SERV/CE SCIENCE

Mark S. Daskin

This page intentionally left blank

SERVICE SCIENCE

This page intentionally left blank

SERVICE SCIENCE

Mark S. Daskin
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

Copyright © 2010 by John Wiley \& Sons, Inc. All rights reserved
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923 , (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Catologing-in-Publication Data

Daskin, Mark S., 1952-
Service science / Mark S. Daskin. p. cm .

Includes bibliographical references and index.
ISBN 978-0-470-52588-3 (cloth)

1. Operations research. 2. Service industries-Management. 3. Service industries-Planning. I. Title.

T57.6.D3733 2010
$658.4^{\prime} 034-\mathrm{dc} 22$
2010010792

Printed in Singapore

My parents, Walter ז" and Betty,
My daughters, Tamar and Keren,
And my wife, Babette

This page intentionally left blank

CONTENTS

List of Figures xi
List of Tables xxi
Preface xxv
Acknowledgments xxix
1 WHY study services? 1
1.1 What Are Services? 1
1.2 Services as a Percent of the Economy 6
1.3 Public versus Private Service Delivery 10
1.4 Why Model Services? 11
1.5 Key Service Decisions 13
1.6 Philosophy about Models 16
1.7 Outline of the Book 22
1.8 Problems 25
References 26
PART I Methodological Foundations 27
2 OPTIMIZATION 29
2.1 Introduction 30
2.2 Five Key Elements of Optimization 31
2.3 Taxonomy of Optimization Models 34
2.4 You Probably Have Seen One Already 37
2.5 Linear Programming 41
2.6 Special Network Form 60
2.7 Integer Problems 65
2.8 Multiple Objective Problems 80
2.9 Mark's Ten Rules of Formulating Problems 101
2.10 Problems 106
References 108
3 QUEUEING THEORY 111
3.1 Introduction 111
3.2 What Is Queueing Theory? 119
3.3 Key Performance Metrics for Queues and Little's Law 122
3.4 A Framework for Markovian Queues 124
3.5 Key Results for Non-Markovian Queues 153
3.6 Solving Queueing Models Numerically 155
3.7 When Conditions Change Over Time 170
3.8 Conclusions 175
3.9 Problems 176
References 182
Part II Application Areas 183
4 LOCATION AND DISTRICTING PROBLEMS IN SERVICES 185
4.1 Example Applications 186
4.2 Taxonomy of Location Problems 189
4.3 Covering Problems 203
4.4 Median Problems-Minimizing the Demand-Weighted Average Distance 226
4.5 Multi-Objective Models 236
4.6 Districting Problems 244
4.7 Franchise Location Problems 262
4.8 Summary and Software 270
4.9 Problems 271
References 281
5 INVENTORY DECISIONS IN SERVICES 285
5.1 Why Is Inventory in a Service Modeling Book? 285
5.2 EOQ-A Basic Inventory Model 287
5.3 Extensions of the EOQ Model 292
5.4 Time-Varying Demand 304
5.5 Uncertain Demand and Lead Times 310
5.6 Newsvendor Problem and Applications 316
5.7 Summary 324
5.8 Problems 325
References 339
6 RESOURCE ALLOCATION PROBLEMS AND DECISIONS IN SERVICES 341
6.1 Example Resource Allocation Problems 342
6.2 How to Formulate an Assignment or Resource Allocation Problem 346
6.3 Infeasible Solutions 350
6.4 Ȧssigning Students to Freshman Seminars 358
6.5 Assigning Students to Intersession Courses 363
6.6 Improving the Assignment of Zip Codes to Congressional Districts 369
6.7 Summary 372
6.8 Problems 373
References 375
7 SHORT-TERM WORKFORCE SCHEDULING 377
7.1 Overview of Scheduling 377
7.2 Simple Model 380
7.3 Extensions of the Simple Model 385
7.4 More Difficult Extensions 390
7.5 Linking Scheduling to Service 394
7.6 Time-Dependent Queueing Analyzer 404
7.7 Assigning Specific Employees to Shifts 406
7.8 Summary 408
7.9 Problems 409
References 413
8 LONG-TERM WORKFORCE PLANNING 415
8.1 Why Is Long-Term Workforce Planning an Issue? 416
8.2 Basic Model 418
8.3 Grouping of Skills 421
8.4 Planning over Time 427
8.5 Linking to Project Scheduling 432
8.6 Linking to Personnel Training and Planning in General 446
8.7 Simple Model of Training 449
8.8 Summary 452
8.9 Problems 454
References 458
9 PRIORITY SERVICES, CALL CENTER DESIGN, AND CUSTOMER SCHEDULING 459
9.1 Examples 459
9.2 Priority Queueing for Emergency and Other Services 464
9.3 Call Center Design 475
9.4 Scheduling in Services 492
9.5 Summary 502
9.6 Problems 504
References 512
10 vehicle routing and services 515
10.1 Example Routing Problems 516
10.2 Classification of Routing Problems 517
10.3 Arc Routing 518
10.4 The Traveling Salesman Problem 527
10.5 Vehicle Routing Problems 548
10.6 Summary 557
10.7 Problems 560
References 564
11 Where to from here? 567
11.1 Introduction 568
11.2 Other Methodologies 568
11.3 Other Applications in Services 572
11.4 Summary 575
References 575
Index 577

Appendixes and a full list of References are posted online.

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

LIST OF FIGURES

Figure 1.1 Gross domestic product over 60 years 7
Figure 1.2 Percentage breakdown of the gross domestic product 8
Figure 1.3 U.S. non-farm employment by major sector, June 2009 9
Figure 1.4 U.S. private service employment, June 2009 10
Figure 1.5 Schematic of the modeling/decision-making process 17
Figure 2.1 Taxonomy of optimization models 35
Figure 2.2 Sample data points, one possible line through the data and the associated errors 38
Figure 2.3 Sample data points, one possible line through the data and the associated squared errors 39
Figure 2.4 Best line through the data 40
Figure 2.5 Feasible region for a simple linear programming problem 42
Figure 2.6 Feasible region and objective function contours 43
Figure 2.7 Adding a constraint that degrades the solution 45
Figure 2.8 Adding a constraint that does not change the solution 45
Figure 2.9 Example budget allocation problem in Excel 55
Figure 2.10 Solver Parameters dialog box 57
Figure 2.11 Add Constraint dialog box in Excel Solver 57
Figure 2.12 Solver Options dialog box 58
Figure 2.13 Solver Results dialog box 59
Figure 2.14 Dual menu in What's Best 59
Figure 2.15 Simple network for shortest path from Chicago to New Orleans 61
Figure 2.16 Solution to shortest path problem of Figure 2.15 62
Figure 2.17 Network for student-seminar assignment problem 63
Figure 2.18 Figure for maximum flow problem 65
Figure 2.19 Feasible region with integer solutions highlighted 66
Figure 2.20 Specifying integer variables in the Excel Solver 67
Figure 2.21 Specifying integer variables in What's Best 67
Figure 2.22 Integer optimal solution to the police/fire problem 68
Figure 2.23 Integer optimal solution with enhanced budget 68
Figure 2.24 First branching in the branch and bound tree 73
Figure 2.25 The branch and bound tree for the police/fire allocation problem 74
Figure 2.26 Nearest neighbor solution starting at Illinois 76
Figure 2.27 Tour before 2-opt algorithm 77
Figure 2.28 Tour after 2-opt algorithm 77
Figure 2.29 Tour starting in Illinois after 2-opt algorithm 78
Figure 2.30 Example encoding for a genetic algorithm 79
Figure 2.31 Regions of interest for a non-dominated solution with two minimization objectives 81
Figure 2.32 Sample average and maximum distance tradeoff curve 82
Figure 2.33 Distances and displeasure values from Chicago to New Orleans 83
Figure 2.34 Distance vs. displeasure solutions 84
Figure 2.35 All 455 solutions to average vs. maximum distance tradeoff for 3 sites selected from 15 candidate locations 85
Figure 2.36 First two solutions in non-dominated path solutions for the example in Figure 2.33 86
Figure 2.37 First three solutions in the weighting method 87
Figure 2.38 Example multi-objective shortest path problem in Excel 89
Figure 2.39 Minimizing the displeasure 90
Figure 2.40 Weight computation 90
Figure 2.41 Third solution computation 90
Figure 2.42 Weight computation between $(979,220)$ and $(1,061,205)$ solutions 91
Figure 2.43 Weight computation between $(1,061,205)$ and $(1,347,193)$ solutions 91
Figure 2.44 Finding the first solution using the constraint method 93
Figure 2.45 First solution found using the constraint method 94
Figure 2.46 Constraining the displeasure to be less than or equal to 219 95
Figure 2.47 First two solutions found using the constraint method 95
Figure 2.48 Constraining the displeasure to be less than or equal to 204 96
Figure 2.49 First three solutions found using the constraint method 96
Figure 2.50 Constraining the displeasure to be less than or equal to 202 97
Figure 2.51 First four solutions found using the constraint method 97
Figure 2.52 Linear programming solution to constrained shortest path problem 98
Figure 2.53 Multi-objective shortest path problem using a matrix of decision variables 100
Figure 2.54 Variable linkage 103
Figure 3.1 Sample service time distributions 113
Figure 3.2 Effect of average service time and service time variability on patient waiting time with patients arriving exactly as scheduled 114
Figure 3.3 Effect of average service time and service time variability on patient waiting time for those who wait with patients arriving exactly as scheduled 115
Figure 3.4 Effect of average service time and service time variability on the percentage of patients who have to wait for service with patients arriving exactly as scheduled 116
Figure 3.5 Effect of average service time and service time variability on patient waiting time with patients arriving uniformly about the scheduled appointment time 116
Figure 3.6 Effect of average service time and service time variability on patient waiting time with patients arriving uniformly about the scheduled appointment time, using a triangular service time distribution 117
Figure 3.7 Effect of average service time and service time variability on patient waiting time for those who wait with patients arriving exactly as scheduled, using a triangular service time distribution 118
Figure 3.8 Relationship between arrivals and departures 123
Figure 3.9 State transition diagram 129
Figure 3.10 Isolating state j to consider the probability flow in and out of the state 129
Figure 3.11 Cutting between two states to consider the probability flow to the right and left of the cut 130
Figure 3.12 State transition diagram for the $M / M / 1$ queue 131
Figure 3.13 Performance versus utilization for an $M / M / 1$ queue 132
Figure 3.14 State transition diagram for the $M / M / 1$ queue with a restricted queue length 137
Figure 3.15 Average time in the system goes up with the number of lines but more people can be served 140
Figure 3.16 Schematic of an $M / M / s$ queue with 3 occupied servers and 4 customers waiting for service 141
Figure 3.17 State transition diagram for the $M / M / s$ queue 141
Figure 3.18 Example time in the system and in waiting for an $M / M / 6$ queue with a mean service time of 2 minutes 144
Figure 3.19 Comparison of the time in the system for an $M / M / 6$ queue and an $M / M / 1$ queue with $\frac{1}{6}$ the arrival rate 148
Figure 3.20 State transition diagram for an $M / M / \infty$ queue 149
Figure 3.21 State transition diagram for an $M / M / s$ queue with no waiting room 150
Figure 3.22 State transition diagram for a problem with reneging 158
Figure 3.23 Simulated and theoretical values for an $M / M / 3$ queue 165
Figure 3.24 Results of four simulation runs with $\lambda=3.75$ 166
Figure 3.25 Results of four simulation runs with $\lambda=5.75$ 167
Figure 3.26 Theoretical waiting time, average of 10 simulated runs and the upper and lower 95 percent confidence intervals for the mean based on the simulated values for an $M / M / 3$ queue 168
Figure 3.27 Approximate (theoretical) waiting time, average of 10 simulated runs and the upper and lower 95 percent confidence intervals for the mean based on the simulated values for an $M / E_{9} / 3$ queue 169
Figure 3.28 Sample time dependent queueing analyzer output 173
Figure 3.29 Sample probability of waiting results 174
Figure 3.30 Steady state (red) and time-dependent (green) probability mass functions 175
Figure 4.1 Taxonomy of location models 189
Figure 4.2 Example service region and directions of travel 190
Figure 4.3 Simple analytic model of facility and transport costs 191
Figure 4.4 Ratio of total cost to optimal cost as a function of the ratio of the number of sites to the optimal number. of sites 192
Figure 4.5 Weber problem solution using Pennsylvania county data 195
Figure 4.6 Sample tree network for the 10 largest U.S. cities 197
Figure 4.7 Taxonomy of discrete location models 200
Figure 4.8 Simple network for covering problems 204
Figure 4.9 Excel implementation of the set covering model for the seven-node network shown in Figure 4.8 with a coverage distance of 8 206
Figure 4.10 Percent covered vs. number of sites for three coverage distances 212
Figure 4.11 Solution covering 90 percent of the demand at 200 miles with only 13 sites 214
Figure 4.12 Excel solution for small maximal covering model for the network in Figure 4.8 216
Figure 4.13 Simple two-node network 218
Figure 4.14 Maximum expected covering model for the network in Figure 4.8 223
Figure 4.15 Expected coverage vs. number located for the network of Figure 4.8 226
Figure 4.16 Solution of the three-median problem on the network of Figure 4.8 229
Figure 4.17 Average distance vs. the number of facilities for the network of Figure 4.8 230
Figure 4.18 Fixed charge location model for the network of Figure 4.8 232
Figure 4.19 Excel solution to the vertex four-center problem for the network of Figure 4.8 235
Figure 4.20 Median/coverage tradeoff model for the network of Figure 4.8 239
Figure 4.21 Tradeoff between coverage and average distance using three and four facilities for the network of Figure 4.8 240
Figure 4.22 Center/median tradeoff model for the network of Figure 4.8 242
Figure 4.23 Tradeoff between average and maximum distance for three, four, and five facilities using the network of Figure 4.8 243
Figure 4.24 Center/median tradeoff for 250 largest counties with 10 facilities 244
Figure 4.25 Compromise solution with average distance of 132.9 miles and a maximum of 418 miles 245
Figure 4.26 Simple districting example 247
Figure 4.27 Figure illustrating closest assignment constraints (4.48) 249
Figure 4.28 Inputs, decision variables, and objective function for simple districting model for the network of Figure 4.8 251
Figure 4.29 Constraints for the simple districting model for the network of Figure 4.8 252
Figure 4.30 U.S. Congressional districts in Illinois 254
Figure 4.31 Sample results of districting at the zip code level in Illinois 255
Figure 4.32 Another heuristic solution to the districting problem in Illinois 255
Figure 4.33 A third heuristic solution to the districting problem in Illinois 256
Figure 4.34 Example demand functions 264
Figure 4.35 Results of varying the cost per item per mile in the profit maximization model using the network of Figure 4.8 267
Figure 4.36 Results of varying the demand factor in the profit maximization model using the network of Figure 4.8 268
Figure 4.37 Results of the maximum capture model for three competitor location sets using the network of Figure 4.8 270
Figure 5.1 Basic economic order quantity relationships 288
Figure 5.2 EOQ cost components 290
Figure 5.3 Percent error in total cost as a function of deviations in the order quantity 291
Figure 5.4 EOQ model with backorders 292
Figure 5.5 Percent savings in total cost as a function of the backorder/holding cost ratio 294
Figure 5.6 EOQ model with production at the beginning of each phase 294
Figure 5.7 Inputs and decision variables for multiple-SKU problem with SKU-specific order frequencies and an overall order frequency 297
Figure 5.8 Objective function and constraints for problem with SKU-specific order frequencies within an overall order frequency 298
Figure 5.9 Solving a space constrained EOQ problem 300
Figure 5.10 Using Goal Seek to find alpha 301
Figure 5.11 Results of using Goal Seek to find alpha 301
Figure 5.12 Using the Solver to find alpha 302
Figure 5.13 Solving a value-constrained EOQ problem 303
Figure 5.14 Using a spinner to solve a value or space constrained EOQ problem 303
Figure 5.15 Percent of annual dollar sales by month for paint and wallpaper stores 305
Figure 5.16 Inventory on hand for inventory computation 305
Figure 5.17 Inventory planning as a shortest path problem 306
Figure 5.18 Optimal solution to the inventory problem of Table 5.4 with a fixed order cost of $\$ 10,000$ and a per unit monthly carrying cost of $\$ 2$ 308
Figure 5.19 Stochastic inventory simulation (no stockouts) 311
Figure 5.20 Stochastic inventory simulation (with stockouts) 311
Figure 5.21 Stochastic inventory simulation with exponentially distributed lead times 312
Figure 5.22 Computing the reorder point for a given fill rate 315
Figure 5.23 Using the Solver to solve equation (5.26) for the reorder point 316
Figure 5.24 Example post-tax post-health care funds 321
Figure 6.1 Sample inputs for a simple assignment problem 348
Figure 6.2 Sample decision variables, objective and constraints for a small assignment problem 349
Figure 6.3 Example ranking of shifts by volunteers (feasible case) 351
Figure 6.4 Example assignment of volunteers to shifts 351
Figure 6.5 Revised availability of volunteers (infeasible case) 351
Figure 6.6 Penalties for using dummy shifts and volunteers 352
Figure 6.7 An optimal solution using a dummy shift and a dummy volunteer 352
Figure 6.8 Network flow diagram corresponding to preferences of Figure 6.3 354
Figure 6.9 Network flow diagram with non-selected assignments included to ensure feasibility 356
Figure 6.10 Adding a dummy volunteer and dummy time period to the network flow diagram 357
Figure 6.11 Pareto chart of sample seminar first choices 360
Figure 6.12 Network diagram approximating the IMSA class assignment problem 366
Figure 6.13 Number of IMSA students assigned to first through fourth choices 368
Figure 6.14 Class assignments relative to capacity 368
Figure 7.1 Workforce management and services 378
Figure 7.2 Workforce management and scheduling decisions and their impact on service quality 379
Figure 7.3 Short-term scheduling and customer service 379
Figure 7.4 Inputs for the basic employee scheduling problem 382
Figure 7.5 Costs and sample matrix of a_{kj} terms showing whether an employee starting work at time j (a column) will be on duty at time k (a row) 383
Figure 7.6 Decision variables, objective, and constraints for simple scheduling problem 384
Figure 7.7 Network representation of simple scheduling problem 385
Figure 7.8 Network flow diagram with overtime links 386
Figure 7.9 Network flow diagram with part-time and overtime links 387
Figure 7.10 Sample coefficients $a_{k g}$ indicating if an employee who starts work at time j is on duty at time k 391
Figure 7.11 Network diagram for 24 -hour scheduling 392
Figure 7.12 Inputs for a 24-hour scheduling problem 393
Figure 7.13 Sample 24-hour matrix of a_{kj} terms for 12-hour shifts 394
Figure 7.14 Sample inputs for a problem with endogenous service level determination 397
Figure 7.15 Continuous and step-wise demand profiles 398
Figure $7.16 \quad \mathrm{a}_{\mathrm{kj}}$ coefficients for the nurse scheduling example with service determination 399
Figure 7.17 Decision variables for the nurse scheduling problem with service determination 399
Figure 7.18 Objective function for nurse scheduling problem with service determination 400
Figure 7.19 Constraints for the nurse scheduling problem with service determination 400
Figure 7.20 Staff, Waiting, and Total Cost as a function of the number of nurses 402
Figure 7.21 Comparison of total person hours in the system when nurses start every hour versus when the can start every fourth hour 403
Figure 7.22 Time dependent queueing analyzer results for 25 employees with starting times as found using the optimization model of section 7.5 405
Figure 7.23 Time dependent queueing analyzer results for 25 employees with improved starting times 405
Figure 8.1 Sample inputs for a problem with skill sets 423
Figure 8.2 Decision variables for a problem with skill sets 424
Figure 8.3 Objective function and sample constraints for a problem with skill sets 425
Figure 8.4 Network flow structure for example problem with skill sets 426
Figure 8.5 Requirements, availability, and contractor needs by skill and month 429
Figure 8.6 Analysis of statistician requirements 431
Figure 8.7 Analysis of HTML programmer requirements 431
Figure 8.8 Analysis of manager requirements 432
Figure 8.9 Flow conservation of projects-constraint (8.27) 437
Figure 8.10 Sample inputs for joint project scheduling/workforce management problem 438
Figure 8.11 Decision variables for a joint project scheduling/workforce management problem 438
Figure 8.12 Part of the constraints for a joint project-scheduling/ workforce management problem 440
Figure 8.13 Number of projects active in each month of the project by month of the year 441
Figure 8.14 Constraints (8.27) for the example project scheduling/ workforce management problem 441
Figure 8.15 Objective function for the example project scheduling/ workforce management problem 441
Figure 8.16 Sample tradeoff results for a joint project scheduling/ workforce management problem 442
Figure 8.17 Breakdown of labor cost vs. rescheduling cost 443
Figure 8.18 Probability mass function for the number of projects 445
Figure 8.19 Expected cost vs. number of planned projects 447
Figure 8.20 Example determination of number to train 451
Figure 9.1 Schematic of different queueing systems 461
Figure 9.2 Time in a 24 -server queue as a function of the utilization ratio and the number of lines 461
Figure 9.3 Relative time in a 24 -server queue as a function of the utilization ratio and the number of lines 462
Figure 9.4 Priority queueing service disciplines 465
Figure 9.5 Base case waiting times by class 468
Figure 9.6 Impact of increased arrival rates for class 3 and class 4 customers on class 4 waiting time 469
Figure 9.7 Impact of service time variance on waiting times 472
Figure 9.8 Performance metrics as the number of servers increases holding the utilization ratio equal to 0.95 478
Figure 9.9 Number of extra servers needed to provide a given level of service versus the offered load 479
Figure 9.10 Approximating the number of extra servers required by the normal approximation 480
Figure 9.11 Extra servers needed vs. offered load for three levels of service 480
Figure 9.12 Actual state probabilities and normal approximation for a small queue 481
Figure 9.13 State transition diagram for an $M / M / s$ queue with reneging or abandonment 484
Figure 9.14 Numerically computing the state probabilities for an $M / M / s$ queue with abandonment 485
Figure 9.15 Computation of approximate waiting probabilities 488
Figure 9.16 Example simulation results: Total time and waiting time 491
Figure 9.17 Example simulation results: P (abandon), P (busy), P (wait) 491
Figure 9.18 Two sample base case realizations 495
Figure 9.19 Two sample realizations using the Bailey-Welch rule 497
Figure 9.20 Sample simulation realizations from scheduling with 2 minutes of expected slack between patient arrivals 498
Figure 9.21 Overtime and delay vs. the policy when procedures are scheduled in order of decreasing standard deviation 501
Figure 9.22 Overtime and delay vs. the policy when procedures are scheduled in order of increasing standard deviation 502
Figure 10.1 Schematic of the city of Königsberg 519
Figure 10.2 Abstraction of the city of Königsberg as a set of nodes and arcs 519
Figure 10.3 Example undirected network 520
Figure 10.4 Simple network of Figure 10.3 with odd-degree nodes highlighted 520
Figure 10.5 Optimal matching of the odd-degree nodes of Figure 10.4 521
Figure 10.6 Example directed network for the Chinese Postman Problem 525
Figure 10.7 Augmented network for the directed CPP of Figure 10.6 526
Figure 10.8 Example network for the traveling salesman problem 529
Figure 10.9 Inputs for the traveling salesman problem for the network of Figure 10.8 530
Figure 10.10 Decision variables and objective function for the TSP on the network of Figure 10.8 531
Figure 10.11 Constraints for the TSP on the network of Figure 10.8 531
Figure 10.12 Solution to the assignment model for the TSP of Figure 10.8 532
Figure 10.13 Solution to the TSP of Figure 10.8 after adding subtour elimination constraints 532
Figure 10.14 Subtour elimination constraints for the solution shown in Figure 10.12 532
Figure 10.15 TSP route using the myopic algorithm beginning at node A 536
Figure 10.16 TSP route using the myopic algorithm beginning at node I 536
Figure 10.17 Optimal TSP route for the data in Table 10.4 537
Figure 10.18 Creating spacefilling curves in a square 537
Figure 10.19 Spacefilling curve approach for the data of Table 10.4 538
Figure 10.20 Illustration of Kruskal's MST algorithm for the network of Figure 10.8 540
Figure 10.21 Illustration of Prim's MST algorithm for the network of Figure 10.8 542
Figure 10.22 MST with optimal matching of odd degree (shaded) nodes 542
Figure 10.23 Christofides' heuristic result after removing multiple visits to nodes E, H, and I 543
Figure 10.24 Illustration of the 2-opt algorithm 544
Figure 10.25 Tour of Figure 10.15 after removing links AF and BD 545
Figure 10.26 Tour of Figure 10.25 after removing links GC and FB 546
Figure 10.27 Illustration of Or-opt algorithm 546
Figure 10.28 2-opt heuristic applied to the route of Figure 10.16 547
Figure 10.29 Or opt heuristic applied to the route of Figure 10.16 548
Figure 10.30 Sweep algorithm results rotating counterclockwise from node 0 551
Figure 10.31 Best sweep routes found by rotating counterclockwise from node 9 551
Figure 10.32 Improved routes beginning with best sweep routes of Figure 10.31 552
Figure 10.33 Savings algorithm 553
Figure 10.34 An interior node in a route 554
Figure 10.35 Savings algorithm routes for the example of Table 10.6 554
Figure 10.36 Results of randomized savings algorithm 556

LIST OF TABLES

Table 1.1 Some of the services we commonly use 3
Table 1.2 Breakdown of U.S. employment in June 2009 9
Table 2.1 Sample independent variable (X) and dependent variable (Y) values 39
Table 2.2 Node-arc incidence matrix for the network of Figure 2.15 61
Table 2.3 First two non-dominated path solutions for the example in Figure 2.33 85
Table 2.4 First three solutions to problem shown in Figure 2.33 87
Table 3.1 Example performance for a simple toll booth 133
Table 3.2 Increases in the variance and standard deviation of the number in the system as the utilization ratio increases 134
Table 3.3 Probability that the time in the system and the waiting time exceed a given value for $\lambda=300$ and $\mu=360$ vehicles per hour 136
Table 3.4 Average number in the system as a function of the utilization ratio, ρ, and the maximum number in the system, M 138
Table 3.5 Example performance of an $M / M / 6$ queue with a mean service time of 2 minutes 143
Table 3.6 Performance measures as a function of the number of agents 145
Table 3.7 Probability of waiting more than a given time for an $M / M / 6$ queue with 2.92 arrivals per minute (or 175 per hour), and a mean service time of 2 minutes 146
Table 3.8 Comparison of an $M / M / 6$ queue with an $M / M / 1$ queue with $\frac{1}{6}$ the arrival rate 147
Table 3.9 Example results for an $M / M / 10$ queue with no waiting capacity 152
Table 3.10 Summary of analytic queueing results 156
Table 3.11 One realization of a simulation of the first 10 customers at an $M / M / 3$ queue with $\lambda=3$ and $\mu=2$ 165
Table 4.1 Aggregate vs. disaggregate use of simple analytic model for lower 48 states 193
Table 4.2 Shortest path distances on the tree shown in Figure 4.6 197
Table 4.3 Demand-weighted distances for each candidate city in Figure 4.6 199
Table 4.4 Table of shortest path distances for the network of Figure 4.8 205
Table 4.5 Table of coverage coefficients for the shortest path distances in Table 4.4 and a coverage distance of 8 205
Table 4.6 Population and percent covered vs. number of sites for three coverage distances 213
Table 4.7 Maximal covering model results for the network shown in Figure 4.8 using a coverage distance of 5 217
Table 4.8 Results of using the maximal covering model to solve the four-center problem for the network of Figure 4.8 219
Table 4.9 Expected coverage vs. number located for three values of the P (busy) using the network of Table 4.8 225
Table 4.10 Varying the number of facilities located for the network of Figure 4.8 230
Table 4.11 Fixed charge location model solutions as a function of the cost per item per mile 233
Table 4.12 Effect of changing the number of facilities on the maximum distance 234
Table 4.13 Tradeoff between coverage and average distance using three and four facilities for the network of Figure 4.8 240
Table 4.14 Results of using the districting model on the network of Figure 4.8 253
Table 4.15 Results of using the enhanced districting model on the network of Figure 4.8 259
Table 4.16 Base case inputs for sample profit maximization model 265
Table 4.17 Results of varying the cost per item per mile in the profit maximization model using the network of Figure 4.8 266
Table 4.18 Results of varying the demand factor in the profit maximization model using the network of Figure 4.8 267
Table 5.1 Example inputs for multiple SKU examples 295
Table 5.2 Naive model results 296
Table 5.3 Optimal total cost with a single joint order 296
Table 5.4 Example monthly demand data 307
Table 5.5 Comparison of infinite horizon and finite horizon annual costs for the data of Table 5.4 with a per unit per month holding cost of $\$ 10$ 309
Table 5.6 Example probabilities of dress sales 317
Table 5.7 Net profit as a function of number of dresses purchased 317
Table 5.8 Sample probability mass function for the number of snowfalls 323
Table 5.9 Expected cost for each number of contracted plowings 324
Table 6.1 Example resource allocation problems 343
Table 6.2 Summary of ways of handling infeasibility 357
Table 6.3 Sample student rankings of seminars 358
Table 6.4 Results for student/seminar assignment model with linear costs 361
Table 6.5 Results for student/seminar assignment model with concave costs 362
Table 6.6 Link parameters for network flow diagram in Figure 6.12 366
Table 6.7 Results for the districting seeds shown in Figure 4.31 372
Table 7.1 Example workforce requirements by time of day 381
Table 7.2 Summary of costs and employee counts for the example of Table 7.1 387
Table 7.3 Example cook and CSR requirements 388
Table 7.4 Sample results for nurse scheduling problem with service determination 401
Table 7.5 Total person hours in the system as a function of the number of nurses employed and how frequently they can start a shift 403
Table 8.1 Example inputs for simple workforce planning model 420
Table 8.2 One optimal solution to the simple problem of Table 8.1 421
Table 8.3 Sample data for a problem over time 428
Table 8.4 Requirements, availability and contractor needs 430
Table 8.5 Optimal number of our own employees to hire when we plan for 9 projects 446
Table 8.6 Results of uncertainty analysis in the joint project scheduling/workforce management problem 446
Table 9.1 Maximum number of servers that allow equation (9.1) to be computed in Excel 463
Table 9.2 Comparison of equations (9.1) and (9.2) 464
Table 9.3 Sample priority queueing results: Single server, Poisson arrivals, exponential service 467
Table 9.4 Example data for setting the priority classes 470
Table 9.5 Evaluation of all possible class orderings for the inputs of Table 9.4 470
Table 9.6 Example data for setting the priority classes with values of customer waiting time 471
Table 9.7 Evaluation of all possible class orderings for the inputs of Table 9.6 471
Table 9.8 Impact of increasing the number of servers while holding the utilization ratio fixed 474
Table 9.9 Comparison of queueing with and without preemption 475
Table 9.10 Example of approximating the probability of waiting with the normal distribution 482
Table 9.11 Number of servers needed to attain a given level of service 483
Table 9.12 The Halfin-Whitt approximation 483
Table 9.13 Best approximation as a function of beta and theta/mu 490
Table 9.14 Base case parameters for patient scheduling example 494
Table 9.15 Sample results for base case inputs 495
Table 9.16 Sample results for Bailey-Welch rule 496
Table 9.17 Sample results from scheduling patients with 2 minutes of expected slack between patient arrivals 497
Table 9.18 Impact of the policy input on scheduled surgical times for a 2-hour procedure 500
Table 10.1 Pairs of odd-degree nodes than can be paired from the network of Figure 10.4 521
Table 10.2 Number of possible pairings as a function of the number of odd-degree nodes in a network 523
Table 10.3 In-degree and out-degree of each node in Figure 10.6 526
Table 10.4 Sample coordinates for a TSP problem 534
Table 10.5 Inter-nodal distances for the problem with coordinates shown in Table 10.4 535
Table 10.6 Sample routing data 550

PREFACE

We depend on services and service providers for many of our day-to-day activities, from the news we wake up to on our clock radio to the e-mail we check before breakfast, from the dry cleaner we stop at on our way to work to the express mail delivery service that dropped off our latest holiday gifts, from the cute corner bistro we patronize daily for lunch to the movie theater at which we unwind on the weekends. Many services are implicit in our lives including banking, investments, insurance, police and fire services, and (hopefully) our heath care providers. Without service providers, our lives would simply not be what they are today.

The service sector in the United States is rapidly growing as a percentage of the economy. Sixty years ago, the service sector represented only 20 percent of the gross domestic product; today, services account for over 40 percent of the gross domestic product. The percentage of the GDP accounted for by the production of non-durable goods (e.g., food, clothing, and energy) has seen a commensurate decline. In 1960, slightly less than one out of every two people employed in the United States was employed in the service sector; today, more than two out of every three employees work in some form of service industry.

Given our daily dependence on services and the enormous role that the service sector plays in the economy-not only of the United States, but also of every developed country around the world-it is important that we understand the operation of this sector and that services be provided in an efficient and effective manner. Much of the current debate in the United States over health care reform-and health care is part of the service sector-focuses on ways of increasing access, reducing inequities, and containing costs.

This book will provide students with the tools and background needed to analyze and improve the provision of services in our economy.

Following a brief introduction to the service sector, Part I of the text deals with the methodological background needed to analyze service systems. Two core methodologies are introduced: optimization and queueing modeling. For students who have not had a course on one or both of these topics, these chapters provide the background necessary to master the material in the remainder of the text. In addition, the online Appendix B summarizes probability theory at a level that will allow students who have limited backgrounds to understand the chapter on queueing models.

While many students may have a background in optimization and queueing, topics covered near the end of each chapter are typically not included in
introductory courses. Section 2.8 deals with multi-objective optimization. This is critical in the analysis of many services because service providers must often balance conflicting objectives. A local government operating an emergency medical service department (ambulances) must carefully balance the need for rapid response against the demands for fiscal responsibility. Similarly, a cell phone company must balance the demands for expanded and enhanced service area coverage against the need to show a profit at the end of the year. Section 2.9 addresses a number of common mistakes that students (and professionals) make in formulating optimization problems. Section 3.5 summarizes key queueing results that extend beyond those included in many introductory stochastic processes books. Section 3.6 outlines how to solve queueing models numerically using Excel and section 3.7 discusses queueing problems in which the input or operating conditions change over time. Such problems are critical in the analysis of services. For example, there is typically a three or four to one ratio between the peak and off-peak call rates for emergency medical service. Planning for the average daily arrival rate of calls would lead to serious delays during the peak and excess capacity during the off-peak periods. Many other services experience daily, monthly, or annual spikes in demand. Even students with good backgrounds in optimization and queueing might find these sections useful.

The remainder of the text is devoted to the application of optimization and queueing to the analysis and design of service systems. Chapter 4 deals with strategic decisions regarding the number and location of service facilities. Cell phone service providers must, for example, determine the number and location of their cell phone towers to provide cost-effective coverage to a service region. Fast food restaurants must also determine how many stores to have and where they should be to balance easy access against the possibility of self-cannibalizing the market. Many service providers partition the service region into districts that are then served by individual customer service agents. The chapter concludes with a discussion of districting problems.

Many authors argue that the inability to store services in inventory is a key differentiator between the service sector and the manufacturing sector. A car that is not sold today can be stored in inventory for sale tomorrow or next week. On the other hand, a surgeon who takes an afternoon off from work to watch his son star in a school play cannot place the missed operating room hours in inventory for use later in the week. While the service itself cannot be stored in inventory for future use, many service providers depend critically on the ready availability of inventory to assist in the provision of the services they deliver. The same surgeon relies on the availability of sterile instruments in the operating theater at the beginning of each procedure. The local shoe store must stock shoes in numerous styles and sizes for its customers. Thus, an understanding of inventory problems and decisions is critical for students of the service industries. Furthermore, in contracting for services, individuals and firms must often make commitments before the demand for the services is realized. For example, many of us can place pre-tax funds in special accounts to pay for qualified medical expenses. We must decide in the Fall of one year how much money to set aside
during the following year before knowing what our medical expenses will be during the coming year. Any unused funds at the end of a year are lost. Such problems are known as newsvendor problems and are discussed at the end of Chapter 5 on inventory modeling.

At its core, many decisions in the provision of services boil down to resource allocation decisions. A college or university must allocate classroom space to courses. Colleges and universities must also allocate limited dormitory space to students and must also assign students to courses based on the students' preferences and requirements and the availability of space in the courses. Airlines must allocate gates to aircraft. Chapter 6 deals with resource allocation decisions.

Chapters 7 and 8 address short-term and long-term workforce management decisions and problems. In the short-term, service providers must determine how many staff to employ during each period of the day. For example, a hospital must decide how many full-time nurses to hire during each shift. It must also determine how it will staff each unit in the event that the number of patients on the unit exceeds the expected number. Typically, nurses are asked to perform overtime duty or more expensive temporary nurses are hired to fill in for the permanent staff.

In the long-term, providers must determine how many employees to hire, to promote, to release, and to retrain. A consulting firm, for example, needs to determine how many college seniors to hire each year in each of the specialty areas of the firm. Some of the more senior analysts at the firm may be targeted for management training. When the firm's business base changes, the firm may need to either retrain some of its employees or release the less productive members of its staff to make room for newer, better-trained employees in the growth areas. Chapter 8 addresses these problems.

Chapter 9 extends the discussion of queueing models to three particular topics that arise in many service providers. Not all customers are equal. An elderly woman presenting in an emergency room in active cardiac arrest is likely to be served long before a six-year-old boy who fell of his bicycle and who may have a broken leg or twisted ankle. Frequent customers may be flagged for improved service in many industries. Thus, priority service systems comprise the first part of this chapter. Nearly every major company and government service provider operates a call center to provide service to its customers. When it comes to call centers, bigger really is better. The second section of this chapter addresses the design and operation of call centers. Finally, in many services, customers can be scheduled for service. A dermatologist can schedule most of her patients. Issues in customer scheduling are outlined in the final portion of the chapter.

Finally, many services entail the delivery or pickup of customers or goods. A local public school must provide bussing to its students to pick them up from their homes in the morning and to return them home at the end of the school day. Large white goods (refrigerators, freezers, dish washers, washing machines, and dryers) must be delivered to customer homes in a timely manner following the purchase of the items. The mail must be delivered daily and streets must be
cleaned during the summer and plowed during the winter. Chapter 10 introduces vehicle routing problems and models as they arise in the delivery of services.

In addition to the mathematical derivation and formulation of the models outlined in the text, the book includes numerous sections summarizing how to implement the models using Microsoft ${ }^{\oplus}$ Office Excel ${ }^{\circledR}$. These sections are highlighted in the text, just as this paragraph is highlighted. The example spreadsheets are available from the author's website. Equations or formulae in Excel are enclosed in single quotes such as ' $\operatorname{IF}(\mathrm{C} 1<0,1,0)$ '. This discussion and the spreadsheets should make the models accessible to a broader audience.

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

The course that I taught at Northwestern University, which operates on a 10-week quarter system, had prerequisites of (a) deterministic optimization, (b) probability, (c) statistics, and (d) stochastic modeling, including an introduction to queueing theory. Thus, students were largely well-prepared in terms of methodological backgrounds. Because of their background in optimization, after a quick summary of the first chapter, I was able to cover only sections 2.8 and 2.9 of Chapter 2. I usually did a one- or two-day review of queueing theory including a quick introduction to time-dependent problems covered in section 3.7. I typically would spend two weeks on location models (Chapter 4). My coverage of inventory theory focused on the newsvendor problem (section 5.6). Resource allocation problems (Chapter 6) were typically introduced during the review of optimization. I would often spend a week each on Chapters 7 and 8 on short-term and long-term workforce management. Topics from Chapter 9 on priority queueing systems, call centers, and customer scheduling typically rounded out the course. Routing and inventory were, with the exception of the newsvendor problem, not covered in the course as there was a separate supply chain management course as well as a production scheduling course that covered routing and inventory. Although students had to take only one of the three courses-supply chain management, production scheduling, or service operations managementmany students took two or even all three of the courses. Excessive duplication of material was deemed inappropriate by those of us teaching these three courses.

In short, I encourage faculty and students using the text to pick and choose those topics that are of most interest to them. For students with a strong methodological background in optimization and stochastic modeling, Chapters 4 through 10 should generally stand on their own and can, to a large extent, be covered in any order and in a level of detail that suits the instructor and the class.

I hope you enjoy using the text as much as I enjoyed writing it and teaching the course, which was the genesis of the book.

Mark S. Daskin

