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FOREWORD

Among many advantages of being a professional researcher and teacher is the pleasure
of reading a new and good textbook that concisely summarizes the fundamentals and
progress in your research area. This reading not only gives you the enjoyment of
looking once more at the whole picture of the edifice that many generations of
your colleagues have meticulously build but, most importantly, also enhances your
confidence that your choice to spend your entire life to promote and contribute to
this structure is worthwhile. Clearly, the perception of the textbook by an expert in
the field is quite different, to say the least, from the perception of a junior or senior
undergraduate student who is about to register for a class. A simple look at a textbook
that is jam-packed with complex integrals and differential equations may scare any
prospective students to death. On the other hand, eliminating the mathematics entirely
will inevitably eliminate the rigor of scientific statements. In this respect, the right
compromise between simplicity and rigor in explaining complex scientific topics is
an extremely rare talent. The task is especially large given the fact that the textbook is
addressed to students for whom a particular area of science is not among their primary
interests. In this respect, Professor Rogers’s Concise Physical Chemistry is a textbook
that ideally suits all of the above-formulated criteria of a new and good textbook.

Although the fundamental laws and basic principles of physical chemistry were
formulated long ago, research in the area is continuously widening and deepening. As
a result, the original boundaries of physical chemistry as a science become more and
more vague and difficult to determine. During the last two decades, physical chemistry
has made a tremendous progress mainly boosted by a spectacular increase in our
computational capabilities. This is especially visible in quantum molecular modeling.
For instance, on my first acquaintance with physical chemistry about 30 years ago,
the only molecule that could be quantitatively treated with an accuracy close to

xxi
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xxii FOREWORD

experimental data by wave mechanics was the hydrogen molecule. In a lifetime, I
have witnessed a complete change of the research picture in which thermodynamic
and kinetic data are theoretically obtained routinely with an accuracy often exceeding
the experimental one. Quite obviously, to keep the pace with the progress in research,
textbooks should be permanently updated and revised. In his textbook Professor
Rogers sticks to the classical topics that are conventionally considered as part of
physical chemistry. However, these classical topics are deciphered from a modern
point of view, and here lies the main strength of this textbook as well as what actually
makes this textbook different from many other similar textbooks.

Traditionally, physical chemistry is viewed as an application of physical principles
in explaining and rationalizing chemical phenomena. As such, the powerful principles
and theories that physical chemistry borrows from physics are accompanied by an
advanced and mandatory set of mathematical tools. This makes the process of learning
physical chemistry very difficult albeit challenging, exciting, and rewarding. The level
of mathematics used by Professor Rogers to formulate and prove the physicochemical
principles is remarkably consistent throughout the whole text. Thus, only the most
general algebra and calculus concepts are required to understand the essence of
the topics discussed. Professor Rogers’s way of reasoning is succinct and easy to
follow while the examples used to illustrate the theoretical developments are carefully
selected and always make a good point. There is no doubt that this textbook is a work
of great value, and I heartily recommend it for everybody who wants to enter the
wonderful world of physical chemistry.

Ilie FishtikWorcester Polytechnic Institute
Worcester, MA
July 2010
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PREFACE

Shall I call that wise or foolish, now; if it be really wise it has a foolish look to it; yet, if
it be really foolish, then has it a sort of wiseish look to it.

Moby-Dick (Chapter 99) —Herman Melville

Physical chemistry stands at the intersection of the power and generality of classical
and quantum physics with the minute molecular complexity of chemistry and biology.
Any molecular process that can be envisioned as a flow from a higher energy state
to a lower state is subject to analysis by the methods of classical thermodynamics.
Chemical thermodynamics tells us where a process is going. Chemical kinetics tells
us how long it will take to get there.

Evidence for and application of many of the most subtle and abstract principles
of quantum mechanics are to be found in the physical interpretation of chemical
phenomena. The vast expansion of spectroscopy from line spectra of atoms well
known in the nineteenth century to the magnetic resonance imaging (MRI) of today’s
diagnostic procedures is a result of our gradually enhanced understanding of the
quantum mechanical interactions of energy with simple atomic or complex molecular
systems.

Mathematical methods developed in the domain of physical chemistry can be
successfully applied to very different phenomena. In the study of seemingly unrelated
phenomena, we are astonished to find that electrical potential across a capacitor, the
rate of isomerization of cyclopentene, and the growth of marine larvae either as
individuals or as populations have been successfully modeled by the same first-order
differential equation.

Many people in diverse fields use physical chemistry but do not have the op-
portunity to take a rigorous three-semester course or to master one of the several
∼1000-page texts in this large and diverse field. Concise Physical Chemistry is

xxiii
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xxiv PREFACE

intended to meet (a) the needs of professionals in fields other than physical chemistry
who need to be able to master or review a limited portion of physical chemistry or
(b) the need of instructors who require a manageable text for teaching a one-semester
course in the essentials of the subject. The present text is not, however, a diluted
form of physical chemistry. Topics are treated as brief, self-contained units, graded
in difficulty from a reintroduction to some of the concepts of general chemistry in
the first few chapters to research-level computer applications in the later chapters.

I wish to acknowledge my obligations to Anita Lekhwani and Rebekah Amos
of John Wiley and Sons, Inc. and to Tony Li of Scientific Computing, Long Island
University. I also thank the National Center for Supercomputing Applications and
the National Science Foundation for generous allocations of computer time, and the
H. R. Whiteley Foundation of the University of Washington for summer research
fellowships during which part of this book was written.

Finally, though many people have helped me in my attempts to better appreciate
the beauty of this vast and variegated subject, this book is dedicated to the memory
of my first teacher of physical chemistry, Walter Kauzmann.

Donald W. Rogers
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1
IDEAL GAS LAWS

In the seventeenth and eighteenth centuries, thoughtful people, influenced by the
success of early scientists like Galileo and Newton in the fields of mechanics and
astronomy, began to look more carefully for quantitative connections among the
phenomena around them. Among these people were the chemist Robert Boyle and
the famous French balloonist Jacques Alexandre César Charles.

1.1 EMPIRICAL GAS LAWS

Many physical chemistry textbooks begin, quite properly, with a statement of Boyle’s
and Charles’s laws of ideal gases:

pV = k1 (Boyle, 1662)

and

V = k2T (Charles, 1787)

The constants k1 and k2 can be approximated simply by averaging a series of experi-
mental measurements, first of pV at constant temperature T for the Boyle equation,
then of V/T at constant pressure p for Charles’s law. All this can be done using simple
manometers and thermometers.

Concise Physical Chemistry, by Donald W. Rogers
Copyright C© 2011 John Wiley & Sons, Inc.

1
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2 IDEAL GAS LAWS

1.1.1 The Combined Gas Law

These two laws can be combined to give a new constant

pV

T
= k3

Subsequently, it was found that if the quantity of gas taken is the number of grams
equal to the atomic or molecular weight of the gas, the constant k3, now written R
under the new stipulations, is given by

pV = RT

For the number of moles of a gas, n, we have

pV = n RT

The constant R is called the universal gas constant.

1.1.2 Units

The pressure of a confined gas is the sum of the force exerted by all of the gas
molecules as they impact with the container walls of area A in unit time:

p = f in units of N

A in units of m2

The summed force f is given in units of newtons (N), and the area is in square meters
(m2). The N m−2 is also called the pascal (Pa). The pascal is about five or six orders
of magnitude smaller than pressures encountered in normal laboratory practice, so
the convenient unit 1 bar ≡ 105 Pa was defined.

The logical unit of volume in the MKS (meter, kilogram, second) system is the
m3, but this also is not commensurate with routine laboratory practice where the liter
is used. One thousand liters equals 1 m3, so the MKS name for this cubic measure is
the cubic decimeter—that is, one-tenth of a meter cubed (1 dm3). Because there are
1000 cubic decimeters in a cubic meter and 1000 liters in a cubic meter, it is evident
that 1 L = 1 dm3.

The unit of temperature is the kelvin (K), and the unit of weight is the kilogram
(kg). Formally, there is a difference between weight and mass, which we shall ignore
for the most part. Chemists are fond of expressing the amount of a pure substance in
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THE MOLE 3

terms of the number of moles n (a pure, unitless number), which is the mass in kg
divided by an experimentally determined unit molar mass M, also in kg:1

n = kg

M

If the pressure is expressed as N m−2 and volume is in m3, then pV has the unit N m,
which is a unit of energy called the joule (J). From this, the expression

R = pV

nT

gives the unit of R as J K−1 mol−1. Experiment revealed that

R = 8.314 J K−1 mol−1 = 0.08206 L atm K−1 mol−1

which also defines the atmosphere, an older unit of pressure that still pervades the
literature.

1.2 THE MOLE

The concept of the mole (gram molecular weight in early literature) arises from the
deduction by Avogadro in 1811 that equal volumes of gas at the same pressure and
temperature contain the same number of particles. This somewhat intuitive conclusion
was drawn from a picture of the gaseous state as being characterized by repulsive
forces between gaseous particles whereby doubling, tripling, and so on, the weight
of the sample taken will double, triple, and so on, its number of particles, hence its
volume. It was also known at the time that electrolysis of water produced two volumes
of hydrogen for every volume of oxygen, so Avogadro deduced the formula H2O for
water on the basis of his hypothesis of equal volume for equal numbers of particles
in the gaseous state.

By Avogadro’s time, it was also known that the number of grams of oxygen
obtained by electrolysis of water is 8 times the number of grams of hydrogen. By
his 2-for-1 hypothesis, Avogadro reasoned that the less numerous oxygen atoms
must be 2(8) = 16 times as heavy as the more numerous hydrogen atoms. This
theoretical vision led directly to the concept of atomic and molecular weight and
to the mass of pure material equal to its atomic weight or molecular weight, which
we now call the mole.2 Various experimental methods have been used to determine
the number of particles comprising one mole of a pure substance with the result

1General practice is to write experimentally determined quantities in italics and units in Roman letters,
but there is some overlap and we shall not be strict in this observance.
2The word is mole, but the unit is mol.
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4 IDEAL GAS LAWS

6.022 × 1023, which is now appropriately called Avogadro’s number, NA. One mole
of an ideal gas contains NA particles and occupies 24.79 dm3 at 1 bar pressure and
298.15 K.

1.3 EQUATIONS OF STATE

The equation pV = RT with the stipulation of one mole of a pure gas is an equation
of state. Given that R is a constant, the combined gas law equation can be written in
a more general way:

p = f (V, T )

which suggests that there are other ways of writing an equation of state. Indeed,
many equations of state are used in various applications (Metiu, 2006). The common
feature of these equations is that only two independent variables are combined with
constants in such a way as to produce a third dependent variable. We can write the
general form as p = f (V, T ), or

V = f (p, T )

or

T = f (p, V )

so long as there are two independent variables and one dependent variable. One mole
of a pure substance always has two degrees of freedom. Other observable properties
of the sample can be expressed in the most general form:

z = f (x1, x2)

The variables in the general equation may seem unconnected to p and V , but there
always exists, in principle, an equation of state, with two and only two independent
variables, connecting them.

An infinitesimal change in a state function z for a system with two degrees of
freedom is the sum of the infinitesimal changes in the two dependent variables, each
multiplied by a sensitivity coefficient (∂z/∂x1)x2 or (∂z/∂x2)x1 which may be large
if the dependent variable is very sensitive to independent variable xi or small if dz is
insensitive to xi :

dz =
(

∂z

∂x1

)
x2

dx1 +
(

∂z

∂x2

)
x1

dx2


