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Foreword

Cancer continues to represent a major global

challenge despite advances made in the last

10 years that have seen improvements in survival

rates for many of the common solid tumours. A

number of cytotoxics, novel targeted agents,

innovations in radiation oncology and new surgi-

cal techniques have been developed and all have

played their part in the steady progress that has

been made. However, some of the most important

advances have come about due to better multi-

disciplinary working and successful multina-

tional collaborations in clinical trials. Further

work is required to optimize the standard anti-

cancer modalities (surgery, radiotherapy, conven-

tional chemotherapy and targeted agents) but

even with the best efforts these are likely to

yield little more than incremental gains in treat-

ment outcomes.

The most significant change in oncology in the

last 20 years has been our understanding of the

molecular and genetic basis of cancer. In the early

1990s, this knowledge led to the development of an

entirely new modality of treatment with a rationale

based on fundamental molecular observations

involving oncogenesis, immunology and intracel-

lular signaling pathways. This new therapy was

born out of the new biology, termed gene therapy

and presented the biomedical community with the

possibility of a quantum change in therapeutics.

Suddenly there was the theoretical possibility of

treating the root cause of a variety of diseases: not

just cancer, but cardiovascular disorders, neurode-

generative conditions, inborn errors of metabolism

and infectious diseases have all been the targets of

this new therapeutic strategy.

Gene therapy represents the ultimate multidis-

ciplinary activity. However, it should be regarded

as a non-subject because it is more a series of

scientific interdependencies coming together to

achieve a particular therapeutic objective. Viral

Therapy of Cancer illustrates this point very well

with almost the entire gamut of bioscience and

clinical expertise represented by the contributors.

The book focuses on cancer and the use of viruses,

both as vectors and as therapeutic agents, the latter

strategy having grown out of the early days of

gene therapy when viral vectors seemed to be the

only possible way forward. The development of

viral therapy demonstrates an important truth

about gene therapy programmes: namely, that the

field of gene therapy is not a strategy that should

be judged simply by the triumphs or failures of

clinical trials. It is a scientific activity of consider-

able consequence that spins out important scien-

tific knowledge while at the same time making us

question our current standard clinical trial meth-

odologies which are not fit for all purposes, e.g.

‘proof of principle’ studies.

This book has been edited by three experts in the

field of cancer gene therapy with experience of both

laboratory and clinical research. The text bridges

the gap between bench and bedside and will appeal

to both basic scientists and clinicians with an

interest in viral and gene therapy. The book is

very comprehensive and deals with the biology,

selectivity and clinical applications of the viruses

that have been used as cancer therapeutics.

The multidisciplinary nature of gene therapy

means that it is sometimes difficult for those

involved; virologist, molecular biologist, clinician,



nurse, pharmacist, safety officer, to get accessible

information about those areas of the activity in

which that they are not expert. This book provides

the reader with an excellent and comprehensive

account of all aspects of the use of viruses as

cancer therapy.

Martin Gore PhD FRCP

Professor of Cancer Medicine
Royal Marsden Hospital and Institute of Cancer Research

Chairman, Gene Therapy Advisory Committee,
Department of Health (UK)
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Preface

Treatment modalities for cancer have expanded

well beyond the traditional approaches of surgery,

radiotherapy and chemotherapy. There has been an

enormous surge of interest in the use of biological

therapies, facilitated by a seismic shift in our

understanding of the molecular basis of cancer.

Although the first gene therapy trial using a retro-

viral vector was undertaken more than fifteen

years ago, gene transfer therapy for cancer still

awaits its first great breakthrough in terms of

prolonging life. Having fairly recently confirmed

the role of certain viruses in tumorigenesis, there

appears to be a natural justice that we should now

try and harness viruses for cancer therapy. Until

recently, we would never have contemplated the

use of replication-competent viruses for the treat-

ment of cancer and, in fact, much of the early

work in the field was deliberately restricted to the

evolution of non-replicating viral vectors capable

of efficient gene transfer. However, in 2008

the landscape has changed immeasurably and we

are looking at the use of a wide range of replication-

competent viruses as potential anti-cancer agents.

These agents include those, that occur in nature and

others that have been specifically engineered to

have specific cytotoxicity against cancer cells,

either as single agents or in combination with

other anti-cancer modalities. The range of potential

agents presents a variety of tropisms and individual

strengths and weaknesses. Progress in this field has

been astonishing in the last decade and as a result

we felt that a comprehensive textbook coherently

presenting the advances with the individual viruses

was timely.

We have attempted to present a text which will

appeal to the clinician, clinician-scientist and basic

scientist as well as to allied health professionals.

The chapters review the mechanistic and clinical

background to a range of viral therapies and are

designed to proceed from basic science at the bench

to the patient’s bedside to give an up-to-date and

realistic evaluation of a therapy’s potential utility

for the cancer patient. We anticipate intense clinical

activity in this arena in the next few years with a

very real prospect that virotherapy may establish a

role in the standard treatment of both common and

rare cancers.

We thank Dr Kate Relph for her enormous

contribution in the editing of this book.

This volume would not have been possible

without the support of our families and, so, we

wish to dedicate it: to Sindy, Simran and Savneet;

to Memy, Oriana and Sebastian; to Katie and Lila

Rose.

Kevin J. Harrington,
Richard G.Vile and Hardev S. Pandha
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1
Adenoviruses

Kate Relph, Kevin J. Harrington, Alan Melcher and Hardev S. Pandha

1.1 Introduction

Adenoviral vectors are the most popular vehicles

for gene transfer currently being used in worldwide

clinical trials for cancer. Over the past decade our

knowledge of the adenoviral lifecycle together with

the discovery of novel tumour antigens has per-

mitted the targeting of adenoviral vectors to specific

tumours. Targeting adenoviral vectors to tumours is

crucial for their use in clinical applications in order

to allow for systemic administration and the use of

reduced vector doses. In addition, novel approaches

to tumour killing have also been explored which

will have greater potency and selectivity than cur-

rently available treatments such as chemotherapy or

radiation. This chapter discusses the basic concepts

behind the use of adenoviral vectors for cancer gene

therapy, their potential for clinical application and

where possible reviews ongoing and completed

clinical trials.

1.2 Viral structure and life cycle

Adenoviruses are a frequent cause of upper respira-

tory tract infections and have also been associated

with gastroenteritis and pneumonia in young chil-

dren. They were first isolated in 1953 by scientists

trying to establish cell lines from adenoidal tissue of

children removed during tonsillectomy, and since

then more than 50 different serotypes have been

identified (Table 1.1) (Hilleman and Werner, 1954).

The adenoviruses have been classified into six

subgroups based on sequence homology and their

ability to agglutinate red blood cells (Shenk, 1996).

Most adenoviral vectors are derived from Ad2 or

Ad5 which have been well studied and noted for

their safety: over 50 per cent of the population show

antibodies to adenovirus serotype 5 suggesting that

it is particularly safe.

Adenovirus is a non-enveloped, icosahedral virus

of about 60–90 nm in diameter with a linear double

stranded genome of about 30–40 kb (Figure 1.1)

(Stewart et al., 1993). The capsid consists of three

major proteins, hexon (II), penton base (III), and a

knobbed fibre (IV) along with a number of other

minor proteins, VI, VII, IX, IIIa and IVa2. The virus

genome has inverted terminal repeats (ITRs) and is

associated with several proteins including a term-

inal protein (TP), which is attached to the 50 end
(Rekosh et al., 1977), a highly basic protein VII and

a small peptide termed mu (Anderson et al., 1989).

A further protein, V, links the DNA to the capsid via

protein VI (Matthews and Russell, 1995).

The adenovirus life cycle essentially consists of

the following steps. Virus entry into the cell is a

two-stage process involving an initial interaction

of the fibre protein with a range of cellular recep-

tors, which include the major histocompatibility

complex (MHC) class1 molecule and the coxsackie

and adenovirus receptor CAR (Bergelson et al.,

1997). The CAR is a plasma membrane protein of

46 kDa belonging to the immunoglobulin family

Viral Therapy of Cancer Edited by Kevin J. Harrington, Richard G. Vile and Hardev S. Pandha
# 2008 John Wiley & Sons Ltd



(Tomko et al., 1997). Some cell types, such as those

of haematopoietic origin, do not express CAR on

their cell surface and appear to be refractory to

adenoviral infection (Mentel et al., 1997) suggest-

ing that receptor recognition is one of the key

factors in determining cell tropism. After initial

interaction between the fibre knob and CAR the

penton base protein then binds to the avb3 integrin
family of cell surface heterodimers allowing inter-

nalization via receptor mediated endocytosis

(Wickham et al., 1993). Penetration into the cell

involves phagocytosis into phagocytic vesicles,

after which the toxic activity of the pentons ruptures

the phagocytic vacuoles and releases the vesicles

into the cytoplasm. Release of the virus into the

cytoplasm is accompanied by a stepwise disman-

tling of the capsid by proteolysis of protein VI

(Greber et al., 1996). The partially dismantled

viral particle is then delivered to the nucleus via

microtubulin-assisted transport where the core-

protein coated viral genome enters in through the

nuclear pores.

Transcription of the adenoviral genome occurs

in both early and late phases which occur before

and after viral DNA replication respectively. A

complex series of splicing events produces four

early ‘cassettes’ of gene transcription termed E1,

E2, E3 and E4 (Figure 1.2). The E1 proteins are

divided into E1A and E1B. E1A is the first gene to

Table 1.1 Adenoviral serotypes

Group Serotypes

A 12, 18, 31

B 3, 7, 11, 14, 16, 21, 34, 35, 50

C 1, 2, 5, 6

D 8–10, 13, 15, 17, 19, 20, 22–30, 32, 33,

36–39, 42–49, 51

E 4

F 40, 41
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Figure 1.1 Structure of adenoviral capsid
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be expressed (Frisch and Mymryk, 2002) It

encodes a transactivator for the transcription of

the other early genes E1B, E2A, E2B, E3 and E4

but is primarily involved in many pathways to

modulate cellular metabolism and make it more

susceptible to viral replication (Table 1.2). E1A

proteins interfere with cell division and regulation

via direct and indirect action on a number of

cellular proteins. For example E1A binds to the

RB protein preventing it from binding to the

transcription factor E2F. As a result E2F is tran-

scriptionally active and can thus stimulate DNA

synthesis. Also E1A maintains the stability of p53

via a variety of proteins and pathways including

Mdm4, UBC9 and Sug1 (Table 1.2). E1A can

directly bind and inhibit components involved in

cell cycle control such as the cyclin dependent

kinase inhibitor p21 (Chattopadhyay et al., 2001).

Figure 1.2 Schematic of adenoviral genome and adenoviral vectors. E1A must be removed to prevent recombinant
virus from replicating. ITR, inverted terminal repeats
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It can also interact with a number of host factors

involved in mediating chromatin structure includ-

ing p400 (Fuchs et al., 2001) and the histone

acetyl transferases p300, pCAF and TRRAP/

GCN5 (Lang and Hearing, 2003). Other early

gene products are also involved in making the

cell more refractory to viral replication. The E1B

19K protein is analogous to the Bcl-2 gene product

and is concerned with increasing cell survival and

ablating members of the Bax family which induce

apoptosis (Han et al., 1996). A second 55 kDa

protein product of the E1B gene has been shown to

interact with p53 reducing its transcription. The

E1b protein has also been shown to block host

mRNA transport to the cytoplasm (Pilder et al.,

1986). The E2 gene encodes proteins required for

viral DNA replication, i.e. DNA polymerase,

DNA-binding protein and the precursor of the

terminal protein (de Jong et al., 2003). Despite

replicating in the nucleus the adenovirus need its

own enzymatic machinery because of its complex

chromosomal structure. The genome lacks telo-

meres and so the integrity of the ends of the DNA

is maintained by a viral preterminal protein which

is covalently linked to the 50 end and acts as a

primer for the viral DNA polymerase. The E3

genes encode a variety of transcripts involved in

subverting the host defence mechanism (Wold and

Chinnadurai, 2000). The E3-gp19K protein acts to

prevent presentation of viral antigens by MHC

class I pathway and therefore blocks cell lysis by

cytotoxic T cells (Bennett et al., 1999). One E3

protein is termed the adenovirus death protein

(ADP) as it facilitates late cytolysis of the infected

cell and thereby releases progeny virus more effi-

ciently (Tollefson et al., 1996a). The E4 proteins

Table 1.2 Some properties of E1A proteins

Property Reference

Bind to p21 and related CDK inhibitors thereby stimulating Chattopadhyay et al., 2001
cell division and growth

Bind to cyclins A and E-CDK complexes, which regulate Faha et al., 1993
passage to cell DNA synthesis

Bind to the p300/CBP family of transactivators, which play a key role Chakravati et al., 1999
in regulating the transcription of many components of the cell cycle

Binds to Rb and releases E2F- vital for synthesis of S-phase Brehm et al., 1998
components as well as activation of E2 gene.

Interacts with multiprotein complex Sur-2, thereby Stevens et al., 2002
stimulating the transcription of virus genes

Binds to the TATA-box binding protein to regulate transcription Mazzarelli et al., 1997
Induction of apoptosis via release of E2F which leads to increase Hale and Braithwaite, 1999

in p53 and p19arf levels.

Stabilises p53 via interaction with Sug1 a subunit of the proteasome Grand et al., 1999
complex that is required for proteolysis of p53

Targets Mdm4 to stabilize tumour suppressor p53 Li et al., 2004
Activates transcription of p73 and Noxa to induce apoptosis. Flinterman et al., 2005
Activates apoptosis by sensitizing cells to ionizing radiation, Shisler et al., 1996
DNA damage, TNF and Fas ligand. Mediated by inhibiting the IkB
kinases, which are critical for release of NFkB to nucleus and

requires binding of E1A to P300/CBP

Binds to UBC9, a protein involved in the SUMO enzymatic pathway. Desterro et al. 1999,
Binding to E1A may interfere with SUMO modification of cellular Ledl et al. 2005
proteins such as p53 and pRb

NFkB, nuclear factor kB.
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mainly facilitate virus mRNA metabolism and

promote virus DNA replication and shut off of

host protein synthesis (Halbert et al., 1985).

Replication of the viral genome starts about

5–6 h after infection and is dependant on the inverted

terminal repeats (ITRs) which act as the origins of

replication. Adenovirus DNA replication has been

studied extensively both in vivo (t.s. mutants in

infected cells) and in vitro (nuclear extracts). At

least three virus-encoded proteins are known to be

involved in DNA replication: TP acts as a primer for

initiation of synthesis. Ad DBP – a DNA-binding

protein andAdDNAPol – 140 kDaDNA-dependent

polymerase. The onset of DNA replication signals

the pattern of transcription changes from early to

late genes andonly newly replicatedDNA is used for

late gene transcription. Late phase transcription is

driven primarily through the major late promoter

with five transcripts resulting from a complex series

of splicing events. These transcripts are mainly used

for the production of viral structural proteins.

Encapsidation of the virus depends on the presence

of a packaging signal near the 50 end of the genome

consisting of an AT-rich sequence. Intranuclear

virion assembly starts about 8 h after infection

and leads to the production of 104 to 105 progeny

particles per cell, which can be released after

final proteolytic maturation by cell lysis 30–40 h

post-infection, completing the viral life cycle

(Shenk, 1996).

1.3 Adenoviral vectors

Adenoviral vectors are attractive reagents for gene

therapy because of their ability to transduce genes

into a broad range of cells, and to infect both

dividing and non-dividing cells (McConnell and

Imperiale, 2004). Adenoviral vectors can accom-

modate large segments of DNA (up to 7.5 kb) and

the viral genome rarely undergoes rearrangement

meaning that inserted genes are maintained without

change during virus replication. In addition, adeno-

viruses replicate episomally and do not insert their

genome into that of the host cell ensuring less

disruption of vital cellular genes and processes

and reduced risk of insertional mutagenesis. This

can, however, be a limitation in that transient

expression of the therapeutic gene may be inade-

quate to treat chronic conditions such as cystic

fibrosis. However, for situations in which short-

term activity of the gene is needed, such as expres-

sion of suicide genes selectively in tumour cells,

these viruses are suitable vectors. The adenoviral

genes can be separated into two groups; the cis-

genes, such as those responsible for the packaging

signal, which must be carried by the virus itself, and

the trans-genes which can generally be comple-

mented and therefore replaced with ‘foreign’ DNA.

The first generation of adenoviral vectors were used

for the delivery of genes in monogenic disorders

(Figure 1.2a). In these vectors the E1 region was

removed to inhibit viral replication and make way

for the therapeutic gene. Many of the first genera-

tion vectors also contained a deletion in the E3

region in order to allow for even greater transgenes

to be incorporated. The E3 genes are dispensable

for virus growth in vitro but some data suggests that

E3 genes in vectors may be beneficial in vivo due to

their ability to dampen the immune response

(Bruder et al., 1997). However, despite the removal

of these regions of the viral genome there was still

low-level transcription of viral genes, which led to a

host cellular immune response and a reduction in

the period of gene expression due to cell-mediated

destruction of the transduced cells (Kay et al., 1995;

Yang et al., 1995). In addition these types of vectors

allowed the generation of E1 containing replication

competent adenovirus (RCA) due to homologous

recombination in 293 cells which further enhanced

the adverse effects (Lochmuller et al., 1994). In

order to address these problems homologies

between the vectors and the complementing cell

lines have been reduced. Second generation adeno-

viral vectors have further deletions in E2a, E2b or

E4 and have reduced immunogenicity and RCA

generation (Figure 1.2b). Despite these improve-

ments the complementing cell lines are difficult to

engineer, can be difficult to grow and can lead to

poor viral titers (Lusky et al., 1998). As a result a

third generation of adenoviral or gutless vectors

have been created (Parks et al., 1996) (Figure 1.2c).

These have all of the viral genes deleted (except for

the packaging signal) and replaced with the ther-

apeutic gene of interest. They are therefore free

from problems associated with immunogenicity
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and demonstrate long-term transgene expression.

They are generated with a helper virus, which

contains all of the genes necessary for viral replica-

tion but which contains a deletion in the packaging

signal to ensure that it is not incorporated into the

final vector. These vectors are still undergoing

development in order to improve their purity and

large-scale manufacture (Wu and Attai, 2000).

1.4 Targeting adenoviral vectors

Despite the fact that adenoviral vectors have many

advantages over other gene transfer vehicles there

are some problems associated with their use. The

broad tropism of adenoviral vectors as well as being

an advantage also represents an important limita-

tion for their use in therapeutic applications. Ani-

mal studies have shown that adenoviral vectors do

not remain confined to one compartment and are

able to disseminate to distal sites with toxic effects

that are most notable in the liver (Wang et al., 2003;

Yee et al., 1996). This also restricts the systemic

administration of the vectors due to the potential for

toxicity in normal tissues (Brand et al., 1997). In

addition, important target tissues are often refrac-

tory to adenoviral infection leading to administra-

tion of increased doses of vector in an attempt to

improve gene transfer. This in turn often leads to

increased toxicity and enhanced humoral and cel-

lular immune responses. Clearly there is a require-

ment for targeted adenoviral vectors in clinical

applications in order to allow for systemic admin-

istration and the use of reduced vector doses, which

will in turn reduce inflammatory, and immune

responses (Mizuguchi and Hayakawa, 2004). Two

main approaches have been taken in order to target

expression of the therapeutic gene to the required

tissue/tumour: (1) transductional targeting and

(2) transcriptional targeting.

1.4.1 Transductional targeting of adenoviral
vectors

The identification of the route by which human

cells uptake adenovirus was an important step

towards retargeting adenoviral vectors to different

cell types, also known as transductional targeting.

The adenovirus fibre knob anchors onto the sur-

face of the target cell by means of the CAR and

interaction of the capsid penton protein with

integrins avb3 and avb5 on the surface of target

cells allows internalization (Bergelson et al., 1997;

Wickham et al., 1993). Most immortalized tumour

cell lines express CAR and are therefore easily

transduced by adenoviral vectors. However, cer-

tain studies have demonstrated that 50 per cent of

primary epithelial cancers do not express CAR

(Kasono et al., 1999; Vanderkwaak et al., 1999).

This may account for some of the limited success

with past clinical trials using adenoviral vectors.

Transductional targeting may improve transfer of

genes to particular cancer types, such as glioma,

and in addition retargeting adenoviral vectors will

permit the treatment of haematological malignan-

cies because haematopoietic stem cells are known

to lack CAR (Huang et al., 1996).

There are many reports of retargeting of adeno-

viral vectors to tumour cells via the use of anti-

bodies directed towards specific antigens on the

surface of a particular tumour type (Barnett et al.,

2002). One group used a neutralizing anti-fibre

antibody conjugated to an antibody directed against

the epithelial cell adhesion molecule (EGP-2),

which is highly expressed on the surface of a

range of adenocarcinomas from the stomach, oeso-

phagus, breast, ovary, colon and lung and its

expression is limited in normal tissue. In this

study the adenovirus specifically infected cancer

cell lines expressing EGP-2 whilst gene transfer

was dramatically reduced in EGP-2-negative cell

lines. A recent study combines genetic ablation of

native adenoviral tropism with redirection of viral

binding to melanoma cells via a bispecific adaptor

molecule (Nettelbeck et al., 2004). This molecule

consists of a bacterially expressed single chain

diabody, scDb MelAd that binds to both the adeno-

viral fibre knob and to the high molecular weight

melanoma associated antigen (HMWMAA), which

is widely expressed on the surface of melanoma

cells. This retargeting strategy mediated up to a

54-fold increase in adenoviral gene transfer to

CAR-negative melanoma cells compared to a vec-

tor with native tropism.

Further targeting has been achieved by altering

the structure of the fibre knob itself by inserting

an arginine-glycine-aspartate (RGD) tripepetide
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(Buskens et al., 2003). Four oesophageal carci-

noma cell lines and ten fresh surgical resection

specimens were cultured and infected with either

native adenovirus or retargeted adenovirus expres-

sing the luciferase gene or green fluorescent pro-

tein to analyse gene transfer efficiencies. In both

the cell lines and the primary cells more efficient

gene transfer was seen with the retargeted virus.

This phenomenon was less pronounced in normal

cells.

1.4.2 Transcriptional targeting of adenoviral
vectors

The targeting of gene expression to specific cell

types/tissues can be achieved through the use of

tumour or tissue specific promoters. This approach

has been adopted in a range of studies targeting

gene expression to tumours (Rots et al., 2003;

Haviv and Curiel, 2001). A recent study identified

the cyclooxygenase-2 (cox-2) gene as a potential

new target for melanoma gene therapy (Nettelbeck

et al., 2003). An adenoviral vector was constructed

in which the cox-2 promoter drove the expression

of a luciferase reporter gene. Melanoma cell lines,

primary melanoma cells and normal melanocytes

were infected with this novel vector. The results

demonstrated activity of the cox-2 promoter in the

melanoma cell lines and primary melanoma cells

but not in non-malignant primary epidermal mela-

nocytes. Several approaches have also considered

the use of two different tumour specific promoters

within the same vector in order to achieve a further

degree of specificity. The second promoter is nor-

mally one that is a more general promoter which

shows activity in a broad range of tumours such as

the telomerase reverse transcriptase promoter.

In suicide gene therapy for cancer (discussed

later) targeting is paramount to prevent unwanted

toxicity. For example, the product of the thymidine

kinase gene itself, without addition of the prodrug

ganciclovir, has been shown to cause liver toxicity

when under the control of the cytomegalovirus

promoter (Yamamoto et al., 2001). Several groups

have therefore engineered adenoviral vectors to

contain tissue/tumour specific regulatory elements

in order to avoid these problems and target toxicity

specifically to the transduced cells. One study used

the prostate specific antigen promoter to target

expression of HSV-TK to benign prostatic hyper-

plasia (Park et al., 2003). This approach induced

highly selective and definite ablation of epithelial

cells in benign canine prostate.

Both transcriptional and transductional targeting

have improved the efficacy of adenoviral vectors

significantly. Some groups are now investigating

the possibilities of combining these two approaches

to further improve the specificity of adenoviral

vectors. For example a combination of the tissue-

specific SLP1 promoter and the ovarian cancer

associated targeting adaptor protein, sCARfC6.5,

which contains the CAR ectodomain and a single-

chain antibody specific for c-erbB-2, increased the

efficacy and specificity of adenoviral gene therapy

for ovarian carcinoma (Barker et al., 2003.

1.5 Clinical applications of adenoviral
gene therapy

Advances in adenoviral vector technology have

meant that there are now 140 clinical trials world-

wide currently being conducted on various can-

cers using adenoviral vectors (Journal of Gene

Medicine www.wiley.co.uk/wileychi/genemed).

Table 1.3 gives details of seventeen completed

gene therapy trials for cancer using adenoviral

vectors. All of theses were phase I studies to test

toxicity. Table 1.4 indicates some of the ongoing

clinical phase II trials. Several approaches have

been used to destroy the target tumour cells:

1.6 Adenoviral vectors
for immunotherapy

T lymphocytes play a crucial role in the host’s

immune response to cancer. Although there

is ample evidence for the presence of tumour-

associated antigens on a variety of tumours, they

are often unable to elicit an adequate antitumour

response. Our increasing knowledge of the cellu-

lar interactions required to induce a specific anti-

tumour response has led to the development of

cancer vaccines which prime the host response

and induce or enhance T-cell reactivity against

tumour antigens. Gene-based strategies for
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Table 1.3 A selection of completed phase I clinical trials using adenoviral vectors for the treatment of cancer

Investigator Country Cancer Gene No. of patients Reference

Stewart Canada Breast, melanoma IL-2 23 Stewart et al., 1999
Tursz France Non-small cell lung carcinoma Il-2 21 Griscelli et al., 2003
Tursz France Non small cell lung carcinoma Beta-gal 21 Griscelli et al., 2003
Eck USA CNS HSV-TK N/C N/C

Reid USA Anaplastic thyroid cancer p53 N/C N/C

Roth USA Non-small cell lung carcinoma p53 N/C N/C

Belani USA Hepatocellular carcinoma p53 N/C N/C

Belldegrun USA Prostate p53 N/C N/C

Hasenburg Germany Ovarian HSV-tk 10 Hasenburg et al., 2002
Kauczor Germany Non-small cell lung carcinoma p53 6 Kauczor et al., 1999
Fujiwara Japan Non-small cell lung carcinoma p53 Fujiwara et al., 1999
Boulay Switzerland Non small cell lung carcinoma p53 N/C N/C

– Switzerland Metastases from solid tumours IFNg N/C N/C

Albertini UK Melanoma IFNg N/C N/C

Lafollette UK Head and neck carcinoma E1b del. N/C N/C

Lafollette UK Ovarian E1b del. 16 Vasey et al., 2002
Stewart UK Gastrointestinal cancer p53 N/C N/C

N/C ¼ not stated.
Source: Journal of Gene Medicine website (http:www.wiley.co.uk/wileychi/genmed)


