground of doubt.’ The construction of a probabilistic model requires
the systematic examination of all possible values of each variable (each subset Ej ),
and of each configuration of the object (i.e., each element of E1 × · · · × En). This
reduces the impact of cultural and psychological biases and the risk to forget any
important aspect of the object. Furthermore, it is hard to imagine a more precise
representation of an object: each of the theoretically possible configurations of the
object is considered, and to each of them is associated one element of the infinite
set [0;1].

1.2.3.3 Usability in a context of partial information

In many circumstances, probabilistic models are actually much easier to use than
deterministic ones. Let us illustrate this with an example.

Example 3. A hiker has gone for a walk in a forest, and brings back home some
flashy coloured mushrooms. He wants to decide whether he will have them for
dinner, or not. Instead of consulting an encyclopedia of mushrooms, he phones a
friend, with some knowledge of the domain. His friend tells him that:

75% of mushrooms with flashy colours are poisonous.
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In this example, a deterministic model, such as an encyclopedia of mushrooms,
would certainly help identify the exact nature of the mushrooms, but this requires
an extensive examination, and takes some time. The probabilistic model provided
by the hiker’s friend is more suitable to satisfy his need, i.e., make a quick deci-
sion for his dinner, than the deterministic one. In fact, if the hiker wants to use
the only available information ‘the mushroom is flashy-coloured’, then a form of
probabilistic reasoning – possibly a very basic one – is absolutely necessary.

1.2.4 Drawbacks of probabilistic modeling

In spite of its benefits listed in the previous paragraph, the joint probability dis-
tribution IP (X1, X2, . . . , Xn) is rarely employed per se. The reason is that this
mathematical concept is rather unintuitive and difficult to handle.

Firstly, it can be graphically represented only if n = 1 or 2. Even in the in the
simplest nontrivial case n = p = 2 (illustrated in Figure 1.2), the graphical model
is rather difficult to interpret. When n ≥ 3, no graphical representation is possible,
which, as mentioned above, restrains the model usability.

Secondly, the joint probability distribution gives rise to a phenomenon of
combinatorial explosion. For instance, if each variable takes on p different val-
ues (p ≥ 1), then the joint probability distribution has to be described by the
probabilities of pn potential configurations of the object, i.e., ten billion values
if n = p = 10.

IP (X1 = x X2 = x )1
1; 1

2

IP (X1 = x X2 = x )2
1; 1

2

IP (X1 = x X2 = x )1
1; 2

2

IP (X1 = x X2 = x )2
1; 2

2

X2X1

x2
2

x1
2x1

1

x2
1

Figure 1.2 Representation of the joint probability distribution of a pair of random
variables (X1, X2).
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1.3 Unconditional and conditional independence

1.3.1 Unconditional independence

Following Descartes’s precept of dividing the difficulties, one may try to split the
set of n variables into several subsets of smaller sizes which can relevantly be
analyzed separately.

Suppose for example that the set of n variables may be divided into two subsets
of sizes j and n − j such as:

IP (X1, X2, . . . , Xn) = IP
(
X1, . . . , Xj

)
IP

(
Xj+1, . . . , Xn

)
. (1.6)

Then the modeling problem can be transformed into two simpler ones. One can
derive the joint probability of subset X1, . . . , Xj , then that of subset Xj+1, . . . , Xn,
and use Equation (1.6) to obtain the complete model.

The equality of two functions expressed by Equation (1.6) means that the sub-
sets of variables (X1, . . . , Xj ) and (Xj+1, . . . , Xn) are independent, or – to avoid
confusion with a concept which is defined below – unconditionally independent.
This means that any information regarding the (X1, . . . , Xj ) subset (for instance,
‘X1 = 7’ or ‘X1 + X2 > 3’) does not change the probability distribution of the
second subset (Xj+1, . . . , Xn).

However, unconditional independence between two subsets of variables is very
unlikely to happen in real-world models. If it does happen, the initial definition of
the object is not relevant: in such a case, it makes more sense to construct two
separate models.

1.3.2 Conditional independence

A more common – or at least much more reasonably acceptable in real-world
models – phenomenon is the so-called ‘conditional independence’. Let us introduce
this concept by two examples.

1.3.2.1 The lorry driver example

Example 4. A lorry driver is due to make a 600-mile trip. To analyze the risk of
his falling asleep while driving, let us consider whether (1) he sleeps ‘well’ (more
than seven hours) on the night before and (2) he feels tired at the beginning of the
trip.

In this example, there are obvious causal relationships between the driver’s sleep,
his perceived fatigue, and the risk of falling asleep: the three variables are depen-
dent. Let us suppose however that we know that the lorry driver feels tired at the
beginning of the trip. Then knowing whether this is due to a bad sleep the previous
night, or to any other reason is of no use to evaluate the risk. Similarly, if the lorry
driver does not feel tired at the beginning of the trip, one may then consider that
the quality of his sleep on the night before has no influence on the risk. Given these
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considerations, the risk of falling asleep his said to be conditionally independent
of the quality of sleep, given the lorry driver’s fatigue.

To express it formally, let X1, X2 and X3 be binary variables telling whether
the lorry driver sleeps well the night before, whether he feels tired at the beginning
of the trip, and whether he will fall asleep while driving. Then X3 is independent
of X1, for any given value of X2. In terms of probabilities, we have:

IP (X3 |X1 and X2) = IP (X3 |X2) . (1.7)

In such a case, knowing the values of X1 and X2 is not better than knowing only
the value of X2, and it is useless to describe the behavior of X1, X2, X3 by a
function of three variables; indeed, we may deduce from Equation (1.7):

IP (X1, X2, X3) = IP (X1) IP (X2 |X1) IP (X3 |X2) , (1.8)

which shows that the risk model can be constructed by successively studying the
quality of sleep, then its influence on the state of fatigue, and then the influence of
the state of fatigue on the risk of falling asleep.

1.3.2.2 The doped athlete example

Example 5. In a sports competition, each athlete undergoes two doping tests,
aimed at detecting if he/she has taken a given prohibited substance: test A is a
blood test and test B a urine test. The two tests are carried out in two different
laboratories, without any form of consultation.

It is quite obvious in Example 5 that the results of the two tests are not independent
variables. If test A is positive, then the participant is likely to have used the banned
product; then test B will probably be also positive.

Now consider a participant who has taken the banned substance. Then tests
A and B can be considered independent, since the two laboratories use different
detection methods. Similarly, tests A and B can be considered independent when
the participant has not taken the banned substance: the results of both tests are
conditionally independent, given the status of the tested athlete. Formally, if X1 is
a binary variable telling whether the athlete is ‘clean’ or not, X2 is the result of
test A, and X3 the result of test B, we can write:

IP (X3 |X1 and X2) = IP (X3 |X1) . (1.9)

Equation (1.9) can exactly be translated into ‘knowing whether the athlete has
taken the substance is enough information to estimate the chances of test B being
positive’. A symmetrical equation holds regarding test A:

IP (X2 |X1 and X3) = IP (X2 |X1) . (1.10)

Here again, it is useless to describe the behavior of X1, X2, X3 by a function of
three variables. Equations (1.9) and (1.10) yield:

IP (X1, X2, X3) = IP (X1) IP (X2 |X1) IP (X3 |X1) , (1.11)
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which means that considerations on the proportion of doped athletes IP (X1), and
on the reliabilities of each tests are sufficient to construct the model.

1.4 Bayesian networks

1.4.1 Examples

In the lorry driver and doped athlete examples, we have identified the most direct
and significant influences betweens the variables, and simplified the derivation of
the joint probability distribution. By representing these influences in a graphical
form, we now introduce the notion of Bayesian network.

In Example 4, our analysis has shown that there is an influence of variable X1

on variable X2, and another influence of variable X2 on variable X3; we have
assumed that there is no direct relation between X1 and X3. The usual way of rep-
resenting such influences is a diagram of nodes and arrows, connecting influencing
variables (parent variables) to influenced variables (child variables). The structure
corresponding to Example 4 is shown in Figure 1.3.

Similarly, the influences analyzed in Example 5 may be represented as shown
in Figure 1.4.

Quality
of sleep

Fatigue

X2 X3
X1

Driver
will fall
asleep

Figure 1.3 A representation of the influences between variables in Example 4.
Variable X3 is conditionally independent of X1 given X2.

Athlete
is doped

X1

Test B
positive

X3

Test A
positive

X2

Figure 1.4 A representation of the influences between variables in Example 5.
Variables X2 and X3 are conditionally independent given X1.
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Considering the graphical structures of Figures 1.3 and 1.4, and more precisely
the parents of each variable, we observe that both Equations (1.8) and (1.11) can
be written in the following form:

IP (X1, X2, X3) = IP (X1 |parents(X1)) IP (X2 |parents(X2)) IP (X3 |parents(X3)) .

(1.12)
Equation (1.12) is the formal definition of a Bayesian network, in the three-variable
case: through a process of analyzing and sorting out the unconditional indepen-
dences between the three variables, we have been able to convert IP (X1, X2, X3)

into a product of three conditional probabilities. This definition is generalized in
the next paragraph.

1.4.2 Definition

Definition 6 (Bayesian network) Let us consider n random variables X1, X2, . . . ,

Xn, a directed acyclic graph with n numbered nodes, and suppose node j (1 ≤ j ≤
n) of the graph is associated to the Xj variable. Then the graph is a Bayesian
network, representing the variables X1, X2, . . . , Xn, if:

IP (X1, X2, . . . , Xn) =
n∏

j=1

IP
(
Xj |parents(Xj )

)
, (1.13)

where: parents(Xj ) denotes the set of all variables Xi , such that there is an arc
from node i to node j in the graph.

As shown in the examples, Equation (1.13) simplifies the calculation of the joint
probability distribution. Let us suppose for instance that each variable has p possi-
ble values, and less than three parent variables. Then the number of probabilities in
the model is lower than n.p4, although the object can reside in pn configurations.
If n = p = 10, the reduction factor is greater than one hundred thousands.

A crucial point is that this simplification is based on an graphical, intuitive
representation, and not on some highly technical considerations. A diagram of
boxes and arrows can be easily interpreted, discussed and validated on a step-
by-step basis by the stakeholders: there is no ‘black box’ effect in the modeling
process.

Another important remark can be deduced from Definition 6.

Proposition 7. Any joint probability distribution may be represented by a Bayesian
network.

Indeed, we may formally express IP (X1, X2, . . . , Xn) as follows:

IP (X1, X2, . . . , Xn) = IP (X1) IP (X2, . . . , Xn |X1)

= IP (X1) IP (X2 |X1) · · · IP (X3, . . . , Xn |X1, X2)

= · · ·
= IP (X1) IP (X2 |X1) · · · IP (Xn |X1, . . . , Xn−1) . (1.14)


