


P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

ii



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

BUILDING SOFTWARE
FOR SIMULATION

i



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

ii



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

BUILDING SOFTWARE
FOR SIMULATION
Theory and Algorithms,
with Applications in C++

JAMES J. NUTARO
Oak Ridge National Laboratory

A JOHN WILEY & SONS, INC., PUBLICATION

iii



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

Copyright C© 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, john Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Nutaro, James J.
Building software for simulation: theory and algorithms with applications in C++ / James J. Nutaro

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-41469-9 (cloth)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

iv

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

CONTENTS

PREFACE ix

1 INTRODUCTION 1

1.1 Elements of a Software Architecture / 2

1.2 Systems Concepts as an Architectural Foundation / 4

1.3 Summary / 5

1.4 Organization of the Book / 6

2 FIRST EXAMPLE: SIMULATING A ROBOTIC TANK 7

2.1 Functional Modeling / 8

2.2 A Robotic Tank / 9

2.2.1 Equations of Motion / 11

2.2.2 Motors, Gearbox, and Tracks / 13

2.2.3 Complete Model of the Tank’s Continuous Dynamics / 17

2.2.4 The Computer / 18

2.2.5 Complete Model of the Tank / 22

2.3 Design of the Tank Simulator / 23

2.4 Experiments / 25

2.5 Summary / 30

3 DISCRETE-TIME SYSTEMS 32

3.1 Atomic Models / 33

v



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

vi CONTENTS

3.1.1 Trajectories / 33

3.1.2 The State Transition and Output Function / 35

3.1.3 Two Examples of Atomic, Discrete-Time Models / 39

3.1.4 Systems with Bags for Input and Output / 42

3.1.5 A Simulator for Atomic Models / 42

3.2 Network Models / 53

3.2.1 The Parts of a Network Model / 54

3.2.2 The Resultant of a Network Model / 55

3.2.3 An Example of a Network Model and Its Resultant / 56

3.2.4 Simulating the Resultant / 61

3.3 A Simulator for Discrete-Time Systems / 77

3.4 Mealy/Moore-Type Systems / 89

3.5 Cellular Automata / 91

3.6 Summary / 98

4 DISCRETE-EVENT SYSTEMS 100

4.1 Atomic Models / 101

4.1.1 Time and Trajectories / 101

4.1.2 The State Transition Function / 103

4.1.3 The Output Function / 105

4.1.4 Legitimate Systems / 106

4.1.5 An Example of an Atomic Model / 107

4.1.6 The Interrupt Handler in the Robotic Tank / 110

4.1.7 Systems with Bags for Input and Output / 114

4.1.8 A Simulator for Atomic Models / 114

4.1.9 Simulating the Interrupt Handler / 118

4.2 Network Models / 125

4.2.1 The Parts of a Network Model / 125

4.2.2 The Resultant of a Network Model / 126

4.2.3 An Example of a Network Model and Its Resultant / 128

4.2.4 Simulating the Resultant / 132

4.3 A Simulator for Discrete-Event Systems / 143

4.3.1 The Event Schedule / 144

4.3.2 The Bag / 153

4.3.3 The Simulation Engine / 157

4.4 The Computer in the Tank / 170

4.5 Cellular Automata Revisited / 176

4.6 Summary / 180



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

CONTENTS vii

5 HYBRID SYSTEMS 182

5.1 An Elementary Hybrid System / 185

5.2 Networks of Continuous Systems / 186

5.3 Hybrid Models as Discrete-Event Systems / 187

5.4 Numerical Simulation of Hybrid Systems / 190

5.5 A Simulator for Hybrid Systems / 198

5.6 Interactive Simulation of the Robotic Tank / 211

5.6.1 Correcting the Dynamics of a Turn / 211

5.6.2 A Simplified Model of the Motor / 213

5.6.3 Updating the Display / 218

5.6.4 Implementing the Tank Physics / 219

5.7 Approximating Continuous Interaction Between Hybrid Models / 225

5.8 A Final Comment on Cellular Automata / 229

5.8.1 Differential Automata with Constant Derivatives / 229

5.8.2 Modeling Asynchronous Cellular Automata with
Differential Automata / 230

5.8.3 A Homomorphism from Differential Automata to
Asynchronous Cellular Automata / 232

5.9 Summary / 236

6 APPLICATIONS 237

6.1 Control Through a Packet-Switched Network / 237

6.1.1 Model of the Pendulum and Its PID Controller / 238

6.1.2 Integration with an Ethernet Simulator / 244

6.1.3 Experiments / 249

6.2 Frequency Regulation in an Electrical Power System / 255

6.2.1 Generation / 257

6.2.2 Transmission Network and Electrical Loads / 259

6.2.3 Frequency Monitoring and Load Actuation / 260

6.2.4 Software Implementation / 261

6.2.5 Experiments / 262

6.3 Summary / 269

7 THE FUTURE 271

7.1 Simulation Programming Languages / 271

7.2 Parallel Computing and Discrete-Event Simulation / 273

7.3 The Many Forms of Discrete Systems and Their Simulators / 276

7.4 Other Facets of Modeling and Simulation / 277



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

viii CONTENTS

APPENDIX A DESIGN AND TEST OF SIMULATIONS 279

A.1 Decomposing a Model / 280

A.1.1 Bottom-Up Testing / 280

A.1.2 Invariants and Assertions / 281

A.2 Input and Output Objects / 281

A.2.1 Simple Structures / 282

A.2.2 Unions / 282

A.2.3 Pointers and Hierarchies of Events / 284

A.2.4 Mixing Strategies with Model Wrappers / 286

A.3 Reducing Execution Time / 291

APPENDIX B PARALLEL DISCRETE EVENT SIMULATION 296

B.1 A Conservative Algorithm / 298

B.1.1 Lookahead / 300

B.1.2 The Algorithm / 303

B.2 Implementing the Algorithm with OpenMP / 304

B.2.1 Pragmas, Volatiles, and Locks / 304

B.2.2 Overview of the Simulator / 308

B.2.3 The LogicalProcess / 309

B.2.4 The MessageQ / 318

B.2.5 The ParSimulator / 321

B.3 Demonstration of Gustafson’s and Amdahl’s Laws / 325

APPENDIX C MATHEMATICAL TOPICS 331

C.1 System Homomorphisms / 331

C.2 Sinusoidal State-Steady Analysis / 333

REFERENCES 335

INDEX 345



P1: OSO
fm JWBS040-Nutaro August 30, 2010 14:35 Printer Name: Yet to Come

PREFACE

Building Software for Simulation is different from many other books on simulation
because its focuses on the design and implementation of simulation software; by
culminating in a complete system for simulation, this book makes itself unique.
The design and construction of simulation software has been a topic persistently
absent from textbooks even though many, if not most, simulation projects require the
development of new software. By addressing this important topic, Building Software
for Simulation will, I hope, complement other excellent textbooks on modeling and
simulation. This book is intended as both an introduction to simulation programming
and a reference for experienced practitioners. I hope you will find it useful in these
respects.

This book approaches simulation from the perspective of Zeigler’s theory of mod-
eling and simulation, introducing the theory’s fundamental concepts and showing
how to apply these to problems in engineering. The original concept of the book
was not so ambitious; its early stages more closely resembled a cookbook for build-
ing simulators, focusing almost exclusively on algorithms, examples of simulation
programs, and guidelines for the object-oriented design of a simulator. The book
retains much of this flavor, demonstrating each concept and algorithm with working
code. Unlike a cookbook, however, concepts and algorithms discussed in the text are
not disembodied; their origins in the theory of modeling and simulation are made
apparent, and this motivates and provides greater insight into their application.

Chapters 3, 4, and 5, are the centerpiece of the text. I begin with discrete-time sys-
tems, their properties and structure, simulation algorithms, and applications. Discrete-
time system will be familiar to most readers and if not, they are easily grasped.
Discrete-time systems are generalized to introduce discrete event systems; this ap-
proach leads naturally to Zeigler’s discrete-event system specification, its properties

ix
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x PREFACE

and structures, and simulation procedures. The central three chapters conclude with
methods for modeling and simulating systems that have interacting continuous and
discrete-event dynamics.

The three main chapters are bracketed by applications to robotics, control and
communications, and electrical power systems. These examples are more complicated
than might be expected in a textbook; three examples occupy two complete chapters.
They are, however, described in sufficient detail for a student to reproduce the printed
results and to go a step further by exploring unanswered questions about the example
systems. The book’s appendixes discuss technical problems that do not fit cleanly
into the narrative of the manuscript: testing and design, parallel computing, and a
brief review of mathematical topics needed for the examples.

Many people contributed advice and guidance as the book evolved. I am partic-
ularly grateful to Vladimir Protopopescu at Oak Ridge National Laboratory for his
review of and critical commentary on my rough drafts; his advice had a profound
impact on the organization of the text and my presentation of much of the material.
I’m also grateful to Angela, who reviewed very early drafts and remarked only rarely
on the state of the yard and unfinished projects around the house. Last, but not least,
thanks to Joe and Jake, who, in the early morning hours while I worked, quietly (for
the most part) entertained themselves.

Jim Nutaro

Oak Ridge, Tennessee
December 2009
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CHAPTER 1

INTRODUCTION

Simulation has made possible systems that would otherwise be impracticable. The
sophisticated controls in modern aircraft and automobiles, the powerful microproces-
sors in desktop computers, and space-faring robots are possible because simulations
reduce substantially the need for expensive prototypes. These complicated systems
are designed with the aid of sophisticated simulators, and the simulation software
itself has therefore become a major part of most engineering efforts. A project’s
success may hinge on the construction of affordable, reliable simulators.

Good software engineering practices and a serviceable software architecture are
essential to building software for any purpose, and simulators are no exception. The
cost of a simulator is determined less by the technical intricacy of its subject than
by factors common to all software: the clarity and completeness of requirements,
the design and development processes that control complexity, effective testing and
maintenance, and the ability to adapt to changing needs. Small software projects that
lack any of these attributes are expensive at best, and the absence of some or all of
these points is endemic to projects that fail.1

It is nonetheless common for the design of a complicated simulator to be driven
almost exclusively by consideration of the objects being simulated. The project
begins with a problem that is carefully circumscribed: for example, to calculate the
time-varying voltages and currents in a circuit, to estimate the in-process storage
requirements of a manufacturing facility, or to determine the rate at which a disease

1Charette’s article on why software fails [22] gives an excellent and readable account of spectacular
software failures, and Brooks’ The Mythical Man Month [14] is as relevant today as its was in the 1970s.

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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will spread through a population. Equipped with an appropriate set of algorithms,
the scientist or engineer crafts a program to answer the question at hand. The end
result has three facets: the model, an algorithm for computing its trajectories, and
some means for getting data into and out of the simulator. The first of these are the
reason why the simulator is being built. The other two, however, often constitute the
majority of the code. Because they are secondary interests, their scope and size are
reduced by specialization; peculiarities of the model are exploited as the simulator is
built, and so its three aspects become inextricably linked.

If the model is so fundamental as to merit its exact application to a large number of
similar systems, then this approach to simulation can be very successful.2 More likely,
however, is that a simulator will be replaced if it does not evolve in step with the system
it mimics. A successful simulator can persist for the lifetime of its subject, changing
to meet new requirements, to accommodate new data and methods of solution, and to
reflect modifications to the system itself. Indeed, the lifetime cost of the simulator is
determined primarily by the cost of its evolution. A simulation program built solely
for its immediate purpose, with no thought to future uses and objectives, is unlikely
to flourish. Its integrated aspects are costly to reengineer and replacement, probably
after great expense, is almost certain when new requirements exceed the limits of an
architecture narrowly conceived. Conversely, a robust software architecture facilitates
good engineering practices and this, in turn, ensures a long period of useful service
for the software, while at the same time reducing its lifetime cost.

1.1 ELEMENTS OF A SOFTWARE ARCHITECTURE

Four elements are common to nearly all simulation frameworks meant for general
use: a concept of a dynamic system, software constructs with which to build models,
a simulation engine to calculate a model’s dynamic trajectories, and a means for
control and observation of the simulation as it progresses. The concept a dynamic
system on which the framework grows has a profound influence on its final form, on
the experience of the end user, and on its suitability for expansion and reuse.

Monolithic modeling concepts, which were employed in the earliest simulation
tools, rapidly gave way to modular ones for two reasons: (1) the workings of a
large system can not be conceived as a whole. Complex operations must be broken
down into manageable pieces, dealt with one at a time, and then combined to obtain
the desired behavior; and (2) to reuse a model or part of a model requires that it
and its components be coherent and self-contained. The near-universal adoption by
commercial and academic simulation tools of modular modeling concepts, and the
simultaneous growth of model libraries for these tools, demonstrates the fundamental
importance of this idea.

2Arrillaga and Watson’s Computer Modelling of Electrical Power Systems [6] provides an excellent
example of how and where this approach can succeed. In that text, the authors build an entire simulation
program, based on the principles of structured design, to solve problems that are relevant to nearly all
electrical power systems.
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The simulation engine produces dynamic behavior from an assemblage of com-
ponents. Conceptually, at least, this is straightforward. A simulator for continuous
systems approximates the solution to a set of differential equations, the choice of
integration method depending on qualitative features of the system’s trajectories and
requirements for accuracy and precision. A discrete-event simulation executes events
scheduled by its components in the order of their event times. Putting aside the de-
tails of the event scheduling algorithm and procedure for numerical integration, these
approaches to simulation are quite intuitive and any two, reasonably constructed sim-
ulators provided with identical models will yield essentially indistinguishable results.

In models with discrete events—the opening and closing of switches, departure
and arrival of a data packet, or failure and repair of a machine—simultaneous oc-
currences are often responsible for simulators that, given otherwise identical models,
produce incompatible results (see, e.g., Ref. 12). This problem has two facets: intent
and computational precision. The first is a modeling problem: what is the intended
consequence of distinct, discrete occurrences that act simultaneously on a model?
By selecting a particular solution to this problem, the simulation tool completes
its definition of a dynamic system. This seemingly obscure problem is therefore of
fundamental importance and, consequently, a topic of substantial research (a good
summary can be found in Wieland [146] and Raczynski [113]). Simultaneous in-
teractions are unavoidable in large, modular models, and the clarity with which a
modeler sees their implications has a profound effect on the cost of developing and
maintaining a simulator.

The issue of how simultaneous events are applied is distinct from the problem
of deciding whether two events occur at the same time. Discrete-event systems
measure time with real numbers, and so the model itself is unambiguous about
simultaneous occurrences; events are concurrent when their scheduled times are
equal. The computer, however, approximates the real numbers with a large, but still
finite, set of values. Add to this the problem of rounding errors in floating-point
arithmetic, and it becomes easy to construct a model that, in fact, does not generate
simultaneous events, but the computer nonetheless insists that it does. The analysis
problems created by this effect and the related issue of what to do with simultaneous
actions (real or otherwise) are widely discussed in the simulation literature (again,
see the article by Wieland [146] and the text by Raczynski [113]; see also Refs. 10,
107, and 130).

The concept of a dynamic system and its presentation as object classes and inter-
faces to the modeler are of fundamental importance. Effort expended to make these
clear, consistent, and precise is rewarded in proportion to the complexity and size of
the models constructed. In very small models the benefit of organization is difficult
to perceive for the same reasons that structure seems unimportant when experience
is confined to 100-line computer programs. For large, complicated models, how-
ever, adherence to a well-conceived structure is requisite to a successful outcome;
organizing principles are important for the model’s construction and its later reuse.

The modeling constructs acted on by the simulation engine are reflected in the
interface it presents to the outside world. Large simulation projects rarely exist in
isolation. More often, the object under study is part of a bigger system, and when the
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simulator satisfies its initial purpose, this success creates a desire to reuse it in the
larger context. Simulators for design can, for example, find their way into training
and testing equipment, component-based simulations of a finished system, and even
into the operational software of the machine that it models.

Looking beyond the very difficult problems of model validation and reuse (see,
e.g., Ref. 32), issues common to the reuse of software in general can prevent an
otherwise appropriate simulator from being adapted to a new context. The means for
control and observation of a simulation run, and in particular the facilities for control
of the simulation clock, for extracting the values of state variables, for receiving
notification of important events, and for injecting externally derived inputs are of
prime importance. The cost of retrofitting a simulator with these capabilities can be
quite high, but they are invariably needed to integrate with a larger application.

1.2 SYSTEMS CONCEPTS AS AN ARCHITECTURAL FOUNDATION

Systems theory, as it is developed by various authors such as Ashby [7], Zeigler et al.
[157], Mesarovic and Takahara [86], Wymore [149, 150], and Klir [68], presents
a precise characterization of a dynamic system, two aspects of which are the con-
ceptual foundation of our simulation framework. First is the state transition model
of a dynamic system, particularly its features that link discrete-time, discrete-event,
and continuous systems. Of specific interest is that discrete-time simulation, often
described as a counterpart to discrete event simulation, becomes a special case of
the state transition model. This fact is readily established by appeal to the underly-
ing theory.

Second is the uniform notion of a network of systems, whereby the components
are state transition models and the rules for their interconnection are otherwise
invariant with their dynamics. This permits models containing discrete and continuous
components to be constructed within a single conceptual framework. The consistent
concept of a dynamic system—unvarying for components and networks, for models
continuous and discrete—is also reflected in the facilities provided by the simulation
engine for its control and observation. The conceptual framework is thereby extended
to reuse of the entire simulator, allowing it to serve as a component in other simulation
tools and software systems.

The small number of fundamental concepts that must be grasped, and the very
broad reach of those same concepts, makes the simulation framework useful for a
tremendous range of applications. It can also be used as an integrating framework
for existing simulation models and as a tool for expanding the capabilities of a
simulation package already in hand. Moreover, a simulation framework grounded in
a broad mathematical theory can reveal fundamental relationships between simulation
models and other representations of dynamic systems; the close relationship between
hybrid automata, which appear frequently in the modern literature on control, and
discrete-event systems is a pertinent example.

The approach taken here is not exclusive, nor is it unrelated to the established
worldviews for discrete event simulation. For instance, Cota and Sargent’s process
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interaction worldview [29, 125] incorporates key elements of Zeigler’s discrete-
event system specification [152], from which the simulation framework in this book
is derived. The activity-scanning worldview is apparent in models containing discrete
events that are contingent on continuous variables reaching specific values. Discrete-
event models constructed with any of the classic views can be components in a large
model, and conversely models described within our framework can be components
in other simulations. This capacity for composing a complex model from pieces in a
variety of forms is, perhaps, the most attractive part of this book’s approach.

1.3 SUMMARY

The modeling and simulation concepts developed in this book are illustrated with
Unified Modeling Language (UML) diagrams and code examples complete enough
to very nearly constitute a finished simulation engine; a finished product in C++
can be obtained by downloading the adevs software at http://freshmeat.net/
projects/adevs. Implementing these simulation concepts in other programming
languages is not unduly difficult.3

If this specific framework is not adopted, its major elements can still be usefully
adapted to other simulation packages. The approach, described in Chapter 5, to con-
tinuous components can be used to build a hybrid simulator from any discrete-event
simulator that embodies a modular concept of a system. Continuous system simula-
tion tools can likewise make use of the separation of discrete-event and continuous
components to integrate complex discrete-event models into an existing framework
for continuous system modeling.

A programmer’s interface to the simulation engine, by which the advance of time
is controlled and the model’s components are accessed and influenced, should be a
feature of all simulation tools. Its value is attested to by a very large body of literature
on simulation interoperability, and by the growing number of commercial simulation
packages that provide such an interface. The interface demonstrated in this text can
be easily adapted for a new simulator design or to an existing simulation tool.

Taken in its entirety, however, the proposed approach offers a coherent worldview
encompassing discrete time, discrete event, and continuous systems. Two specific
benefits of this worldview are its strict inclusion of the class of discrete-time systems
within the class of discrete-event systems and the uniformity of its coupling concept,
which allows networks to be built independent of the inner workings of their com-
ponents. This unified world view, however, offers a more important, but less easily
quantified, advantage to the modeler and software engineer. The small set of very
expressive modeling constructs, the natural and uniform handling of simultaneity,
and the resulting simplicity with which large models are built can greatly reduce the
cost of simulating a complex system.

3Implementations in other programming languages can be found with a search for discrete-event (system)
simulation (DEVS) and simulation on the World Wide Web.

http://freshmeat.net/projects/adevs
http://freshmeat.net/projects/adevs
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1.4 ORGANIZATION OF THE BOOK

Chapter 2 motivates major aspects of the software design, the inclusion of specific
numerical and discrete simulation methods, and other technical topics appearing in
the subsequent chapters. The robotic tank developed in Chapter 2 has three important
facets: (1) it is modeled by interacting discrete-event and continuous subsystems, (2)
the parts are experimented with individually and collectively, and (3) its simulator is
used both interactively and for batch runs.

Chapter 3 introduces state transition systems, networks of state transition systems,
and builds from these concepts the core of a simulation engine. This is done in the
simple, almost trivial, context of discrete-time systems, where fundamental concepts
are most easily grasped and applied. The software is demonstrated with a simulator
for cellular automata.

Chapter 4 builds on this foundation, introducing discrete-event systems as a gen-
eralization of discrete-time systems. Using these new concepts, the simulation engine
is expanded and then demonstrated with a simulator for the computer that controls
the robotic tank introduced in Chapter 2. Chapter 4 also revisits the cellular automata
from Chapter 3 to show that they are a special case of asynchronous cellular automata,
which are conveniently described as discrete-event systems.

Chapter 5 completes the simulation framework by introducing continuous systems.
Numerical techniques for locating state events, scheduling time events, and solving
differential equations are used to construct a special class of systems having internal
dynamics that are continuous, but that produce and consume event trajectories and so
are readily incorporated into a discrete-event model. The simulation framework from
Chapter 4 is expanded to include these new models, and the whole is demonstrated
with a complete simulator for the robotic tank. The cellular automata are again
revisited, and it is shown that the asynchronous cellular automata of Chapter 4 are,
in fact, a special case of differential automata, which have attracted considerable
attention in recent years.

Chapter 6 has examples of engineering problems that exemplify different aspects
of the simulation technology. The book concludes with a discussion of open problems
and directions for future research. The appendixes contain supplemental material on
the design and test of simulation models, the use of parallel computers for simulating
discrete-event systems, and a brief introduction to system homomorphisms as they
are used in the running discussion of cellular automata.
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CHAPTER 2

FIRST EXAMPLE: SIMULATING A
ROBOTIC TANK

This example serves two purposes. First, it illustrates how hybrid dynamics can
appear in engineering problems. The model has three main parts: the equations of
motion, a model of the propulsion system, and a model of the computer. The first
two are piecewise continuous with discontinuities caused by step changes in the
motor voltage and the sticking friction of the rubber tracks. The third model is a
prototypical example of a discrete-event system; the tank’s computer is modeled with
an interruptible server and queue. The equations of motion, propulsion system, and
computer are combined to form a complete model of the tank.

Second, this example illustrates the basic elements of a software architecture for
large simulation programs. The simulation engine is responsible solely for calculating
the dynamic behavior of the model; other functions (visualization and interactive
controls, calculation of performance metrics, etc.) are delegated to other parts of the
software. This approach is based on two patterns or principles: model–view–control
and the experimental frame.

Model–view–control is a pattern widely used in the design of user interfaces (see,
e.g., Refs. 47 and 101); the simulation engine and model are treated as a dynamic
document and, with this perspective, the overarching design will probably be familiar
to most software engineers. The experimental frame (as described, e.g., by Daum and
Sargent [31])1 is a logical separation of the model from the components of the
program that provide it with input and observe its behavior. These principles simplify

1Be aware, however, of its broader interpretation [152, 157].

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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8 FIRST EXAMPLE: SIMULATING A ROBOTIC TANK

reuse; programs for two experiments illustrate how they are applied and the benefit
of doing so.

The entirety of this example need not be grasped at once, and its pieces will be
revisited as their foundations are established in later chapters. Its purpose here is
to be a specific example of how the simulation engine is used, and to motivate the
software architecture and algorithms that are discussed in the subsequent chapters of
this book.

2.1 FUNCTIONAL MODELING

Fishwick [42] defines a functional model as a thing that transforms input into output.
This view of a system is advantageous because it leads to a natural decomposition
of the simulation software into objects that implement precisely defined transfor-
mations. Distinct functions within the model are described by distinct functional
blocks which are connected to form a complete model of the system. The software
objects that implement the functional blocks are connected in the same way to build a
simulator.

There are numerous methods for designing models. Many of them are quite
general: bond graphs and state transition diagrams, for instance. Others are specific to
particular problems: the mesh current method for electric circuits and the Lagrangian
formulation of a rigid body. The majority of methods culminate in a state space model
of a system: a set of state variables and a description of their dynamic behavior.
Mathematical formulations of a state space model can take the form of, for example,
differential equations, difference equations, and finite-state machines.

To change a state space model into a functional model is simple in principle. The
state variables define the model’s internal state; state variables or functions of state
variables that can be seen from outside the system are the model’s output; variables
that are not state variables but are needed for the system to evolve become the
model’s input. In practice, this change requires judgment, experience, and a careful
consideration of sometimes subtle technical matters. It may be advantageous to split
a state space model into several interacting functional models, or to combine several
state space models into a single functional model. Some state space models can be
simplified to obtain a model that is easier to work with; simplification might be done
with precise mathematical transformations or by simply throwing out terms. The best
guides during this process are experience building simulation software, familiarity
with the system being studied, and a clear understanding of the model’s intended use.

Functional models and their interconnections are the specification for the simu-
lation software. For this purpose, there are two types of functional model: atomic
and network. An atomic model has state variables, a state transition function that
defines its internal response to input, and an output function that transforms internal
action into observable behavior. A network model is constructed from other func-
tional models, and the behavior of the network is defined by the collective behavior
of its interconnected components. The simulator is built from the bottom up by
implementing atomic models, connecting these to form network models, combining
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State
OutputInput
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System C
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FIGURE 2.1 Bottom–up construction of a model from functional pieces: (a) input, output,
and internal state of an atomic model; (b) a network model constructed from three atomic
models.

these network models to create larger components, and repeating until the software is
finished. This bottom–up approach to model construction is illustrated in Figure 2.1.

The simulation engine operates on software objects that implement atomic and
network models. To build a simulator therefore requires the parts of a dynamic system
to be expressed in this form. Functional models need not be built in a single step.
Atomic and network models are more easily obtained by a set of steps that start with
an appropriate modeling technique, proceed to a state space description of the model’s
fundamental dynamics, combine these to create more sophisticated components, and
end with a—possibly large—functional model that can be acted on by the simulation
engine.

2.2 A ROBOTIC TANK

The robotic tank is simple enough to permit a thorough discussion of its continuous
and discrete dynamics, but sufficiently complicated that it has features present in
larger, more practical systems. The robot’s operator controls it through a wireless
network, and the receipt, storage, and processing of packets is modeled by a discrete
event system. An onboard computer transforms the operator’s commands into control
signals for the motors. The motors and physical motion of the tank are modeled as a
continuous system. These components are combined to create a complete model of
the tank.

Our goal is to allocate the cycles of the tank’s onboard computer to two tasks:
physical control of the tank’s motors and processing commands from the tank’s
operator. The tank has four parts that are relevant to our objective: the radio that
receives commands from the operator, the computer and software that turn these



P1: OSO
c02 JWBS040-Nutaro August 26, 2010 13:35 Printer Name: Yet to Come

10 FIRST EXAMPLE: SIMULATING A ROBOTIC TANK

commands into control signals for the motors, the electric circuit that delivers power
to the motors, and the gearbox and tracks that propel the tank. The tank has two
tracks, left and right, each driven by its own brushless direct-current (DC) motor. A
gearbox connects each motor to the sprocket wheel of its track. The operator drives
the tank by setting the duty ratio of the voltage signal at the terminals of the motors.
The duty ratio are set using the control sticks on a gamepad and sent via a wireless
network to the computer.

The computer generates two periodic voltage signals, one for each motor. The
motor’s duty ratio is the fraction of time that it is turned on in one period of the signal
(i.e., its on time). Because the battery voltage is fixed, the power delivered to a motor
is proportional to its duty ratio. Driving the tank is straightforward. If the duty ratio
of the left and right motors are equal then the tank moves in a straight line. The tank
spins clockwise if the duty ratio of the left motor is higher than that of the right motor.
The tank spins counterclockwise if the duty ratio of the right motor is higher than
that of the left motor. A high duty ratio causes the tank to move quickly; a low duty
ratio causes the tank to move slowly.

If the voltage signal has a high frequency, then the inertia of the motor will carry
it smoothly through moments when it is disconnected from the batteries; the motors
operate efficiently and the tank handles well. If the frequency is too low, then the
motor operates inefficiently. It speeds up when the batteries are connected, slows
down when they are disconnected, and speeds up again when power is reapplied.
This creates heat and noise, wasting energy and draining the batteries without doing
useful work. Therefore, we want the voltage signal to have a high frequency.

Unfortunately, a high-frequency signal means less time for the computer to process
data from the radio. If the frequency is too high, then there is a noticeable delay as
the tank processes commands from the operator. At some point, the computer will
be completely occupied with the motors, and when this happens, the tank becomes
unresponsive.

Somewhere in between is a frequency that is both acceptable to the driver and
efficient enough to give a satisfactory battery life. There are physical limits on the
range of usable frequencies. It cannot be so high that the computer is consumed
entirely by the task of driving the motors. It cannot be so low that the tank lurches
uncontrollably or overheats its motors and control circuits. Within this range, the
choice of frequency depends on how sensitive the driver is to the nuances of the
tank’s control.

An acceptable frequency could be selected by experimenting with the real tank; let
a few people drive it around using different frequencies and see which they like best.
If we use the real tank to do this, then we can get the opinions of a small number of
people about a small number of frequencies. The tank’s batteries are one constraint
on the number of experiments that can be conducted. They will run dry after a few
trials and need several hours to recharge. That we have only one tank is another
constraint. Experiments must be conducted one at a time. If, however, we build a
simulation of the tank, then we can give the simulator to anyone who cares to render
an opinion, and that person can try as many different frequencies as time and patience
permit.
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TABLE 2.1 Value of Parameters Used in the Tank’s Equations of Motion

Parameter Value Description

mt 0.8 kg Mass of the tank
Jt 5 × 10−4 kg · m2 Angular mass of the tank
B 0.1 m Width of the tank from track to track
Br 1.0 N · s / m Mechanical resistance of the tracks to rolling forward
Bs 14.0 N · s / m Mechanical resistance of the tracks to sliding forward
Bl 0.7 N · m · s / rad Mechanical resistance of the tracks to turning
Sl 0.3 N · m Lateral friction of the tracks

2.2.1 Equations of Motion

The model of the tank’s motion is adapted from Anh Tuan Le’s PhD dissertation [74].
The model’s parameters are listed in Table 2.1, and the coordinate system and forces
acting on the tank are illustrated in Figure 2.2. The model assumes that the tank is
driven on a hard, flat surface and that the tracks do not slip. The position of the tank is
given by its x and y coordinates. The heading θ of the tank is measured with respect
to the x axis of the coordinate system and the tank moves in this direction with a
speed v .

The left track pushes the tank forward with a force Fl ; the right track, with a force
Fr ; and Br is the mechanical resistance of the tracks to rolling. The tank uses skid
steering; to turn, the motors must collectively create enough torque to cause the tracks
to slide sideways. This requires overcoming the sticking force Sl . When sufficient
torque is created, the vehicle begins to turn. As it turns, some of the propulsive force
is expended to drag the tracks laterally; this is modeled by an additional resistance
Bl to its turning motion and Bs to its rolling motion.

The tank’s motion is described by two sets of equations, one for when the tank is
turning and one for when it is not. The switch from turning to not turning (and vice

y

vr

B

θx

Fl Fr

vl

FIGURE 2.2 Coordinate system, variables, and parameters used in the tank’s equations of
motion.
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versa) has two discrete effects: (1) the angular velocity ω changes instantaneously
to and remains at zero when the tracks stick and the turn ends, and (2) the rolling
resistance of the tank changes instantaneously when the tank starts and ends a turn.
The Boolean variable turning is used to change the set of equations. The equations
that model the motion of the tank are

turning =
⎧
⎨

⎩

true if
B

2
|Fl − Fr | ≥ Sl

false otherwise
(2.1)

v̇ =

⎧
⎪⎪⎨

⎪⎪⎩

1

mt

(

Fl + Fr − (Br + Bs)v

)

if turning = true

1

mt

(

Fl + Fr − Br v

)

if turning = false
(2.2)

ω̇ =

⎧
⎪⎨

⎪⎩

1

Jt

(
B

2
(Fl − Fr ) − Blω

)

if turning = true

0 if turning = false
(2.3)

θ̇ = ω (2.4)

ẋ = v sin(θ ) (2.5)

ẏ = v cos(θ ) (2.6)

If turning = false then ω = 0 (2.7)

When turning changes from false to true, every state variable evolves from its
value immediately prior to starting the turn, but using the equations designated for
turning = true. When turning changes from true to false, every state variable except
ω evolves from its value immediately prior to ending the turn, but using the equations
designated for turning = false; ω changes instantaneously to zero and remains zero
until the tank begins to turn again.

These differential equations describe how the tank moves in response to the
propulsive force of the tracks. The track forces Fl and Fr are inputs to this model,
and we can take any function of the state variables—v , ω, θ , x , and y—as output. For
reasons that will soon become clear, we will use the speed with respect to the ground
of the left and right treads; Figure 2.2 illustrates the desired quantities. The speed vl

of the left tread and speed vr of the right tread are determined from the tank’s linear
speed v and rotational speed ω by

vl = v + Bω/2 (2.8)

vr = v − Bω/2 (2.9)
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The dependence of the input on the output is denoted by the function

[
vl (t)
vr (t)

]

= M
([

Fl(t) Fr (t)
]T

)
(2.10)

This function accepts the left and right tread forces as input and produces the left and
right tread speeds as output.

How were the values in Table 2.1 obtained? Two of them were measure directly:
the mass of the tank with a postal scale and the width of the tank with a ruler. The
angular mass of the tank is an educated guess. Given the width w and length l of the
tank’s hull, which were measured with a ruler, and the mass, obtained with a postal
scale, the angular mass is computed by assuming the tank is a uniformly dense box.
With these data and assumptions, we have

Jt = mt

12
(w2 + l2)

This is not precise, but it is the best that can be obtained with a ruler and scale.
The resistance parameters are even more speculative. The turning torque Sl was

computed from the weight W of the tank and length lt of the track, which were both
measured directly, a coefficient of static friction µs for rubber from Serway’s Physics
for Scientists and Engineers [133], and the approximation

Sl = Wltµs

3

from Le’s dissertation [74]. The resistances Br and Bs to forward motion and resis-
tance Bl to turning were selected to give the model reasonable linear and rotational
speeds.

This mix of measurements, rough approximations, and educated guesses is not
uncommon. It is easier to build a detailed model than to obtain data for it. The
details, however, are not superfluous. The purpose of this model is to explore how
the tank’s response to the driver changes with the frequency of the power signal sent
to the motors. For this purpose it is necessary to include those properties of the tank
that determine its response to the intermittent voltage signal: specifically, inertia and
friction.

2.2.2 Motors, Gearbox, and Tracks

The motors, gearbox, and tracks are an electromechanical system for which the
method of bond graphs is used to construct a dynamic model (Karnopp et al. [61]
give an excellent and comprehensive introduction to this method). The bond graph
model is coupled to the equations of motion by using Equation 2.10 as a bond graph
element. This element has two ports, one of which has the effort variable Fl and flow
variable vl , and the other, the effort variable Fr and flow variable vr . The causality
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of this element is determined by the functional form of Equation 2.10: it is supplied
with the effort variables and produces the flow variables. This was the reason for
selecting the track speeds as output.

The model of the motors, gearbox, and tracks accounts for the inductance and
internal resistance of the electric motors, the angular mass and friction of the gears,
and the compliance of the rubber tracks. The electric motors are Mabuchi FA-130
Motors, the same type of DC motor that is ubiquitous in small toys. One motor
drives each track. The motors are plugged into a Tamiya twin-motor gearbox. This
gearbox has two sets of identical, independent gears that turn the sprocket wheels.
The sprocket wheels and tracks are from a Tamiya track-and-wheel set; the tracks
stretch when the tank accelerates (in hard turns this causes the tracks to come off the
wheels!), and so their compliance is included in the model.

To drive the motors, the computer switches a set of transistors in an Allegro
A3953 full-bridge pulsewidth-modulated (PWM) motor driver. When the switches
are closed, the tank’s batteries are connected to the motors. When the switches are
open, the batteries are disconnected from the motors. The transistors can switch
on and off at a rate three orders of magnitude greater than the rate at which the
computer can operate them, and power lost in the circuit is negligible in comparison
to inefficiencies elsewhere in the system. The batteries and motor driver are, therefore,
modeled as an ideal, time varying voltage source.

A sketch of the connected motors, gearbox, and tracks and its bond graph are
shown in Figure 2.3. Table 2.2 lists the parameters used in this model. The differential

(a)

(b)

+−−+

vl

er

r

vr

l

el

r

l

0TF1GY1SE

0TF1GY1SE

RmLm
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ir

Jg Bg

Kt

er Fr

vr
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il

Fl
r/g

r/g

Jg Bg Kt

vl

M([F l Fr]
T )

FIGURE 2.3 Motors, gears, and tracks of the tank: (a) diagram; (b) bond graph.
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TABLE 2.2 Parameters of the Motors, Gearbox, and Tracks

Parameter Value Description

Lm 10−3 H Inductance of the motor
Rm 3.1 � Resistance of the motor
Jg 1.2 × 10−6 kg · m2 Angular mass of the gears
Bg 6.7 × 10−7 N · m · s / rad Mechanical resistance of the gears to rotation
g 204 Gear ratio of the gearbox
α 10−3 N · m / A Current–torque ratio of the electric motor
r 0.015 m Radius of the sprocket wheel
Kt 10−3 m / N Compliance of the track

equations are read directly from the bond graph:

i̇l = 1

Lm
(el − il Rm − αωl) (2.11)

ω̇l = 1

Jg

(

αil − ωl Bg − r

g
Fl

)

(2.12)

Ḟl = 1

Kt

(
r

g
ωl − vl

)

(2.13)

i̇r = 1

Lm
(er − ir Rm − αωr ) (2.14)

ω̇r = 1

Jg

(

αir − ωr Bg − r

g
Fr

)

(2.15)

Ḟr = 1

Kt

(
r

g
ωr − vr

)

(2.16)

where el and er are the motor voltages and vl and vr are the track speeds given by
Equations 2.8 and 2.9.

Values for the parameters in Table 2.2 were obtained from manufacturers’ data,
from measurements, and by educated guesses. The gear ratio g and current–torque
ratio α are provided by the manufacturers. The gear ratio is accurate and precise (espe-
cially with respect to the values of other parameters in the model). The current–torque
ratio is an average of the two cases supplied by Mabuchi, the motor’s manufacturer.
The first case is the motor operating at peak efficiency, and the second case is the
motor stalling. The difference between these two cases is small, suggesting that α

does not vary substantially as the load on the motor changes. The estimate of α is,
therefore, probably very reasonable.

The radius r of the sprocket wheel and the resistance Rm and inductance Lm of
the motor were measured directly. A ruler was used to measure the radius of the
sprocket wheel. To determine Rm and Lm required more effort. The current i through
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the unloaded motor is related to the voltage e across the motor by the differential
equation

i̇ = 1

Lm
(e − i Rm) (2.17)

The parameters Lm and Rm were estimated by connecting a 1.5-V C battery to the
motor and measuring, with an oscilloscope, the risetime and steady state of the current
through the motor. Let i f be the steady-state current, tr the risetime, and 0.9i f the
current at time tr (i.e., the risetime is the amount of time to go from zero current to
90% of the steady-state current). At steady state i̇ = 0 and the resistance of the motor
is given by

Rm = e

i f

The transient current is needed to find Lm . The transient current is given by the
solution to Equation 2.17:

i(t) = e

Rm

(

1 − exp

(

− Rm

Lm
t

))

(2.18)

Substituting 0.9i f for i(t) and tr for t in Equation 2.18 and solving for Lm gives

1

Lm
= − 1

Rmt f
ln

(

1 − 0.9
Rm

e
i f

)

= − i f

et f
ln(0.1) ≈ 2.3

i f

et f

or, equivalently

Lm ≈ 0.652
t f

i f

A similar experiment was used to obtain Bg . In this experiment, the motor was
connected to the gearbox. As before, an oscilloscope was used to measure the risetime
and steady-state value of the current through the motor. The rotational velocity ω̃ of
the motor is given by

˙̃ω = 1

Jg
(αi − ω̃Bg)

The manufacturer gives the speed of the motor when operating at peak efficiency as
ω̃ = 731.6 radians per second (rad/s). At steady state ˙̃ω = 0. The steady state current
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Tank Physics
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FIGURE 2.4 Input and output of the model of the tank’s physics.

i f is measured with the oscilloscope. With i f and the motor speed, the mechanical
resistance of the gearbox is given by

Bg ≈ αi f

ω̃
= 1.37 × 10−6 i f

The angular mass Jg of the gearbox was estimated from its mass mgb, radius of
the gears rgb, and the assumption that the mass is uniformly distributed in a cylinder.
With this set of measurements and assumptions, the angular mass is

Jg = mgbr2
gb

The compliance of the tracks is an order-of-magnitude approximation. The tracks
can be stretched by only a few millimeters before they slip off the wheels. The
maximum propulsive force of the track is about a newton. The order of magnitude of
the track compliance is, therefore, estimated to be 10−3 meters/100 newtons, or about
10−3 m/N.

2.2.3 Complete Model of the Tank’s Continuous Dynamics

Equations 2.1–2.9 and 2.11–2.16 collectively describe the physical behavior of the
tank. The equations of motion and the equations for the motors, gearbox, and tracks
were developed separately, but algorithms for solving them work best when coupled
equations are lumped together. Consequently, these are put into a single functional
model called “tank physics,” which is illustrated in Figure 2.4. The inputs to the
tank are the voltages across its left and right motors; these come from the computer.
The output of the tank is its position and heading; these are observed by the tank’s
operator. The complete state space model of the tank’s physical dynamics is

turning =
⎧
⎨

⎩

true if
B

2
|Fl − Fr | ≥ Sl

false otherwise
(2.19)

v̇ =

⎧
⎪⎪⎨

⎪⎪⎩

1

mt

(

Fl + Fr − (Br + Bs)v

)

if turning = true

1

mt

(

Fl + Fr − Br v

)

if turning = false
(2.20)
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ω̇ =

⎧
⎪⎨

⎪⎩

1

Jt

(
B

2
(Fl − Fr ) − Blω

)

if turning = true

0 if turning = false
(2.21)

θ̇ = ω (2.22)

ẋ = v sin(θ ) (2.23)

ẏ = v cos(θ ) (2.24)

If turning = false then ω = 0 (2.25)

i̇l = 1

Lm
(el − il Rm − αωl ) (2.26)

ω̇l = 1

Jg

(

αil − ωl Bg − r

g
Fl

)

(2.27)

Ḟl = 1

Kt

(
r

g
ωl −

(

v + Bω

2

))

(2.28)

i̇r = 1

Lm
(er − ir Rm − αωr ) (2.29)

ω̇r = 1

Jg

(

αir − ωr Bg − r

g
Fr

)

(2.30)

Ḟr = 1

Kt

(
r

g
ωr −

(

v − Bω

2

))

(2.31)

This model has 11 state variables—v , ω, θ , x , y, il , ωl , Fl , ir , ωr , and Fr ; two input
variables—el and er ; and three output variables—x , y, and θ .

2.2.4 The Computer

The computer, a TINI microcontroller from Maxim, receives commands from the
operator through a wireless network and transforms them into voltage signals for the
motors. The computer extracts raw bits from the Ethernet that connects the computer
and the radio, puts the bits through the Ethernet and User Datagram Protocol (UDP)
stacks to obtain a packet, obtains the control information from that packet, and stores
that information in a register where the interrupt handler that generates voltage signals
can find it. The interrupt handler runs periodically, and it has a higher priority than
the thread that processes commands from the operator. Therefore, time spent in the
interrupt handler is not available to process commands from the operator.

The frequency of the voltage signal is determined by the frequency of the inter-
rupt handler. Frequent interrupts create a high-frequency voltage signal; infrequent
interrupts, a low-frequency signal. Figure 2.5 illustrates how the interrupt handler
works. It is executed every N machine cycles and at each invocation adds 32 to a
counter stored in an 8-bit register. The counter is compared to an on time that is set,


