THE EXPERT’S VOICE® IN .NET

Beginning

F#

Discover the elegance and power of Microsoft’s
functional programming language

Robert Pickering

Forewords by Don Syme and Chance Coble

Apress’

Beginning F#

Robert Pickering
Forewords by Don Syme and Chance Coble

APIress:

Beginning F#
Copyright © 2009 by Robert Pickering

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2389-4
ISBN-13 (electronic): 978-1-4302-2390-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Michael de la Maza

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Debra Kelly

Copy Editors: Patrick Meader and Vanessa Porter
Compositor: Lynn L'Heureux

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visithttp://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Patrick wishes to dedicate this book to his father - “Everyday I attempt to approach
his level of logic and perfection. Rest in peace.”

Jim dedicates this book to his dad - “T've learned a lot from you and enjoyed
the company.”

Contents at a Glance

FOTBWOIG........oeeeetee ettt st bbb st se bt e et enesbeneseerennas XV
ADOUL e AULNOT ...t st XVii
About the TechniCal REVIBWET...........c.ooveuieeeeeeee e Xviii
ACKNOWIBAGMENTScvceiiie ettt Xix
PIBIACE.cveeeeeeeee ettt bbb bbbt bbb b e nebebenis XX
Chapter 1: INtroduCtion ..o 1
Chapter 2: How to Obtain, Install, and Use F# ... 7
Chapter 3: Functional Programmingcccococovverienncesceseeree e, 15
Chapter 4: Imperative Programming ..o, 65
Chapter 5: Object-Oriented Programmingccccccoeoeveeveecccvccescesee e, 93
Chapter 6: Organizing, Annotating, and Quoting Codec...ccoovvvrvrerrrnnnn. 129
Chapter 7: The F# LiDraries ..ot 153
Chapter 8: User INTerfaces ... 179
Chapter 9: Data ACCESS ...ttt 227
Chapter 10: Parallel Programmingcccocooveevienreecesee s 259
Chapter 11: Distributed Applications...........c.ccoooeevvceieccecce e 291
Chapter 12: Language-Oriented Programming...............cccccoooevrevrcvncrncnienns 327
Chapter 13: Parsing TeXt ... s 351
Chapter 14: Compatibility and Advanced Interoperationccccoco.e.. 371

Contents

0T (o PSSR XV
ADOUL N8 AULNOT ...t Xvii
About the TEChNICAl REVIBWETc.cveveceeeeeeeeeceece ettt nes XViii
ACKNOWIBAGMENTS ... Xix
PIBIACE.vvceetetcte et ans XX
Chapter 1: INtroduction............c.cooeiece s 1
What Is Functional Programming?cccceceeenees et 1
Why Is Functional Programming Important?.............ccooeeieeeeesceee s 2
WRALIS FH? ...t ettt n s 2
WHO IS USING FA?....o.eeeeee ettt en 3
WHO IS ThiS BOOK FOI? ...ttt sttt bbb st be et 4
WREE'S NBXE? ...ttt et b ettt ebese e st esebenesnnnas 4
Chapter 2: How to Obtain, Install, and Use Fé# ..o, 7
OBLAINING FA ...ttt s et s e 7
Installing F# on Windows with Visual Studio 2008ccooeernerrnireesrereeesseeeseseeees 8
INSTAINNG FH# ON LINUX....vivteiis ettt 8
USing F# in DIfferent WaYS.........ocvueeericcesisies s ssssesens 10

VISUAL STUGIOcecvcvercreretetetetete et 10

SNAMPDBVEIOP ...t 1

F# Interactive COmMMANA-LINEcoeviriieiece e e 12
The Examples in thiS BOOK............ccoviiiirieieciiessc e 13
SUMMAIY <. b bbb bbbt b s e s s s s e s 14

vii

viii

CONTENTS

Chapter 3: Functional Programming..........ccccceevceeiniicersieieessesee e 15
LIEBIAISvvvcvette ettt a et n et nas 15
FUNCHIONS ...ttt sttt b et es st s 17
Identifiers and 16t BiNiNGS ..o 18
[AENtIfier NAMES ..o 19
S0P ottt R bbbttt et et n et s r et e 20
Capturing IdENTFIErS.c.eueecececcce e 24
THE USE BINAINGecvvcecectectee et 25
REBCUISION ...ttt bbbt bbbt et b ettt s s e 26
OPBIAIOIS ...ttt b bbbttt s s e e s n s 27
FUNCEION APPLICALION ... 28
Partial Application of FUNCHIONS.........ccoueiic e 30
Pattern MatChiNgcccveeeiice e 31
CONEIOI FIOW ...t et 36
LISES vttt bbbt a et et n e 37
Pattern Matching AQainSt LIStS..........ccccoveeeeeiceceee s 39
List COMPIENENSIONScveveeieeeccce et nees 41
Types and TYPE INTEIBNCE.........ccvcveereceee e 44
DEFINING TYPES ...ttt bbb n e 46
Tuple and RECOM TYPES.....cucerieieeeeeceriri sttt en 47
UNION OF SUM TYPES....cuveieiecececictctcie ettt b bbb bbb 50
Type Definitions with Type Parameters ... 53
Recursive TYpe DefinitionS..........ccoovvieiveceieeceesceee s 95
ACHIVE PALBINS ...ttt 56
Complete ACLIVE PALIBIMScceieccccccee e 56
Incomplete ACLIVE PALBINS.........cccvvveeeeiece e 57
UNIES OF MBASUIE ...ttt bbb bbb 59
Exceptions and Exception Handling...........ccovovveeeiiiiiseccece e 60
LAZY EVAIUALION ... 63
SUMMEAIY oottt bbbt a s st bee 66
Chapter 4: Imperative Programming............ccccccooveennrccsnnncesseesse e, 65
THE UNIE TYPE .ttt b e s bbb et s b enesbebe s bennnnas 65
The MULADIE KEYWOIT...........ccveriiireiieetecc ettt 67
Defining Mutable RECOTd TYPEScovvieeecictctereeie ettt 69
TNB TEF TYPE .ttt bbbt bbb et b e se bbb e e seaee 71
AITAYS <.ttt ettt ettt b e e b e b s st b e e b e b e Re s e b e b b eRe st ebe et e Re et eRentebeneebeneanas 73

CONTENTS

Array COMPIENENSIONScvcviveieieiece e es 76
CONEIOI FIOW ...ttt 77
Calling Static Methods and Properties from .NET Libraries.........cccocveveeensssvinvecesicsenas 80
Using Objects and Instance Members from .NET Librariescccccocoveeeeeessnsvessesesienns 82
Using Indexers from .NET LiDraries..........coovveeeeeieeccccseeee s 85
Working with Events from .NET LIDFariescccoeeeeeeeeeesss e 85
Pattern Matching OVEr .NET TYPESceeeeicicciceee e 88
TRE 1> OPEIATON......cececececicecce et 90
SUMMANY ..ottt bbb bbbttt s s s e e e e s s nes 92
Chapter 5: Object-Oriented Programming............ccccooeovevienicnncnneeseeseeen, 93
RECOIS AS ODJECESeeeeeeeeecce et 94
F# TYPES WIth MEBMDEIS ... 97
ODJECT EXPIESSIONSvvvvvrereteietets sttt b et nenens 100
DEfINING CIASSES.....c.cvevivereietereteieie sttt a et nens 105
OPtONAI PArAMETEIS.......cocvcvcvcrerciees st 108
DEfiNiNG INTBITACEScveeee e 109
IMPlEMENtING INTEITACEScveeeeeerecreie e 110
Classes and INNEIILANCE...........cccucreereee e 112
Methods and INNEITANCEcoveveeeeee s 113
ACCESSING The BASE ClASS.......ceeeeeeeeeeeieereeieriseeie et esnnnes 114
PropertieS and INABXEIScovveveueeeerseee et 115
Overriding Methods from NON-F# LIDrariesccoocoeevreennnsennieesesseeesesesseseseseseseens 118
ADSTACE CASSES.......cvvivcvereiereieiete ettt bbbt 118
Classes and Static MEthOUS...........c.cceucveceeee s 119
Classes with Explicit Fields and CONSIIUCTONS...........cccoeiieeceeesee e 120
0T 3 TR 121
TYPE TOSES. ..ttt ettt s et et n e aenen e s 123
Type Annotations fOr SUDLYPINGcccveveveeeeeerrc s 123
DEfiNiNg DEIBGALESc.cveveeeerceririreeie st s e 125
ETUCES e e e s 126
ENUMS .. ettt nenens 126
SUMMAIY <ottt s s s se e aea bbb bt bees 127
Chapter 6: Organizing, Annotating, and Quoting Codecccccevvrvrennee. 129
MOTUIBS ...ttt 129
NAMEBSPACESoveveveiiteiitete ettt ettt bbb bbb e b ae b e be et e st ebe b ebe s st eneseebeseerens 131
Opening Namespaces and MOTUIESccceverereeirrrceeee e 132
GIVING MOTUIES AlISES........cvevevererereirieisis sttt b bbb aenes 135

ix

CONTENTS

SIGNALUIE FIIBS ...t es 135
Private and Internal let Bindings and MEMDEIScccveeeeeceeee e 136
MOUUIE SCOPE ...ttt aenenas 137
MOAUIE EXBCULION ...ttt 138
Optional ComMPIIALIONc.cueuireicieieiee e 140
COMMEBNTS.......oovcteeeeeeee ettt ettt et et et e e et bbb e se s se e benenns 142
DOC COMMENES......cocvevcrereieieie ettt ettt annens 142
Comments for Cross CoOmMPIlAtioN.............cceeueiceeese et 144
CUSTOM ATTIDULES ..ot 145
QUOLEA COUE ... 147
SUMMEAIY <.ttt bbb e s s e e e bbbt ses 151
Chapter 7: The F# LiDraries ...t 153
The Native F# Library FSharp.Core.dll..........ccoceeeriiicscececeeece s 153

The Microsoft.FSharp.Core.Operators Moduleccovoeeeecceeeesec e 154
ArithmEtic OPEIALONSc.ccvevciereetete et 154
Floating-Point Arithmetic FUNCTIONS ..o 155
TUPIE FUNCHIONS ...ttt es 157
The Conversion FUNCHIONS............cooreisce et 157
The Logical Or and And OPEIatOrSceveeeerrieeeerereseeresesesessesesesess s sseseessseenes 158

The Microsoft.FSharp.Reflection MOdUIEc.covveeeieeeieccccc e 158
RETIECTION OVEY TYPES....v vttt 159
REfIECtioN OVEN VAIUES........c.cveveieieieeee sttt 159

The Microsoft.FSharp.Collections.Seq Module............ccccveeeceeceeeeee e 160
The map and iter FUNCHIONS ..o 161
The €oNCat FUNCHIONc.oiieeccc e 162
TNE TOIA FUNCHION........c.eeieiececceccce bbb s 162
The exists and forall FUNCHIONScociiieiccee e 163
The filter, find, and tryFind FUNCLIONS..........ccoviviieiicececeecceee s 163
The CN00SE FUNCHION ..o 164
The init and initinfinite FUNCHIONSc.cvovieecc e 165
The UNfold FUNCHION.........cuiuciciciccctee bbbt 166
The generate FUNCHION...........ccvoveuecei et 167
TNE CASE FUNCHION ...t 169

The Microsoft.FSharp. Text.Printf MOAUIE............ccccoeveveieeereeee s 170

The Microsoft.FSharp.Control.Event MOAUIEccuveveveviieeceecececeeeeee s 173

CONTENTS

Creating and Handling EVENES ..ot 173
THE fIEr FUNCHION ...t 174
The partition FUNCHION...........cccicce e 174
THE MAP FUNCHON......c.cuiicieicicce et 176
The Power Pack Library FSharp.PowerPack.dllcccoovvveiiiecccceceeee e 176

The Microsoft.FSharp.Math NameSpace...........ccooveevveerireeccceee e 177
SUMMANY <.t et ee s s s e bbbt nees 181
Chapter 8: User INTerfaces...........ccocoiiceeececeeecce e 179
INtroduCing WINFOIMS.........cvoviiieiieiceeeseeeeeee et 179
Drawing WINFOMMSc.ouiiiiririiei ettt a b s 180
Working with Controls in WINFOrMS ... 188
Using the Visual Studio Form Designer’'s FOrms in Fff ... 193
Working with WinForms Events and the Event Module.............cccoeeeevevvvcvecccccceee 196
Creating NEeW FOrmS ClASSESccvueueieiererirrsirise ettt 200
Introducing Windows Presentation FOUNQALIoN.............ccoveerreeenncee e 202
Introducing Windows Presentation FOundation 3Dcccevveeennieennseeseseceeeseseneeene 204
INTrOAUCING GTKH ... 215
INtrOAUCING ASP.NET ..ottt 217
Creating an IHEPHANAIET ..o 218
Working with ASP.NET WED FOrMSc.ovireesccesce e 222
SUMMAIY .ot a b s s s e a bbb bt tees 227
Chapter 9: Data ACCESS......ccooveuiieiecceee ettt 227
The System.Configuration NameSPaCecccevvevivevereeeiecece e 227
The System.I0 NAMESPACE..........cccerirerererereeee st 230
Using Sequences With SYSTEMLIO............coeevieiecieeccecee s 232
The System.Xml NaMESPACEcccevevererereeerrre e 234
ADONET ..ottt bbbttt bbbt s bt s 237
DALA BINAING.....cvveieieieieieie et 243
Data Binding and the DataGridView CONrolcccovveerneenrriseeseeeesesesseseseseeeens 245
ADO.NET EXIBNSIONS......cvcvirevererererereteisisiss s bbb bbb n bbb 249
INtroduCiNg LINQ........cveeeeeeeci et 254
USING LINQ 0 XML.....coviececieisiciee ettt 255

SUMMAIY ...ttt et b e bbb ss et b e b e e st b ebebe s s st ebebenssessatanas 258

xii

CONTENTS

Chapter 10: Parallel Programming ... 259
Threads, Memory, Locking and BIOCKINGcouevireieiccccceee s 260
Reactive Programmingcccueeeeiiieiesi sttt 263
Data ParalleliSMc.cveveeeeee s 269
Asynchronous Programming..........ccccecueeeeeisisisese e se s 277
MESSAQE PASSINGcvvvrrieiiieiiise sttt et bea s nenan 281
SUMMANY <.ttt ettt s s s s e n bbb nes 292
Chapter 11: Distributed Applications ..., 291
NEtWOTKING OVEIVIBWvvveeeeseee bbbttt 291
USING TCP/IP SOCKELSc.evvvciciteietee sttt 293
USING HTTP ...ttt 303
Using HTTP with Google SPreadSheetsccvvvceveeeverececceceee e 305
USING HTTP POSES ..ottt 308
Using HTTP ASYNCRIONOUSIYc.cvcvevereieieieisirisc ettt 309
Creating WED SEIVICES........ccvirreeererereieirereseisesesessss s esessss s sssssesseesssessssssssessssessssns 312
Windows Communication FOUNdationcccceeeeeecsessscs s 317
HOSTING WCF SBIVICES.......cvevieeeeieesicicie sttt 321
SUMMAIY <. bbb bbbt s bbb n s s s s e s nanns 326
Chapter 12: Language-Oriented Programmingccccooooennnnencnenreneniens 327
What Is Language-0riented Programming?...........ccoevrreerernereenenermsressesessssesessssssssesssesssnees 327
Data Structures as Little LANQUAGEScovvvveeerrriceriniriceisseeeisesessses e ssesessssssesesesssens 327

A Data Structure—Based Language Implementation............cccovueevreeennsessenssnnnnes 330
Metaprogramming With QUOTALIONS...........ccoveeeureririerirnces s 337
Implementing a Compiler and an Interpreter for an Arithmetic-Language..........cccccocevurennneee. 339

The ADSETACt SYNTAX TIBEcvcvevevereietee et 340

INtErPreting the AST ...t 340

COMPIlING TNE AST ...ttt 342

Compilation vs. INTErpretationcccceeevececcc s 346
SUMMAIY <ottt bbb bbb s e e bbb bt bens 350

CONTENTS

Chapter 13: Parsing TeXt ... 351
Parsing CSV FOMMAL..........c.cooiiiice ettt 351
Language Definition for the Other EXamPpIes ..o 354
Using fSIEX.EXE AN TSYACC.EXEcvevererereieesisieeei ettt 354
TOKENIZING the TEXE: FSIBX......cueuereieieieeees et 395
Generating @ Parser: FSYACC........cccueueueiii e 357
USING T PAISE ...ttt 359
FPArSEC LIDIAIYvveeeeeecee sttt 361
SUMMEAIY <ottt s s s s n ettt nes 369
Chapter 14: Compatibility and Advanced Interoperationc.cccoooen.e... 371
Calling F# Libraries from Gc.cceeeiescess ettt 371
RETUIMING TUPIES.....cvveectcee e 372
Exposing Functions That Take Functions As Parametersc.cocovvvevvverevcccecerenennn, 374
USING UNION TYPES ...ttt 376
USING FH LISES ...ttt 380
Defining Types in @ NAMESPACEcccvvveeeecereerereie et 381
Defining Classes and INTErfacesccvvveeerrrrrerircreseee s 383
Calling USING COM ODJECLSevevereeeererercererisesieesesessesesesssssessesssssessessssssssesessssssssssssnssesssens 385
USING COM SEYIE APIS ...ttt 387
USING P/INVOKE ...ttt ss s snsesnns 388
USING INHNE LL ...t 391
Using F# from Native Code Via COMcovierrricerreeesiseee e 392
HOSEING the CLR.......ceeeeices e 395
SUMMAIY ottt s s ee e e ae s bbb bt bees 397
INABX ..ottt n s 399

xiii

Foreword

Anew language needs a simple and clear introductory book that makes it accessible to a broad range of
programmers. In Foundations of F#, Robert Pickering has captured the essential elements that the
professional programmer needs to master in order to get started with F# and .NET. As the designer of F#,
I'am thrilled to see Robert take up the challenge of presenting F# in a way that is accessible to a wide
audience.

F# combines the simplicity and elegance of typed functional programming with the strengths of the
.NET platform. Although typed functional programming is relatively new to many programmers and
thus requires some learning, in many ways it makes programming simpler. This is mainly because F#
programs tend to be built from compositional, correct foundational elements, and type inference makes
programs shorter and clearer. Robert first introduces the three foundational paradigms of F#: functional
programming, imperative programming, and object-oriented programming, and he shows how F# lets
you use them in concert. He then shows how this multiparadigm approach can be used in conjunction
with the .NET libraries to perform practical programming tasks such as GUI implementation, data
access, and distributed programming. He then introduces some of the particular strengths of F# in the
area of “language-oriented” programming.

F# is a practical language, and Robert has ensured that the reader is well equipped with information
needed to use the current generation of F# tools well. Many computer professionals first encounter
functional programming through a short section of the undergraduate curriculum and often leave these
courses uncertain about the real-world applicability of the techniques they have been taught. Similarly,
some people encounter functional programming only in its purest forms and are uncertain whether it is
possible to combine the elements of the paradigm with other approaches to programming and software
engineering. Robert has helped remove this uncertainty: typed functional programming is practical, easy
to learn, and a powerful addition to the .NET programming landscape.

F# is also a research language, used in part to deliver recent advances in language design,
particularly those that work well with .NET. It combines a stable and dependable base language with
more recent extensions. Robert’s book describes F# 2.0, the latest release of the language at the time of
writing. The rest of the F# team and I are very grateful to Robert’s many suggestions, and the language
has been greatly improved through this.

Don Syme
Designer of F#, Microsoft Research
Original foreword to Foundations of F# (2007)

XV

FOREWORD

When Microsoft introduced F#, the NET community gained a new paradigm—functional programming.
That was a welcome event for coders who’d avoided .NET because the existing languages were geared
toward rapid line-of-business development. But whether or not you've stayed clear of .NET, if you'd like
to know what functional programming can bring to your work, Beginning F# is an excellent place to start
the adventure.

When the first edition was published in 2007, functional languages were just starting to break into
the mainstream. As it turned out, Robert Pickering displayed some impressive intuition about the
importance they’d take on. In the short time since, they’ve become hot in the world of software
architecture, so I'm especially pleased to see a second edition now.

Pickering is one of the most experienced F# programmers outside Microsoft, with a tremendous
amount to offer people who are curious about the language. I'm excited to see that in this book he shares
his perspective on everything from basic F# program design to large-scale software architecture. You'll
find topics as deep as domain-specific languages and concurrency with a functional language. Beginning
F#is truly geared toward professionals looking for real-world returns from this programming language.

I value that real-world approach—it helps me, and I believe it will help others use functional
programming for their day-to-day work. I also prize the book as a powerful ally when I make the case
that functional programming isn’t just for academics anymore—it’s a skill that software developers in
the trenches should master. I even used the original edition of Beginning F# to convince my boss of
functional programming’s legitimacy. Thanks to the examples inside this book, I've witnessed more than
one person make the transition from functional-programming novice to daily F# programmer, and I
sincerely believe you'll have that experience.

Chance Coble
Chief Architect
Blacklight Solutions, LLC

About the Author

Robert Pickering was born in Sheffield, in the north of England, but a
fascination with computers and the “madchester” indie music scene led him to
cross the Pennines and study computer science at the University of Manchester.

After finishing his degree, Robert moved to London to catch the tail end of
the dot-com boom, then went on to specialize in creating enterprise
applications using the .NET Framework. He has worked as both a consultant and
an engineer for a software house. After working on projects in Denmark,
Holland, Belgium, and Switzerland, he finally settled in Paris, France, where he
lives with his wife and three cats. He has been writing about F# almost since its
beginning, and the F# wiki on his strangelights.com web site is among the most
popular F# web sites.

About the Technical Reviewer

Michael de la Maza solves hard problems, often by applying computational
techniques. He holds a PhD in computer science from MIT and is a Certified
ScrumMaster, Certified Scrum Practitioner, and an IEEE Senior Member.
Previously, he was VP of Corporate Strategy at Softricity (acquired by Microsoft
in 2006) and a co-founder of Inquira.

xviii

Acknowledgments

If there is one person who must be acknowledged, it is Jim Huddleston, the editor of the first edition of
this book. Jim was there from the beginning. He helped me get it commissioned, he worked with me to
figure out the contents, he gave me much-needed encouragement and constructive criticism, and his
skillful editing helped me convey the information effectively. Sadly, Jim died on Sunday, 25th February
2007, just as the orginal book was entering its final stages of production.

I feel very lucky to have worked on this project with my technical reviewer, Michael de la Maza, and
lucky as well to have worked with the technical reviewer of the first edition, Don Syme, who went above
and beyond the cause by contributing many ideas to the original book; his influence can still be seen in
this edition.

Don, of course, is the creator and developer of F#, and I'd like to thank him and all the other
members of the small but dedicated F# team. Specifically, I'd like to thank them for their hard work on
the compiler, and to let them know that their quick responses to bugs and queries were very much
appreciated.

I'm also indebted to the entire F# community, in particular, to Stephan Tolksdorf, who was a great
help with the FParsec examples; André van Meulebrouck, who sent me many corrections; and Chance
Coble for his encouragement and excellent foreword. And I'm grateful to Chris Barwick (a.k.a.
optionsScalper) for his continued work on hubFS (http://cs.hubfs.net).

Finally, I'd like to thank everyone at Apress who took part in creating this book.

Anumber of people had to put up with me while I wrote this book, and they deserve special thanks.
This includes my family: Mum, Dad, and sister, who got used to me sneaking off to write whenever I
went to visit them; my work colleagues when writing the original book: Arnaud, Aurélie, Baptiste,
Buuloc, Daniel, Dennis, Emmanuel, Fabrice, Francois, Frederik, Guillaume, Ibrahima, Jean-Marc,
Laurent, Lionel, Oussama, Patrice, Philippe, Regis, Sebastien J., Sebastien P., Stefaan, Stefany, and
Stephane; the people who helped keep me distracted in Geneva: Amy, Angela, Armand, Carmen, Emma,
Erika, Francisco, Giovanna, Jordi, Laurent, Mattias, Peter, and Sameera; and the people I'm working with
on my current project: Charels, Francois, Kyrylo, and Stefan. Last but by no means least, heartfelt thanks
to my wife, Susan, for all the help and support she has given. Without her understanding, this book could
never have happened.

xix

Preface

In 2003 I was looking for a way to process IL—the intermediate language into which all .NET languages
are compiled. At the time, .NET was fairly new and there weren'’t a lot of options for doing this. I quickly
realized that the best option was an API called Abstract IL, AbsIL for short. AbsIL was written in a
language called F#, and I decided to use this language to write a small wrapper around AbsIL so I could
extract the information I needed from a DLL in a form more usable than with C#. But a funny thing
happened while writing the wrapper: even though in those days writing F# was a little hard going as the
compiler was far from polished, I found I actually enjoyed programming in F#, so much so that whenI
finished the wrapper, I didn’t want to go back to C#. In short, I was hooked.

During this period, I was working as a consultant, so I needed to regularly check out new
technologies and APIs, and I got to do all my experimenting with F#. At the same time, a new way to
communicate on the Web was emerging, and a new word was about to enter the English language: blog.
I decided I should have a blog because anyone who was any one in technology seemed to have one, so
I created strangelight.com, where my blog can still be found today. I later created a wiki about F#,
also at strangelight . com, which continues to be very popular.

My job meant I had to do alot of traveling, so I spent quite a lot of time in hotel rooms or on trains
and planes, and I came to view these occasions as time to try out stuff in F#. I ended up exchanging quite
alot e-mails with Don Syme, and eventually we met up. We went for a beer in the pub where Watson and
Crick went after they first pieced together the structure of DNA. Will people talk about the pub were
Syme and Pickering first met years from now? Errrm, perhaps not. Anyway, all this led me to wonder
what I should do with my new-found knowledge of F# and functional programming. About this time,

a guy named Jim Huddleston posted to the F# mailing list to ask if anyone would like to write a book
about F#. Well, T just couldn’t help myself—it sounded like the job for me and in May, 2007,
“Foundations of F#” was published.

About half a year later, it was announced that F# would be productized and made available as part
of Visual Studio 2010. This seemed too good an opportunity to miss so I signed up to write a new version
of the book, with the ambition of documenting the language as it is in Visual Studio 2010. The result is
the book you are holding in your hands.

It has been great fun watching F# evolve and turn from a rudimentary language into the fully fledged
and highly usable tool you see today. I hope reading this book changes your life as much as writing it
changed mine.

CHAPTER 1

Introduction

This introductory chapter will address some of the major questions you may have about F# and
functional programming.

What Is Functional Programming?

Functional programming (FP) is the oldest of the three major programming paradigms. The first FP
language, IPL, was invented in 1955, about a year before Fortran. The second, Lisp, was invented in 1958,
ayear before Cobol. Both Fortran and Cobol are imperative (or procedural) languages, and their
immediate success in scientific and business computing made imperative programming the dominant
paradigm for more than 30 years. The rise of the object-oriented (OO) paradigm in the 1970s and the
gradual maturing of OO languages ever since have made OO programming the most popular paradigm
today.

Despite the vigorous and continual development of powerful FP languages—SML, Objective Caml
(OCaml), APL, and Clean, among others—and FP-like languages—Erlang, Lisp, and Haskell being the
most successful for real-world applications—since the 1950s, FP remained a primarily academic pursuit
until recently. The early commercial success of imperative languages made it the dominant paradigm for
decades. Object-oriented languages gained broad acceptance only when enterprises recognized the
need for more sophisticated computing solutions. Today, the promise of FP is finally being realized to
solve even more complex problems—as well as the simpler ones.

Pure functional programming views all programs as collections of functions that accept arguments
and return values. Unlike imperative and object-oriented programming, it allows no side effects and
uses recursion instead of loops for iteration. The functions in a functional program are very much like
mathematical functions because they do not change the state of the program. In the simplest terms,
once a value is assigned to an identifier, it never changes, functions do not alter parameter values, and
the results that functions return are completely new values. In typical underlying implementations, once
avalue is assigned to an area in memory, it does not change. To create results, functions copy values and
then change the copies, leaving the original values free to be used by other functions and eventually be
thrown away when no longer needed. (This is where the idea of garbage collection originated.)

The mathematical basis for pure functional programming is elegant, and FP therefore provides
beautiful, succinct solutions for many computing problems. But its stateless and recursive nature makes
the other paradigms convenient for handling many common programming tasks. However, one of F#'s
great strengths is that you can use multiple paradigms and mix them to solve problems in the way you
find most convenient.

CHAPTER 1 INTRODUCTION

Why Is Functional Programming Important?

When people think of functional programming, they often view its statelessness as a fatal flaw without
considering its advantages. One could argue that since an imperative program is often 90 percent
assignment and since a functional program has no assignment, a functional program could be 90
percent shorter. However, not many people are convinced by such arguments or attracted to the ascetic
world of stateless recursive programming, as John Hughes pointed out in his classic paper “Why
Functional Programming Matters.”

The functional programmer sounds rather like a medieval monk, denying himself the pleasures of life
in the hope that it will make him virtuous.

John Hughes, Chalmers University of Technology
(http://www.math.chalmers.se/~rjmh/Papers/whyfp.html)

To see the advantages of functional programming, you must look at what FP permits rather than
what it prohibits. For example, functional programming allows you to treat functions themselves as
values and pass them to other functions. This might not seem all that important at first glance, but its
implications are extraordinary. Eliminating the distinction between data and function means that many
problems can be more naturally solved. Functional programs can be shorter and more modular than
corresponding imperative and object-oriented programs.

In addition to treating functions as values, functional languages offer other features that borrow
from mathematics and are not commonly found in imperative languages. For example, functional
programming languages often offer curried functions, where arguments can be passed to a function one
at a time and, if all arguments are not given, the result is a residual function waiting for the rest of its
parameters. It’s also common for functional languages to offer type systems with much better power-to-
weight ratios, providing more performance and correctness for less effort.

Further, a function might return multiple values, and the calling function is free to consume them as
it likes. I'll discuss these ideas, along with many more, in detail and with plenty of examples in Chapter 3.

What Is F#?

Functional programming is the best approach to solving many thorny computing problems, but pure FP
isn’t suitable for general-purpose programming. So FP languages have gradually embraced aspects of
the imperative and OO paradigms, remaining true to the FP paradigm but incorporating features needed
to easily write any kind of program. F# is a natural successor on this path. It is also much more than just
an FP language.

Some of the most popular functional languages, including OCaml, Haskell, Lisp, and Scheme, have
traditionally been implemented using custom runtimes, which leads to problems such as lack of
interoperability. F# is a general-purpose programming language for .NET (a general-purpose runtime)
that smoothly integrates all three major programming paradigms. With F#, you can choose whichever
paradigm works best to solve problems in the most effective way. You can do pure FP if you're a purist,
but you can easily combine functional, imperative, and object-oriented styles in the same program and
exploit the strengths of each paradigm. Like other typed functional languages, F# is strongly typed but
also uses inferred typing, so programmers don’t need to spend time explicitly specifying types unless an
ambiguity exists. Further, F# seamlessly integrates with the .NET Framework Base Class Library (BCL).
Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

CHAPTER 1 INTRODUCTION

F# was modeled on OCaml, a successful object-oriented FP language, and then tweaked and
extended to mesh well technically and philosophically with .NET. It fully embraces .NET and enables
users to do everything that .NET allows. The F# compiler can compile for all implementations of the
Common Language Infrastructure (CLI), it supports .NET generics without changing any code, and it
even provides for inline Intermediate Language (IL) code. The F# compiler not only produces
executables for any CLI but can also run on any environment that has a CLI, which means F# is not
limited to Windows but can run on Linux, Apple Mac OS X, and OpenBSD. (Chapter 2 covers what it’s
like to run F# on Linux.)

The F# compiler is distributed with Visual Studio 2010 and is available as a plug-in for Visual Studio
2008. It supports IntelliSense expression completion and automatic expression checking. It also gives
tool tips to show what types have been inferred for expressions. Programmers often comment that this
really helps bring the language to life.

F# was first implemented by Dr. Don Syme at Microsoft Research (MSR) in Cambridge. The project
has now been embraced by Microsoft Corporate in Redmond, and the implementation of the compiler
and Visual Studio integration is now developed by a team located in both Cambridge and Redmond.

Although other FP languages run on .NET, F# has established itself as the de facto .NET functional
programming language because of the quality of its implementation and its superb integration with
.NET and Visual Studio.

No other .NET language is as easy to use and as flexible as F#!

Who Is Using F#?

F# has a strong presence inside Microsoft, both in MSR and throughout the company as a whole. Ralf
Herbrich, coleader of MSR’s Applied Games Group, which specializes in machine learning techniques, is
typical of F#’s growing number of fans:

The first application was parsing 110GB of log data spread over 11,000 text files in over 300 directories
and importing it into a SQL database. The whole application is 90 lines long (including comments!)
and finished the task of parsing the source files and importing the data in under 18 hours; that works
out to a staggering 10,000 log lines processed per second! Note that I have not optimized the code at all
but written the application in the most obvious way. I was truly astonished as I had planned at least a
week of work for both coding and running the application.

The second application was an analysis of millions of feedbacks. We had developed the model
equations and I literally just typed them in as an F# program; together with the reading-data-from-
SQL-database and writing-results-to-MATLAB-data-file the F# source code is 100 lines long (including
comments). Again, I was astonished by the running time; the whole processing of the millions of data
items takes 10 minutes on a standard desktop machine. My C# reference application (from some
earlier tasks) is almost 1,000 lines long and is no faster. The whole job from developing the model
equations to having first real world data results took 2 days.

Ralf Herbrich, Microsoft Research
(http://blogs.msdn.com/dsyme/archive/2006/04/01/566301.aspx)

F# usage outside Microsoft is also rapidly growing. I asked Chris Barwick, who runs hubFS
(http://cs.hubFS.net), a popular web site dedicated to F#, about why F# was now his language of
choice, and he said the following:

T've been in scientific and mathematics computing for more than 14 years. During that time, I have
waited and hoped for a platform that would be robust in every manner. That platform has to provide

CHAPTER 1 INTRODUCTION

effective tools that allow for the easy construction and usage of collateral and that makes a scientific
computing environment effective. .NET represents a platform where IL gives rise to consistency across
products. F# is the language that provides for competent scientific and mathematical computing on
that platform. With these tools and other server products, I have a wide range of options with which to
build complex systems at a very low cost of development and with very low ongoing costs to operate
and to improve. F# is the cornerstone needed for advanced scientific computing.

Chris Barwick, JJB Research (private e-mail)

Finally, I talked to Chance Coble, a software architect, about what F# bought to his work.

F# has made its case to me over and over again. The first project I decided to try F# on was a machine
vision endeavor, which would identify and extract fingerprints from submitted fingerprint cards and
load them into a biometrics system. The project plan was to perform the fingerprint extraction
manually, which was growing cumbersome, and the automation turned out to be a huge win (with
very little code). Later we decided to include that F# work in a larger application that had been written
in C#, and accomplished the integration with ease. Since then I have used F# in projects for machine
learning, domain specific language design, 3D visualizations, symbolic analysis, and anywhere
performance intensive data processing has been required. The ability to easily integrate functional
modules into existing production scale applications makes F# not only fun to work with, but an
important addition for project leads. Unifying functional programming with a mature and rich
platform like .NET has opened up a great deal of opportunity.

Chance Coble, Chief Architect, Blacklight Solutions, LLC (private email)

Who Is This Book For?

This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A working
knowledge of the .NET Framework and some knowledge of either C# or Visual Basic would be nice, but
it’s not necessary. All you really need is some experience programming in any language to be
comfortable learning F#.

Even complete beginners who've never programmed before and are learning F# as their first
computer language should find this book very readable. Though it doesn’t attempt to teach introductory
programming per se, it does carefully present all the important details of F#.

What’s Next?

This book teaches F#, by example, as a compiled language rather than a scripting language. By this I
mean most examples are designed to be compiled with the fsc.exe compiler, either in Visual Studio or
on a command line, rather than executed interactively with fsi.exe, the F# interactive environment. In
reality, most examples will run fine either way.

Chapter 2 gives you just enough knowledge about setting up an F# development environment to get
you going.

Chapters 3, 4, 5, and 6 cover the core F# syntax. I deliberately keep the code simple, because this will
give you a better introduction to how the syntax works.

Chapter 7 looks at the core libraries distributed with F# to introduce you to their flavor and power,
rather than to describe each function in detail. The F# online documentation (http://msdn.microsoft.
com/fsharp) is the place to get the details.

CHAPTER 1 INTRODUCTION

Then you'll dive into how to use F# for the bread-and-butter problems of the working programmer.
Chapter 8 covers user interface programming, Chapter 9 covers data access, Chapter 10 covers
concurrency and parallelism, and Chapter 11 covers how applications can take advantage of a network.

The final chapters take you through the topics you really need to know to master F#. Chapter 12
looks at support for creating little languages or domain-specific languages (DSLs), a powerful and very
common programming pattern in F#. Chapter 13 covers parsing text, with an emphasis on using this as a
front end for DSLs. Finally, Chapter 14 explores advanced interoperation issues.

CHAPTER 2

How to Obtain, Install,
and Use F#

This chapter is designed to get you up and running with F# as quickly as possible. You'll look at how to
obtain F#, how to install it on both Windows and Linux, and how to use the compiler in various ways. I'll
also discuss what version of software was used to test the examples in this book.

Obtaining F#

F#is now included in Visual Studio 2010 by default, so if you have this installed on your machine you
may already have F# installed. If you have Visual Studio 2010 installed but you can’t see F#, then you
need to ensure that you installed the package. This can be done through the Add/Remove Programs or
Programs section of the control panel (see Figure 2-1).

If you're not a Visual Studio user or would prefer to use Visual Studio 2008 rather than 2010, then
you'll have to download the F# distribution separately. The best place to look for all F#-related
information is the MSDN F# resource center at http://msdn.microsoft.com /fsharp/. Alink to the
compiler distribution is included in the top, left-hand corner of the F# resource center page. There are
two versions—an MSI version, which will automatically install F# Visual Studio integration if Visual
Studio is installed, and a ZIP version of the distribution, which is primarily targeted at non-Windows
users. The package includes the compiler fsc.exe, as well as fsi.exe (the F# interactive console), some
F#-based parsing tools, the F# base class libraries, the F# documentation, and some F# samples.

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

_! Microsoft Visual Studio Team Suite 2010 Beta 2 Setup - Options Page = @

Microsoft®

Visual Studio Team System 2010 Maintenérice Mode

Select features to install: Feature description:
=[] Microsoft Visual Studio Team Suite 2010 Be -
= : Visual F#
V= . ; :
ji\ﬁsud Basic Visual F# is an exciting new language for the .NET
[+- M3 Visual C++ Framework. F# combines the succinctness, expressivity and
MED Visual CH compositionality of typed functional programming with the
TS runtime support, libraries, interoperability, tools and object =l
Q model of the .NET Framework. This combination enables
V& Visual Web Developer developers to easily solve problems that range from
V&3 Team Explorer traditional web and windows applications to more demanding

I3 Team Devel and Tester Tools technical and high-performance computing uses.

3

V=3 Graphics Library
Feature install path:
Disk space requirements:
Volume Disk Size Available Required Remaining
(% 126.9GB 115.1GB 595 MB 1145GB
< m »
[Restore Defaults ‘ Previous Update | ‘ Cancel

Figure 2-1. Enabling F# in Visual Studio 2010

Installing F# on Windows with Visual Studio 2008

This section is for people using an older version of Visual Studio. (As noted, Visual Studio 2010 users will
already have F# installed.) Installing F# on Windows with Visual Studio 2008 is straightforward. You need
to be running an account with system administrator privileges, then download the MSI version as
described in the previous section, and execute it.

Please note that at the time of this writing the free Express Editions of Visual Studio do not support
plug-ins, so you cannot use F# integration with them. However, you can install F#’s plug-in on top of the
free Visual Studio 2008 Shell. See the MSDN Visual Studio Extensibility center for more details on Visual
Studio 2008 Shell at http://msdn.microsoft.com/vsx2008/.

Installing F# on Linux

If you are unfamiliar with Linux and would like to try Mono, the simplest way is to download the SUSE
Linux virtual machine (VM) image available on the Mono web site at http://www.go-mono.com/mono-
downloads.

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

Note Mono is a free, open-source, multi-platform implementation of the Common Language Runtime (CLR),
which is compliant with the ECMA specifications of the Common Language Infrastructure (CLI) and compatible with
Microsoft .NET. It is implemented by Novell with the aid of a number of community volunteers.

This VM image comes with the latest Mono runtime and development tools preinstalled, so there’s
no need to worry about setting up any of these. But the image does not currently include the F#
compiler, so you will need to install it using the following instructions. I performed all of these steps as
the root account.

* Still in the /usr/1ib/fsharp directory, run the command sh install-mono.sh.

* Unpack the F# distribution and copy the resulting files to /usr/1ib/fsharp.

* Inthe /usr/1lib/fsharp directory, run chmod +x install-mono.sh.

* Run the dos2unix tool on the text file install-mono.sh.

* Stillin the /usr/1ib/fsharp directory, run the command sh install-mono.sh.

After performing those steps, I was able to use F# from the command line of any account by running

mono/usr/lib/fsharp/bin/fsc.exe, followed by the command-line options. Obviously, this was
inconvenient to run every time, so I created a shell script file in /usr/bin and as fsc.

#!1/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsc.exe "$@"

I then ran chmod +x fscto give users permission to execute it. After this, running the F# compiler
was as simple as typing fsc at the command line. The F# interactive compiler, fsi.exe, the shell script
for this is as follows:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsi.exe --no-gui "$@"

Figure 2-2 shows F# interactive running under Mono and Linux.

10

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

rupert@linux:...FSharp-1.9.6.2/bin PR = [
Fle Edit View Terminal Tabs Help
rupert@linux: /usr/lib/fsharp/FSharp-1.9.6.2/bin> mono fsi.exe

Microsoft F# Interactive, (c) Microsoft Corporation, All Rights Reserved
F# Version 1.9.6.2, compiling for .NET Framework Version v2.0.50727

Please send bug reports to fsbugs@microsoft.com
For help type #help;;

> open System.Windows.Forms;;
> let form = new Form();;

val form : Form
> form.Text <- "Hello world";;

val 1t : unit = ()
> let label = new Label(Text = "F# running on Mono")

F# running on

val label : Label

> form.Controls.Add(label);;
val 1t : unit = ()

> form.show();;

val 1t : unit = ()

>

Figure 2-2. F# interactive running under Mono and Linux

Using F# in Different Ways

F# programs are just text files, so you can use any text editor to create them. Just save your program with
the extension .fs, and use fsc.exe to compile them. For example, if you had the following program in
the text file helloworld. fs:

printfn "Hello World"

you could just run fsc.exe helloworld.fs to compile your program into helloworld.exe, which would
output the following to the console:

Hello World

Visual Studio

In my opinion, the easiest and quickest way to develop F# programs is in Visual Studio in conjunction
with the F# interactive compiler (see Figure 2-3). You can type F# programs into the text editor, taking
advantage of syntax highlighting and IntelliSense code completion; compile them into executables; and
debug them interactively by setting breakpoints and pressing F5. Also, you can execute parts of your
code interactively using F# interactive. Just highlight the code you want to execute and press Alt+Enter;
F# interactive will execute the code and show the results. This is great for testing snippets individually.

CHAPTER 2 HOW TO OBTAIN, INSTALL, AND USE F#

) ConsoleApplication2 - Microsoft Visual Studio ==l |
File Edit View Project Build Debug Data Tools Architecture Test Analyze Window Help
o S| € A9 -0 - pavgsteromvard | B [Debug (86 || Findin Fies | -] Solution Explorer 5 3 4

DR R =2 08034383 <

Ml Program.fs X
Properties printfn "Hello world"
[5] Solution 'ConsoleApplication2'
4 (7 ConsoleApplication2

=3 References

%] Program.fs

3 App.config

T

let xys = seq { for x in1 .. 10 > x, x * x }

X09]00] . 1210]dKg ARG

"

&9 Solut... [R

B2 Class..

Properties - 1 x

F# Interactive
For help type #help;;

>
tello world

val xys : seqeint * int>

>
val it : seq¢int * int> = seq [(1, 1); (2, 4); (3, 9); (4, 16); ...]
>

Figure 2-3. Visual Studio 2010 hosting F# interactive

SharpDevelop

SharpDevelop is an open-source IDE with F# bindings that can be used for .NET and Mono
development. The F# bindings are packaged with SharpDevelop, so to use them all you need to do is
ensure that F# is installed then install SharpDevelop. After that it’s just a matter of creating a new F#
project and off you go. The F# bindings for SharpDevelop do not offer as much functionality as Visual
Studio does—only syntax highlighting and F# interactive are available. However, the development
environment is still very useable, and the bindings are open source. So if you wish to extend them, you
can help out with the project. Figure 2-4 shows SharpDevelop with an F# project open.

11

12

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

?_S_a} drawingTrees - SharpDevelop o || @3 =

File Edit View Project Build Debug Search Analysis Tools Window Help

| & 3@ FE) M p 0 Default layout M 0858 2
Projects 1x “samples.fs l v X || Properties ax
2 2 I -
&l j = open System » —a
=1 {74 Solution drawing Tree open System.Drawing @'/.l
=) ity drawingTrees open System.Windows.Forms =8 Mise
tl-Z8 References Buid ac Compile
% 4
_%san.ples,fs The tree type Copyto Never
type Custom
| Node of p a Tree
| Leaf of
The definition of the tee
let tree =
Node(
Node (
Leaf "one",
Node(Leaf "two", Leaf "three")),
Neda ! A
7 " »
Source | History
Errors ax
I s [\ 1W s ||| ssages
0 0 Exros | 1 Warmings || Q9 O Messages Buid action
! Line Description File Path f'l;he buid action of that
4 n » 4 1 » | =
‘\—_:]Pro_]ects i\& ‘A&Ervors | =] Output || Task List |E] Definition View |3 Prop... ifﬂ Clas
Done Inl coll chl INS

Figure 2-4. SharpDevelop with an F# project open

F# Interactive Command-Line

If you prefer, you can type your programs into the F# interactive console directly when it’s running in
stand-alone mode, as shown in Figure 2-5.

% | C:\Program Files\FSharp-1.9.6.16\bin\fsi.exe =N R —~=

Microsoft F#f Interactive, (c) Microsoft Corporation, All Rights Reserved
Fi#f Uersion 1.9.6.16, compiling for .NET Framework Uersion v2.0.58727

Please send bug reports to fshugsCmicrosoft.com
[For help type #help;;

> System.Environment.Uersion;;

val it : System.Uersion = 2.0.50727.4927 {Build = 50727;
Major = 23
MajorRevision =
Minor = 03
MinorRevision =
Revision = 4927;

a
492%s;
>

Figure 2-5. The F# interactive console running in stand-alone mode

CHAPTER 2 © HOW TO OBTAIN, INSTALL, AND USE F#

When you use the interactive console, you type the code you want. When you've completed a
section, you use two semicolons (; ;) to indicate that the compiler should compile and run it.

F# interactive responds to commands in two ways: If you bind a value to an identifier, it prints the
name of the identifier and its type. So, typing the following into F# interactive:

>let i =1+ 2;;

gives the following:
val i : int

However, if you just type a value into F# interactive, it will respond slightly differently. Typing the
following into F# interactive:

> 1+ 2;;

gives the following:
val it : int = 3

This means the value has been bound to a special identifier called it that is available to other code
within the F# interactive session. When any expression is evaluated at the top level, its value is also
printed after the equal sign (note the 3 in the previous example). As you get to know fsi.exe and F# in
general, using F# interactive will become more and more useful for debugging programs and finding out
how they work. (I discuss values, identifiers, and types in more detail in Chapter 3.)

You can get code completions by pressing Tab. I find this mode of working useful in testing short
programs by copying and pasting them into the console or for checking properties on existing libraries.
For example, in Figure 2-2 I checked the System.Environment.Version property. However, I find this
mode inconvenient for creating longer programs since it’s difficult to store the programs once they're
coded; they have to be copied and pasted from the console. Using Visual Studio, even if you don’t intend
to just run them interactively, you can still easily execute snippets with Alt+Enter.

The Examples in This Book

The code in this book will focus on using fsc.exe rather than fsi.exe. Although fsi.exe is great for
testing code, running simple scripts, and running experiments, I believe fsc.exe is more useful for
producing finished software. Since there’s little difference between the syntax and the commands, most
examples will work with little or no adaptation in fsi.exe, and I'll warn you when any changes are
necessary.

The samples can be downloaded from http://bfs.codeplex.com/. All the samples in this book were
tested using .NET 4.0 running on Windows 7. A subset has also been tested running under Mono 2.4.2.3
on Linux.

13

