

Guidelines for Process Safety in Bioprocess Manufacturing Facilities

Center for Chemical Process Safety
New York, New York

 WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

This page intentionally left blank

Guidelines for Process Safety in Bioprocess Manufacturing Facilities

This book is one in a series of process safety guideline and concept books published by the Center for Chemical Process Safety (CCPS). Please go to www.wiley.com/go/ccps for a full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry. However, neither the American Institute of Chemical Engineers, its consultants, the CCPS Technical Steering Committee and Subcommittee members, their employers, their employers, officers and directors, nor AntiEntropics, Inc., and its employees warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers, officers and directors, and AntiEntropics, Inc., and its employees and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequences of its use or misuse.

Guidelines for Process Safety in Bioprocess Manufacturing Facilities

Center for Chemical Process Safety
New York, New York

 WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by American Institute of Chemical Engineers, Inc. All rights reserved.

A Joint Publication of the Center for Chemical Process Safety of the American Institute of Chemical Engineers and John Wiley & Sons, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Guidelines for process safety in bioprocess manufacturing facilities / Center for Chemical Process Safety of the American Institute of Chemical Engineers.

p. cm.

Includes index.

ISBN 978-0-470-25149-2 (hardback)

1. Biochemical engineering—Safety measures. I. American Institute of Chemical Engineers. Center for Chemical Process Safety.

TP248.3.G85 2011

660.6028'9—dc22

2010036824

Printed in the United States of America

eBook ISBN: 978-0470-94914-6

ePDF ISBN: 978-0470-94913-9

10 9 8 7 6 5 4 3 2 1

CONTENTS

<i>List of Tables</i>	<i>xi</i>
<i>List of Figures</i>	<i>xiii</i>
<i>Items on the Web Accompanying This Book</i>	<i>xv</i>
<i>Acknowledgements</i>	<i>xvii</i>
<i>Preface</i>	<i>xix</i>

1 INTRODUCTION 1

1.1	Bioprocess Engineering Information Transfer and Management Practices	3
1.2	The Need for Bioprocess Safety Management Systems	7
1.2.2	Bioprocessing Incidents and Releases	8
1.3	Our Target Audience	14
1.4	How to use this Guideline	15

2 AN OVERVIEW OF THE BIOPROCESSING INDUSTRY 17

2.1	Bioprocessing's History	17
2.1.1	Bioprocessing's Historical Advancement	18
2.1.1.1	Microbiological Advancements	18
2.1.1.2	Food Science and Food Process Technology Advancements	19
2.1.1.3	Genetic Advancements	19
2.1.1.4	Future Bioprocessing Developments	20
2.2	Industrial Applications	20
2.2.1	Processes	21
2.2.2	Products	21
2.3	The Bioprocess Lifecycle	22

2.3.1	Discovery	23
2.3.2	Development Phase: Laboratory and Pilot Plant	23
2.3.3	Scale-up Phase	24
2.3.4	Upstream Operations and Downstream Operations	26
2.3.4.1	Inoculation / Seed and Production Biosafety Containment and Production Risk	27
2.3.4.2	Fermentation / Cell Culture	31
2.3.4.3	Scale of Manufacturing	36
2.3.5	General Biosafety Recommendations for Large Scale Work	38
2.3.5.1	Facility Design	39
2.3.5.2	Equipment Design	39
2.3.5.3	Cleaning, Inactivation, and Sterilization	41
2.3.5.4	Maintenance	42
2.3.5.5	Air and Gas Emissions	42
2.3.5.6	Waste Handling	42
2.3.5.7	Accidental Release	43
2.3.6	Product Safety Information	43
2.3.6.1	Product Handling	44
2.3.6.2	Material Disposal	44
2.3.6.3	Disposable Process Technology	44
2.3.7	Outsourced Manufacturing Concerns	45
3	BIOPROCESSING SAFETY MANAGEMENT PRACTICES	47
3.1	Sample Approach	48
3.1.2	Develop and Document a System to Manage Bioprocess Safety Hazards	50
3.1.3	Appoint a Biological Safety Officer	50
3.1.4	Collect Bioprocess Hazard Information	51
3.1.5	Identify Bioprocess Safety Hazards	51
3.1.5.1	Point of Decision	51
3.1.6	Assess Bioprocess Safety Risks and Assign Bioprocess Safety Hazard Level	52
3.1.7	Identify Bioprocess Controls and Risk Management Options	52
3.1.8	Document Bioprocess Safety Hazard Risks and Management Decisions	53
3.1.9	Communicate and Train on Bioprocess Safety Hazards	53

CONTENTS	vii
3.1.10 Investigate & Learn from Bioprocess Incidents	53
3.1.11 Review, Audit, Manage Change, and Improve Hazard Management Practices and Program	54
3.2 Existing Management Systems	54
3.2.1 Product Stewardship for Bioproducts	61
3.3 Establishing a Bioprocess Safety Management System	62
3.3.1 Select a Management System Model Based Upon Your Needs	63
3.3.2 Identifying the Elements that Apply to Your Operations	64
3.3.3 Establish a Review and Approval Cycle for the Documents	65
3.3.4 Rolling Out the Management System to the Users	66
3.4 Biosafety Training for the Workforce	67
3.5 Investigating Incidents	69
3.5.1 A Generic Procedure for Initial Biohazard Incident Response	71
3.6 Managing Change	75
3.7 Reviewing and Auditing for Continuous Improvement	76
3.8 Applying Behavior-Based Safety to Bioprocesses	76
4 IDENTIFYING BIOPROCESS HAZARDS	79
4.1 Key Considerations for Assessing Risk to Manage Bioprocess Safety	79
4.1.1 Testing for Bioactivity	79
4.1.2 Non-biological Hazards	80
4.2 Bioprocess Risk Assessment	80
4.2.1 Three Types of Assessment	80
4.2.2 Agent Considerations	80
4.2.3 Process Considerations	81
4.2.4 Environmental Considerations	82
4.2.5 Microorganisms	83
4.3 Recombinant Organisms	85
4.4 Cell Culture	86
5 BIOPROCESS DESIGN CONSIDERATIONS AND UNIT OPERATIONS	89
5.1 Physical Plant Design	89
5.1.1 Architectural Aspects	90

5.1.1.1	Finishes and Materials	90
5.1.1.2	Layout Strategies	91
5.1.1.3	People and Material Flow	94
5.1.1.4	Non-biological Hazards	94
5.1.1.5	Seismic and Building Loads	96
5.1.1.6	Hardened Construction	97
5.1.1.7	Equipment Mezzanines and Subfloors	97
5.1.1.8	Heating, Ventilation, and Air Conditioning Aspects	98
(a)	Supply and Exhaust Systems	98
(b)	Special Exhaust Stream Mitigation	100
(c)	HVAC Issues from a Biosafety Perspective	101
(d)	Microenvironments	103
(e)	Cascading Pressure Differentials	105
(f)	Containment versus Clean Room Environments	107
5.1.1.9	Waste and Waste Treatment	109
5.1.1.10	Process Support Systems: High Purity Water	112
5.1.1.11	Process Support Systems: Hand Washing Sinks and Personnel showers	112
5.1.2	Plant Siting Issues	113
5.1.2.1	Zoning & Permitting	113
5.1.2.2	Regional Environmental Agencies and Environmental Impact Reports	113
5.1.2.3	Building and Site Security	114
5.2	Bioprocess Unit Operations	116
5.2.1	General Equipment Design Considerations	117
5.2.2	Closed-System Design	118
5.2.2.2	Impact on Operations	123
5.2.3	Upstream Equipment and Facility Design	124
5.2.3.1	Additional Upstream Design Considerations	124
5.2.3.2	Equipment and Facility Integration	127
5.2.3.3	Production Segregation and Flows	127
5.2.3.4	Segregation from a Biosafety Perspective	129
5.2.3.5	Cleaning the Equipment	130
5.2.4.1	Harvest and Recovery	134
5.2.4.2	Centrifugation	134
5.2.4.3	Filtration	135
5.2.4.4	Chromatography	137
5.2.5	Facility Support Issues	139
5.2.6	Biosafety for Personnel: SOP, Protocols, and PPE	140

6 THE EFFECTS OF EMERGING TECHNOLOGY ON BIOPROCESSING RISK MANAGEMENT	143
6.1 Researching and Staying Informed	143
6.1.1 Biopharmaceutical	144
6.1.1.1 Drug Discovery and Development	144
6.1.1.2 Gene-based Pharmaceuticals	144
6.1.1.3 Drug Delivery Research	146
6.1.2 Renewable-resources	147
6.1.3 Environmental	148
6.1.3.1 Bioprocessing and Waste Management	148
6.2 Communicating the Impacts of New Technology	149
6.2.1 Industry (Communication at Your Site)	150

APPENDIX A – REFERENCES & SELECTED REGULATIONS	153
APPENDIX B – LARGE SCALE BIOSAFETY GUIDELINES	161
APPENDIX C – A GENERIC LABORATORY/LARGE SCALE BIOSAFETY CHECKLIST	177
APPENDIX D – BIOLOGICAL ASSESSMENT QUESTIONNAIRE & BIOPROCESS SAFETY CHECKLIST	179
APPENDIX E – BIOPROCESS FACILITY AUDIT CHECKLIST	189
APPENDIX F – DIRECTIVE 2000/54/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL	199
APPENDIX G – COMPARISON OF GOOD LARGE SCALE PRACTICE (GLSP) AND BIOSAFETY LEVEL (BL) - LARGE SCALE (LS) PRACTICE	203
GLOSSARY	20909
ACRONYMS AND ABBREVIATIONS	217
INDEX	221

LIST OF TABLES

TABLE 1-1	Typical Hazards at Bioprocess Manufacturing Sites	4
TABLE 1-2	Preliminary Design Anticipated Hazards Analysis	6
TABLE 1-3	Incidents Related to Products of Biologic Origin	10
TABLE 1-4	Selected International Biosafety Levels and Acronyms	13
TABLE 2-1	Comparison of Process Parameters and Characteristics of Recombinant Bacterial and Mammalian Cell Lines for Production of Recombinant DNA Protein Products	33
TABLE 2-2	Components of Typical Growth Media	36
TABLE 2-3	Examples of Very Large Scale Bioprocessing Products	37
TABLE 3-1	Comparison of a CEN-Based Biorisk Management System to OSHA PSM, EPA RMP, and CCPS Risk-Based Process Safety (RBPS)	60
TABLE 3-2	A Five-phase Review and Approval Cycle	66
TABLE 4-1	WHO Risk Group Classifications	83
TABLE 5-1	Clean Room Classifications	99

This page intentionally left blank

LIST OF FIGURES

Figure 1-1 The International Biohazard Symbol	8
Figure 2-1 Typical Process Operations for a Bioprocess	24
Figure 2-2 Typical Steps to Develop rDNA <i>E. coli</i>	25
Figure 2-3 Typical Steps to Manufacture Human Insulin	25
Figure 2-4 Basic Biotech Manufacturing Unit Operations	26
Figure 2-5 The Cell Culture Scale-Up Process (Staging)	28
Figure 2-6 A Common Spinner Flask	29
Figure 2-7 Seed Bioreactors	30
Figure 2-8 The Cell Growth Lifecycle	32
Figure 2-9 Stirred-Tank Bioreactor	40
Figure 2-10 Large Scale Wave Bioreactor (Courtesy of GE Healthcare)	41
Figure 3-1 Bioprocess Hazard Management Implementation Flowchart	49
Figure 5-1 Nested Zones	93
Figure 5-2 People and Material Flow Diagram	94
Figure 5-3 Vaporized Hydrogen Peroxide (VHP) decontamination unit	96
Figure 5-4 A Wet Scrubber	103
Figure 5-5 Image of a Microenvironment	104
Figure 5-6 A Typical Glove Box	105
Figure 5-7 HEPA Filter Installation	106
Figure 5-8 Air Lock Types Pressure Differential Diagram	107
Figure 5-9 Full Body Positive Pressure Suit	108
Figure 5-10 Effluent Decontamination System	111
Figure 5-11 Retinal Scanning Device	115
Figure 5-12 Closed Disposable Sampling System	123
Figure 5-13 Traditional Clean Room Approach	125
Figure 5-14 Gray Space Approach	126
Figure 5-15 Minimizing Classified Space	127
Figure 5-16 Flow and Segregation Relationships	129
Figure 5-17 Clean-in-Place Hard Spots	131

Figure 5-18 Disk-type Centrifuge	135
Figure 5-19 Ultrafiltration Skid (Courtesy of Sartorius)	136
Figure 5-20 Chromatography Column Schematic (Courtesy of Optek)	138

FILES ON THE WEB ACCOMPANYING THIS BOOK

Biological Assessment Questionnaire

Bioprocess Facility Audit Checklist

You can access these files by going to the site:

www.aiche.org/ccps/publications/bioprocess.aspx

To access the files, download the zipped folder and extract all of the files.
You will be asked for a password, enter the password:

CCPSBio2010

If you have difficulty accessing the files, contact CCPS at ccps@aiche.org
or +1.646.495.1371

This page intentionally left blank

ACKNOWLEDGEMENTS

The American Institute of Chemical Engineers (AIChE) wishes to thank the Center for Chemical Process Safety (CCPS) and those involved in its operation, including its many sponsors whose funding made this project possible, and the members of the Technical Steering Committee, who conceived of and supported this guideline project. The members of the bioprocess safety management subcommittee who worked with AntiEntropics, Inc. to produce this text deserve special recognition for their dedicated efforts, technical contributions, and overall enthusiasm for creating a useful addition to the process safety guideline series. CCPS also wishes to thank the subcommittee members' respective companies for supporting their involvement in this project as well as the American Biological Safety Association (ABSA) for creating a source for sharing valuable bioprocessing safety information and research.

The chairman of the bioprocess safety management subcommittee was Will Fleming of Bristol-Myers Squibb. The CCPS staff liaison was Dan Sliva. The members of the CCPS guideline subcommittee were:

- Buddy Bowman, Syngenta
- Rick Braun, IPS
- Mary Cipriano, Abbott Laboratories
- Aaron Duff, Bristol-Myers Squibb
- Bruce Greer, Scientific Protein Laboratories LLC
- Jose Hanquier, Eli Lilly and Company
- Jerry Jones, Genentech
- Beth Junker, Merck & Company, Inc.
- Chantel Laing, Schering-Plough Corporation
- Denise Lackey, Amgen, Inc.
- Richard Medwid, Eli Lilly and Company
- Barbara Owen, Bristol-Myers Squibb
- Alan Powell, Merck & Company, Inc.
- Robert Stankovich, Eli Lilly and Company

AntiEntropics, Inc. of New Market, Maryland, was the contractor for this project. Robert J. Walter was the principal co-author and project manager. Sandra A. Baker was co-author and editor. Joseph Kallhoff was a contributing author. In addition AntiEntropics would like to recognize the following contributors:

- Bob Stankovich of Eli Lilly and Company for his co-authorship of Chapter 3
- Mary Cipriano of Abbott Laboratories for her authorship of Chapter 4
- David McGlashan of Caris DX and Jeffery Odum of NC BioSource for contributing Chapter 5.

CCPS also gratefully acknowledges the comments submitted by the following peer reviewers:

- William Gaylord, Allergan
- Robert Kiss, Genentech
- David R. Maraldo, Ph.D., Merck & Company, Inc.
- Chris Meyer, Eli Lilly and Company
- Dan Noberini, Bristol-Myers Squibb
- Venkata Ramana, Reliance Life Sciences Pvt. Ltd,
- Richard Rebar, GlaxoSmithKline
- Stephen Sykes, United States Food and Drug Administration
- Dan Wozniak, Abbott Laboratories
- Timothy E. Woenker, Chematics, Inc.

Their insights, comments, and suggestions helped ensure a balanced perspective for this guideline.

PREFACE

The American Institute of Chemical Engineers (AIChE) has been closely involved with process safety and loss control issues in the chemical and allied industries for more than four decades. Through its strong ties with process designers, constructors, operators, safety professionals, and members of academia, AIChE has enhanced communications and fostered continuous improvement of the industry's high safety standards. AIChE publications and symposia have become information resources for those devoted to process safety and environmental protection.

AIChE created the Center for Chemical Process Safety (CCPS) in 1985 after the chemical disasters in Mexico City, Mexico, and Bhopal, India. The CCPS is chartered to develop and disseminate technical information for use in the prevention of major chemical accidents. The center is supported by more than 80 chemical process industries (CPI) sponsors who provide the necessary funding and professional guidance to its technical committees. The major product of CCPS activities has been a series of guidelines to assist those implementing various elements of a process safety and risk management system. This book is part of that series.

AIChE recognized a significant increase in members' bioprocess related needs in the early 1990s. Some of these members' processes benefit from traditional process safety techniques, others present different challenges for managing the biological nature of their hazards and associated risks, and still others combine both categories of hazards. Bioprocess safety management meshes the lessons learned from over 24 years of chemical process safety management with the unique approaches demanded by the widening variety of bioprocessing safety challenges. The CCPS Technical Steering Committee initiated the creation of these guidelines to assist bioprocessing facilities in meeting these challenges. This book contains approaches for designing, developing, implementing, and continually improving a bioprocess safety management system. The website accompanying this book contains resource materials and support information.

This page intentionally left blank

1

INTRODUCTION

The following definition sets the scope of our discussion of process safety management in the bioprocess manufacturing industry:

Bioprocess—A process that makes use of microorganisms, cells in culture, or enzymes to manufacture products or complete a chemical transformation.

Humans have been using such processes for baking bread, making cheese and fermenting alcoholic beverages since prehistoric times. Advances in commercializing recombinant DNA technology allow the production of an enormous variety of protein-based therapeutic drugs that is having a profound impact on the quality of life for severely ill patients. Bioprocessing is also essential to several emerging industries and technologies, including the production of biofuels from renewable biomass feedstocks such as ethanol biodiesel, and for the production of polymeric materials. Therapeutic stem cells, gene therapy vectors, and new vaccines are all the results of bioprocessing technology.

Effective process safety management in bioprocess manufacturing is essential to the growth of an already booming segment of global manufacturing. In the past few decades, leaps in basic science, new bioprocessing discoveries, technological methods, and equipment design have created a vibrant and creative business segment. Bioprocessing is a business segment that, like any other, has traditional fiscal risks but then adds unique chemical and biological hazard-based risks related to

- the raw materials involved,
- the products made,
- the processes used,
- the waste streams involved, and
- unique end user considerations.

Effective process safety management is viewed worldwide by leaders in the chemical process industries, government regulatory agencies, and non-governmental public advocacy groups concerned with public safety and environmental protection as a business philosophy that supports safe, efficient, and reliable operation of manufacturing facilities. An increased emphasis on process safety management across many segments of the process industries during the last several decades is widely credited for reducing the risks of catastrophic accidents in facilities worldwide.

While process safety management has traditionally been focused upon large facilities in the petroleum, natural gas and chemicals and polymers production sectors, other facilities in the process industries have also widely used and benefited from the basic concepts of process safety. Examples include facilities that may not be required by regulations to adopt formal process safety management systems such as biopharmaceutical industry facilities for production of biological drug substances and vaccines.

This book addresses process safety management practices for manufacturing facilities that use bioprocesses. For the purposes of this guideline, the reader should expand the traditional scope of the definition of hazardous materials to include chemicals, biological agents, and intermediates and derivatives generated during manufacture.

Owners of bioprocessing facilities must manage a variety of process safety related hazards, not just biohazards. These include a variety of chemical hazards and physical hazards (for example, stored energy in pressure vessels located in utility supply and process areas, asphyxiant gases, hot acidic and caustic cleaning solutions). While biohazards may in some instances be very significant and perhaps of primary importance from a risk perspective, in many cases chemical and physical hazards will present the more significant risk exposures to workers, neighbors, the environment, and property.

This book is a survey of the present guidance and experience from industry, professional organizations, and governmental research to encourage and support the use of systematic and self-directed design for success in

- safety (including bioprocess safety, personnel safety, and chemical process safety),
- environmental responsibility,
- quality, and
- the business case for your organization to embrace a rigorous management system to support all of the above as they apply to your organization.

1.1 BIOPROCESS ENGINEERING INFORMATION TRANSFER AND MANAGEMENT PRACTICES

A smooth interface between bioprocess scientists, bioprocessing engineers, biosafety specialists, and technical and support professionals demands a management system to address the transfer and consistent application of technology—both process technology and safety technology—from the laboratory to the production floor. Success in achieving this goal depends upon the combination of well understood bioprocessing guidelines and regulatory compliance methods with proven safety management, bioprocessing management, and business management best practices. These include, but are not limited to:

- Occupational Safety and Health Administration (OSHA) process safety management techniques
- Food and Drug Administration (FDA) Good Manufacturing Practice guidelines
- National Institutes of Health (NIH) guidance for facility design and specific bioactive and biological material use
- Center for Disease Control (CDC) and World Health Organization (WHO) laboratory safety management guidance
- Organisation for Economic Co-operation and Development (OECD) Directive on the protection of workers from risks related to exposure to biological agents at work
- United States Department of Agriculture (USDA) facility design standards
- Environmental Protection Agency (EPA) risk management program techniques
- International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH).
- Professional society standards and practices, such as the International Society for Pharmaceutical Engineering (ISPE), American Society for Microbiology (ASM), American Society for Mechanical Engineers (ASME), American Biological Safety Association (ABSA)
- Integrated operational excellence business management system techniques

This book presents the concept of process safety for bioprocesses as a branch within a total business management system. Operational excellence is supported when the various arms of the business all follow similarly detailed management systems.