SERVICE SCIENCE

Mark S. Daskin

This page intentionally left blank

SERVICE SCIENCE

This page intentionally left blank

SERVICE SCIENCE

Mark S. Daskin

Department of Industrial and Operations Engineering University of Michigan Ann Arbor, MI

A JOHN WILEY & SONS, INC., PUBLICATION

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Catologing-in-Publication Data

Daskin, Mark S., 1952-

Service science / Mark S. Daskin.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-52588-3 (cloth)

1. Operations research. 2. Service industries-Management. 3. Service industries-Planning. I. Title.

T57.6.D3733 2010 658.4'034–dc22

2010010792

Printed in Singapore

10 9 8 7 6 5 4 3 2 1

My parents, Walter ז"ל and Betty, My daughters, Tamar and Keren, And my wife, Babette

То

This page intentionally left blank

CONTENTS

List	of Fig	jures	xi
List	of Tal	bles	xxi
Prefa	Preface		
Ackr	Acknowledgments		xxix
1	WH	Y STUDY SERVICES?	1
	1.1	What Are Services?	1
	1.2	Services as a Percent of the Economy	6
	1.3	Public versus Private Service Delivery	10
	1.4	Why Model Services?	11
	1.5	Key Service Decisions	13
	1.6	Philosophy about Models	16
	1.7	Outline of the Book	22
	1.8	Problems	25
		References	26
PAR	гі м	lethodological Foundations	27
2	OPT	IMIZATION	29
	2.1	Introduction	30
	2.2	Five Key Elements of Optimization	31
	2.3	Taxonomy of Optimization Models	34
	2.4	You Probably Have Seen One Already	37
	2.5	Linear Programming	41
	2.6	Special Network Form	60
	2.7	Integer Problems	65
	2.8	Multiple Objective Problems	80
	2.9	Mark's Ten Rules of Formulating Problems	101

	2.10	Problems	106
		References	108
3	OUF		111
•	3.1	Introduction	111
	3.2	What Is Oueueing Theory?	119
	3.3	Key Performance Metrics for Oueues and Little's Law	122
	3.4	A Framework for Markovian Queues	124
	3.5	Key Results for Non-Markovian Queues	153
	3.6	Solving Queueing Models Numerically	155
	3.7	When Conditions Change Over Time	170
	3.8	Conclusions	175
	3.9	Problems	176
		References	182
Part	ll Ap	plication Areas	183
4	LOCA	ATION AND DISTRICTING PROBLEMS IN SERVICES	185
	4.1	Example Applications	186
	4.2	Taxonomy of Location Problems	189
	4.3	Covering Problems	203
	4.4	Median Problems—Minimizing the Demand-Weighted	
		Average Distance	226
	4.5	Multi-Objective Models	236
	4.6	Districting Problems	244
	4.7	Franchise Location Problems	262
	4.8	Summary and Software	270
	4.9	Problems	2/1
		References	281
5	INVE	NTORY DECISIONS IN SERVICES	285
	5.1	Why Is Inventory in a Service Modeling Book?	285
	5.2	EOQ—A Basic Inventory Model	287
	5.3	Extensions of the EOQ Model	292
	5.4	Time-Varying Demand	304
	5.5	Uncertain Demand and Lead Times	310
	5.6	Newsvendor Problem and Applications	316
	5.7	Summary	324

	5.8	Problems	325
		References	339
6	RES	OURCE ALLOCATION PROBLEMS AND DECISIONS	
	IN S	ERVICES	341
	6.1	Example Resource Allocation Problems	342
	6.2	How to Formulate an Assignment or Resource Allocation	
		Problem	346
	6.3	Infeasible Solutions	350
	6.4	Assigning Students to Freshman Seminars	358
	6.5	Assigning Students to Intersession Courses	363
	6.6	Improving the Assignment of Zip Codes to Congressional Districts	369
	6.7	Summary	372
	6.8	Problems	373
		References	375
7	SHO	RT-TERM WORKFORCE SCHEDULING	377
	7.1	Overview of Scheduling	377
	7.2	Simple Model	380
	7.3	Extensions of the Simple Model	385
	7.4	More Difficult Extensions	390
	7.5	Linking Scheduling to Service	394
	7.6	Time-Dependent Queueing Analyzer	404
	7.7	Assigning Specific Employees to Shifts	406
	7.8	Summary	408
	7.9	Problems	409
		References	413
8	LON	G-TERM WORKFORCE PLANNING	415
	8.1	Why Is Long-Term Workforce Planning an Issue?	416
	8.2	Basic Model	418
	8.3	Grouping of Skills	421
	8.4	Planning over Time	427
	8.5	Linking to Project Scheduling	432
	8.6	Linking to Personnel Training and Planning in General	446
	8.7	Simple Model of Training	449
	8.8	Summary	452
	8.9	Problems	454
		References	458

9	PRIO SCHE	RITY SERVICES, CALL CENTER DESIGN, AND CUSTOMER	459
	9.1	Examples	459
	9.2	Priority Queueing for Emergency and Other Services	464
	9.3	Call Center Design	475
	9.4	Scheduling in Services	492
	9.5	Summary	502
	9.6	Problems	504
		References	512
10	VEHI	CLE ROUTING AND SERVICES	515
	10.1	Example Routing Problems	516
	10.2	Classification of Routing Problems	517
	10.3	Arc Routing	518
	10.4	The Traveling Salesman Problem	527
	10.5	Vehicle Routing Problems	548
	10.6	Summary	557
	10.7	Problems	560
		References	564
11	WHE	RE TO FROM HERE?	567
	11.1	Introduction	568
	11.2	Other Methodologies	568
	11.3	Other Applications in Services	572
	11.4	Summary	575
		References	575
Inde	x		577

Appendixes and a full list of References are posted online.

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

LIST OF FIGURES

Figure 1.1	Gross domestic product over 60 years	7
Figure 1.2	Percentage breakdown of the gross domestic product	8
Figure 1.3	U.S. non-farm employment by major sector, June 2009	9
Figure 1.4	U.S. private service employment, June 2009	10
Figure 1.5	Schematic of the modeling/decision-making process	17
Figure 2.1	Taxonomy of optimization models	35
Figure 2.2	Sample data points, one possible line through the data	
U	and the associated errors	38
Figure 2.3	Sample data points, one possible line through the data	
C .	and the associated squared errors	39
Figure 2.4	Best line through the data	40
Figure 2.5	Feasible region for a simple linear programming problem	42
Figure 2.6	Feasible region and objective function contours	43
Figure 2.7	Adding a constraint that degrades the solution	45
Figure 2.8	Adding a constraint that does not change the solution	45
Figure 2.9	Example budget allocation problem in Excel	55
Figure 2.10	Solver Parameters dialog box	57
Figure 2.11	Add Constraint dialog box in Excel Solver	57
Figure 2.12	Solver Options dialog box	58
Figure 2.13	Solver Results dialog box	59
Figure 2.14	Dual menu in What's Best	59
Figure 2.15	Simple network for shortest path from Chicago to	
-	New Orleans	61
Figure 2.16	Solution to shortest path problem of Figure 2.15	62
Figure 2.17	Network for student-seminar assignment problem	63
Figure 2.18	Figure for maximum flow problem	65
Figure 2.19	Feasible region with integer solutions highlighted	66
Figure 2.20	Specifying integer variables in the Excel Solver	67
Figure 2.21	Specifying integer variables in What's Best	67
Figure 2.22	Integer optimal solution to the police/fire problem	68
Figure 2.23	Integer optimal solution with enhanced budget	68
Figure 2.24	First branching in the branch and bound tree	73
Figure 2.25	The branch and bound tree for the police/fire allocation	
	problem	74
Figure 2.26	Nearest neighbor solution starting at Illinois	76
Figure 2.27	Tour before 2-opt algorithm	77

Figure 2.28	Tour after 2-opt algorithm	77
Figure 2.29	Tour starting in Illinois after 2-opt algorithm	78
Figure 2.30	Example encoding for a genetic algorithm	79
Figure 2.31	Regions of interest for a non-dominated solution with	
C	two minimization objectives	81
Figure 2.32	Sample average and maximum distance tradeoff curve	82
Figure 2.33	Distances and displeasure values from Chicago to New	
C	Orleans	83
Figure 2.34	Distance vs. displeasure solutions	84
Figure 2.35	All 455 solutions to average vs. maximum distance	
U	tradeoff for 3 sites selected from 15 candidate locations	85
Figure 2.36	First two solutions in non-dominated path solutions for	
C	the example in Figure 2.33	86
Figure 2.37	First three solutions in the weighting method	87
Figure 2.38	Example multi-objective shortest path problem in Excel	89
Figure 2.39	Minimizing the displeasure	90
Figure 2.40	Weight computation	90
Figure 2.41	Third solution computation	90
Figure 2.42	Weight computation between (979,220) and (1,061,205)	
U	solutions	91
Figure 2.43	Weight computation between (1,061,205) and (1,347,193)	
-	solutions	91
Figure 2.44	Finding the first solution using the constraint method	93
Figure 2.45	First solution found using the constraint method	94
Figure 2.46	Constraining the displeasure to be less than or equal	
	to 219	95
Figure 2.47	First two solutions found using the constraint method	95
Figure 2.48	Constraining the displeasure to be less than or equal	
	to 204	96
Figure 2.49	First three solutions found using the constraint method	96
Figure 2.50	Constraining the displeasure to be less than or equal	
	to 202	97
Figure 2.51	First four solutions found using the constraint method	97
Figure 2.52	Linear programming solution to constrained shortest	
	path problem	98
Figure 2.53	Multi-objective shortest path problem using a matrix of	
	decision variables	100
Figure 2.54	Variable linkage	103
Figure 3.1	Sample service time distributions	113
Figure 3.2	Effect of average service time and service time variability	
	on patient waiting time with patients arriving exactly as	
	scheduled	114
Figure 3.3	Effect of average service time and service time variability	
	on patient waiting time for those who wait with patients	
	arriving exactly as scheduled	115

Figure 3.4	Effect of average service time and service time variability	
	with percentage of patients who have to wait for service	116
Eiguro 2.5	Effort of average service time and service time veriability	110
Figure 5.5	Effect of average service time and service time variability	
	on patient waiting time with patients arriving uniformity	116
Eigung 26	Effort of courses convice time and convice time verice tilty	110
Figure 5.0	Effect of average service time and service time variability	
	on patient waiting time with patients arriving uniformly	
	about the scheduled appointment time, using a triangular	117
Figure 27	Effect of every correct correction and correct time verificity	11/
rigule 5.7	en notions weiting time for these who weit with notions	
	on patient waiting time for those who wait with patients	
	arriving exactly as scheduled, using a triangular service	110
Elaura 2.0	Unite distribution Deletionship between emissile and depertures	110
Figure 3.8	State transition discourse	123
Figure 3.9	State transition diagram	129
Figure 5.10	isolating state / to consider the probability now in and	120
E	Out of the state	129
Figure 3.11	Cutting between two states to consider the probability	120
E	Now to the right and left of the cut $M/M/1$ success	120
Figure 3.12	State transition diagram for the $M/M/1$ queue	131
Figure 3.13	Performance versus utilization for an $M/M/1$ queue	132
Figure 3.14	State transition diagram for the <i>M/M</i> /1 queue with a	127
E	Assume that is the surface and with the surface of	137
Figure 3.15	Average time in the system goes up with the number of	140
Elemen 2.16	The solution of an $M/M/c$ shows with 2 accurated accurate	140
Figure 5.16	schematic of an <i>M/M/s</i> queue with 3 occupied servers	1 4 1
Eigung 2 17	and 4 customers waiting for service $M(M/r)$ shows	141
Figure 3.17	State transition diagram for the <i>M/M/s</i> queue	141
Figure 5.18	Example time in the system and in waiting for $M/M/C$ gives with a mean service time of	
	an <i>M/M/</i> 0 queue with a mean service time of	144
Figure 2 10	2 initiates $C_{\text{comparison of the time in the system for an } M/M/6$	144
Figure 5.19	Comparison of the time in the system for an $M/M/0$	140
Figure 2 20	queue and an $M/M/1$ queue with $\frac{1}{6}$ the arrival rate	140
Figure 3.20	State transition diagram for an $M/M/\infty$ queue with po	149
Figure 3.21	state transition diagram for all <i>m/m/s</i> queue with no	150
Figure 2 22	State transition diagram for a problem with renaging	150
Figure 3.22	Simulated and theoretical values for an $M/M/3$ queue	150
Figure 3.23	Simulated and metoretical values for an $10/10/5$ queue Besults of four simulation runs with $1 = 3.75$	165
Figure 3.24	Results of four simulation runs with $\lambda = 5.75$	167
Figure 3.25	Theoretical waiting time, average of 10 simulated runs	107
1 igure 5.20	and the upper and lower 05 percent confidence intervals	
	for the mean based on the simulated values for an $M/M/3$	
	on the mean based on the simulated values for all M/M/ 5	168
	queue	100

Figure 3.27	Approximate (theoretical) waiting time, average of 10 simulated runs and the upper and lower 95 percent	
	confidence intervals for the mean based on the simulated	
	values for an $M/E_9/3$ queue	169
Figure 3.28	Sample time dependent queueing analyzer output	173
Figure 3.29	Sample probability of waiting results	174
Figure 3.30	Steady state (red) and time-dependent (green)	
	probability mass functions	175
Figure 4.1	Taxonomy of location models	189
Figure 4.2	Example service region and directions of travel	190
Figure 4.3	Simple analytic model of facility and transport costs	191
Figure 4.4	Ratio of total cost to optimal cost as a function of the	
	ratio of the number of sites to the optimal number of sites	192
Figure 4.5	Weber problem solution using Pennsylvania county data	195
Figure 4.6	Sample tree network for the 10 largest U.S. cities	197
Figure 4.7	Taxonomy of discrete location models	200
Figure 4.8	Simple network for covering problems	204
Figure 4.9	Excel implementation of the set covering model for the	
	seven-node network shown in Figure 4.8 with a coverage	
	distance of 8	206
Figure 4.10	Percent covered vs. number of sites for three	
	coverage distances	212
Figure 4.11	Solution covering 90 percent of the demand at 200 miles	
	with only 13 sites	214
Figure 4.12	Excel solution for small maximal covering model for the	
	network in Figure 4.8	216
Figure 4.13	Simple two-node network	218
Figure 4.14	Maximum expected covering model for the network in	
	Figure 4.8	223
Figure 4.15	Expected coverage vs. number located for the network of	
	Figure 4.8	226
Figure 4.16	Solution of the three-median problem on the network of	
	Figure 4.8	229
Figure 4.17	Average distance vs. the number of facilities for the	
	network of Figure 4.8	230
Figure 4.18	Fixed charge location model for the network of	
	Figure 4.8	232
Figure 4.19	Excel solution to the vertex four-center problem for the	
	network of Figure 4.8	235
Figure 4.20	Median/coverage tradeoff model for the network of	
	Figure 4.8	239
Figure 4.21	Tradeoff between coverage and average distance using	
	three and four facilities for the network of Figure 4.8	240
Figure 4.22	Center/median tradeoff model for the network of	
	Figure 4.8	242

Figure 4.23	Tradeoff between average and maximum distance for	
-	three, four, and five facilities using the network of	
	Figure 4.8	243
Figure 4.24	Center/median tradeoff for 250 largest counties with 10	
C	facilities	244
Figure 4.25	Compromise solution with average distance of 132.9 miles	
U	and a maximum of 418 miles	245
Figure 4.26	Simple districting example	247
Figure 4.27	Figure illustrating closest assignment constraints (4.48)	249
Figure 4.28	Inputs, decision variables, and objective function for	
C	simple districting model for the network of Figure 4.8	251
Figure 4.29	Constraints for the simple districting model for the	
0	network of Figure 4.8	252
Figure 4.30	U.S. Congressional districts in Illinois	254
Figure 4.31	Sample results of districting at the zip code level	
8	in Illinois	255
Figure 4.32	Another heuristic solution to the districting problem in	
8	Illinois	255
Figure 4.33	A third heuristic solution to the districting problem in	200
1.6414 1.000	Illinois	256
Figure 4.34	Example demand functions	264
Figure 4.35	Results of varying the cost per item per mile in the profit	
	maximization model using the network of Figure 4.8	267
Figure 4.36	Results of varying the demand factor in the profit	
	maximization model using the network of Figure 4.8	268
Figure 4.37	Results of the maximum capture model for three	200
8	competitor location sets using the network of Figure 4.8	270
Figure 5.1	Basic economic order quantity relationships	288
Figure 5.2	EOO cost components	290
Figure 5.3	Percent error in total cost as a function of deviations in	
1.6410 010	the order quantity	291
Figure 5.4	EOO model with backorders	292
Figure 5.5	Percent savings in total cost as a function of	
	the backorder/holding cost ratio	294
Figure 5.6	EOO model with production at the beginning of	_ >.
inguie bio	each phase	294
Figure 57	Inputs and decision variables for multiple-SKU problem	221
119410 517	with SKU-specific order frequencies and an overall order	
	frequency	297
Figure 5.8	Objective function and constraints for problem with	271
i igui e 5.6	SKU-specific order frequencies within an overall order	
	frequency	298
Figure 5.9	Solving a space constrained FOO problem	300
Figure 5.10	Using Goal Seek to find alpha	301
Figure 5.11	Results of using Goal Seek to find alpha	301
inguit J.II	Results of using Obar Seek to find alpha	501

Figure 5.12	Using the Solver to find alpha	302
Figure 5.13	Solving a value-constrained EOQ problem	303
Figure 5.14	Using a spinner to solve a value or space constrained	
-	EOQ problem	303
Figure 5.15	Percent of annual dollar sales by month for paint and	
-	wallpaper stores	305
Figure 5.16	Inventory on hand for inventory computation	305
Figure 5.17	Inventory planning as a shortest path problem	306
Figure 5.18	Optimal solution to the inventory problem of Table 5.4	
	with a fixed order cost of \$10,000 and a per unit monthly	
	carrying cost of \$2	308
Figure 5.19	Stochastic inventory simulation (no stockouts)	311
Figure 5.20	Stochastic inventory simulation (with stockouts)	311
Figure 5.21	Stochastic inventory simulation with exponentially	
	distributed lead times	312
Figure 5.22	Computing the reorder point for a given fill rate	315
Figure 5.23	Using the Solver to solve equation (5.26) for the reorder	
	point	316
Figure 5.24	Example post-tax post-health care funds	321
Figure 6.1	Sample inputs for a simple assignment problem	348
Figure 6.2	Sample decision variables, objective and constraints for	
	a small assignment problem	349
Figure 6.3	Example ranking of shifts by volunteers (feasible case)	351
Figure 6.4	Example assignment of volunteers to shifts	351
Figure 6.5	Revised availability of volunteers (infeasible case)	351
Figure 6.6	Penalties for using dummy shifts and volunteers	352
Figure 6.7	An optimal solution using a dummy shift and a dummy	
	volunteer	352
Figure 6.8	Network flow diagram corresponding to preferences of	
	Figure 6.3	354
Figure 6.9	Network flow diagram with non-selected assignments	
	included to ensure feasibility	356
Figure 6.10	Adding a dummy volunteer and dummy time period to	
	the network flow diagram	357
Figure 6.11	Pareto chart of sample seminar first choices	360
Figure 6.12	Network diagram approximating the IMSA class	
	assignment problem	366
Figure 6.13	Number of IMSA students assigned to first through	
	fourth choices	368
Figure 6.14	Class assignments relative to capacity	368
Figure 7.1	Workforce management and services	378
Figure 7.2	Workforce management and scheduling decisions and	
	their impact on service quality	379
Figure 7.3	Short-term scheduling and customer service	379

Figure 7.4	Inputs for the basic employee scheduling problem	382
Figure 7.5	costs and sample matrix of a_{kj} terms showing whether an employee starting work at time j (a column) will be on	202
F ' 7 (duty at time k (a row)	383
Figure 7.6	Decision variables, objective, and constraints for simple	2 04
F : 7	scheduling problem	384
Figure 7.7	Network representation of simple scheduling problem	385
Figure 7.8	Network flow diagram with overtime links	386
Figure 7.9	Network flow diagram with part-time and overtime links	387
Figure 7.10	Sample coefficients a_{kg} indicating if an employee	
	who starts work at time j is on duty at time k	391
Figure 7.11	Network diagram for 24-hour scheduling	392
Figure 7.12	Inputs for a 24-hour scheduling problem	393
Figure 7.13	Sample 24-hour matrix of a_{kj} terms for 12-hour shifts	394
Figure 7.14	Sample inputs for a problem with endogenous service	
	level determination	397
Figure 7.15	Continuous and step-wise demand profiles	398
Figure 7.16	a _{ki} coefficients for the nurse scheduling example with	
-	service determination	399
Figure 7.17	Decision variables for the nurse scheduling problem with	
C	service determination	399
Figure 7.18	Objective function for nurse scheduling problem with	
C	service determination	400
Figure 7.19	Constraints for the nurse scheduling problem with	
0	service determination	400
Figure 7.20	Staff. Waiting, and Total Cost as a function of the number	
8	of nurses	402
Figure 7.21	Comparison of total person hours in the system when	
	nurses start every hour versus when the can start every	
	fourth hour	403
Figure 7.22	Time dependent queueing analyzer results for 25	100
1 igure 7.22	employees with starting times as found using the	
	ontimization model of section 7.5	405
Figure 7.23	Time dependent queueing analyzer results for 25	405
11guie 7.23	employees with improved starting times	405
Figure 81	Sample inputs for a problem with skill sets	403
Figure 8.2	Decision variables for a problem with skill sets	423
Figure 8.2	Objective function and comple constraints for a problem	424
Figure 6.5	with skill soto	125
Eiguno 94	With Skill Seis	423
Figure 8.4	Network now structure for example problem with	126
Eigung 95	SKIII SEIS	420
Figure 8.5	Requirements, availability, and contractor needs by skill	100
F ' 0.4	and month	429
Figure 8.6	Analysis of statistician requirements	431

Figure 8.7	Analysis of HTML programmer requirements	431
Figure 8.8	Analysis of manager requirements	432
Figure 8.9	Flow conservation of projects—constraint (8.27)	437
Figure 8.10	Sample inputs for joint project scheduling/workforce	
-	management problem	438
Figure 8.11	Decision variables for a joint project scheduling/workforce	
_	management problem	438
Figure 8.12	Part of the constraints for a joint project-scheduling/	
-	workforce management problem	440
Figure 8.13	Number of projects active in each month of the project by	
-	month of the year	441
Figure 8.14	Constraints (8.27) for the example project scheduling/	
0	workforce management problem	441
Figure 8.15	Objective function for the example project scheduling/	
-	workforce management problem	441
Figure 8.16	Sample tradeoff results for a joint project scheduling/	
0	workforce management problem	442
Figure 8.17	Breakdown of labor cost vs. rescheduling cost	443
Figure 8.18	Probability mass function for the number of projects	445
Figure 8.19	Expected cost vs. number of planned projects	447
Figure 8.20	Example determination of number to train	451
Figure 9.1	Schematic of different queueing systems	461
Figure 9.2	Time in a 24-server queue as a function of the utilization	
C	ratio and the number of lines	461
Figure 9.3	Relative time in a 24-server queue as a function of the	
÷	utilization ratio and the number of lines	462
Figure 9.4	Priority queueing service disciplines	465
Figure 9.5	Base case waiting times by class	468
Figure 9.6	Impact of increased arrival rates for class 3 and class 4	
	customers on class 4 waiting time	469
Figure 9.7	Impact of service time variance on waiting times	472
Figure 9.8	Performance metrics as the number of servers increases	
	holding the utilization ratio equal to 0.95	478
Figure 9.9	Number of extra servers needed to provide a given level	
	of service versus the offered load	479
Figure 9.10	Approximating the number of extra servers required by	
	the normal approximation	480
Figure 9.11	Extra servers needed vs. offered load for three levels	
	of service	480
Figure 9.12	Actual state probabilities and normal approximation for	
	a small queue	481
Figure 9.13	State transition diagram for an <i>M/M/s</i> queue with	
	reneging or abandonment	484
Figure 9.14	Numerically computing the state probabilities for	
	an <i>M/M/s</i> queue with abandonment	485

Figure 9.15	Computation of approximate waiting probabilities	488
Figure 9.16	Example simulation results: Total time and waiting time	491
Figure 9.17	Example simulation results: P(abandon), P(busy), P(wait)	491
Figure 9.18	Two sample base case realizations	495
Figure 9.19	Two sample realizations using the Bailey-Welch rule	497
Figure 9.20	Sample simulation realizations from scheduling with 2	
_	minutes of expected slack between patient arrivals	498
Figure 9.21	Overtime and delay vs. the policy when procedures	
-	are scheduled in order of decreasing standard deviation	501
Figure 9.22	Overtime and delay vs. the policy when procedures	
	are scheduled in order of increasing standard deviation	502
Figure 10.1	Schematic of the city of Königsberg	519
Figure 10.2	Abstraction of the city of Königsberg as a set of nodes	
	and arcs	519
Figure 10.3	Example undirected network	520
Figure 10.4	Simple network of Figure 10.3 with odd-degree nodes	
	highlighted	520
Figure 10.5	Optimal matching of the odd-degree nodes of Figure 10.4	521
Figure 10.6	Example directed network for the Chinese Postman	
	Problem	525
Figure 10.7	Augmented network for the directed CPP of Figure 10.6	526
Figure 10.8	Example network for the traveling salesman problem	529
Figure 10.9	Inputs for the traveling salesman problem for the network	
	of Figure 10.8	530
Figure 10.10	Decision variables and objective function for the TSP on	
	the network of Figure 10.8	531
Figure 10.11	Constraints for the TSP on the network of Figure 10.8	531
Figure 10.12	Solution to the assignment model for the TSP of	
	Figure 10.8	532
Figure 10.13	Solution to the TSP of Figure 10.8 after adding subtour	
	elimination constraints	532
Figure 10.14	Subtour elimination constraints for the solution shown in	
	Figure 10.12	532
Figure 10.15	TSP route using the myopic algorithm beginning at	
	node A	536
Figure 10.16	TSP route using the myopic algorithm beginning at node I	536
Figure 10.17	Optimal TSP route for the data in Table 10.4	537
Figure 10.18	Creating spacefilling curves in a square	537
Figure 10.19	Spacefilling curve approach for the data of Table 10.4	538
Figure 10.20	Illustration of Kruskal's MST algorithm for the network	
	of Figure 10.8	540
Figure 10.21	Illustration of Prim's MST algorithm for the network of	
	Figure 10.8	542
Figure 10.22	MST with optimal matching of odd degree (shaded)	
	nodes	542

Figure 10.23	Christofides' heuristic result after removing multiple	
-	visits to nodes E, H, and I	543
Figure 10.24	Illustration of the 2-opt algorithm	544
Figure 10.25	Tour of Figure 10.15 after removing links AF and BD	545
Figure 10.26	Tour of Figure 10.25 after removing links GC and FB	546
Figure 10.27	Illustration of Or-opt algorithm	546
Figure 10.28	2-opt heuristic applied to the route of Figure 10.16	547
Figure 10.29	Or opt heuristic applied to the route of Figure 10.16	548
Figure 10.30	Sweep algorithm results rotating counterclockwise from	
	node 0	551
Figure 10.31	Best sweep routes found by rotating counterclockwise	
	from node 9	551
Figure 10.32	Improved routes beginning with best sweep routes of	
	Figure 10.31	552
Figure 10.33	Savings algorithm	553
Figure 10.34	An interior node in a route	554
Figure 10.35	Savings algorithm routes for the example of Table 10.6	554
Figure 10.36	Results of randomized savings algorithm	556

LIST OF TABLES

Table 1.1	Some of the services we commonly use	3
Table 1.2	Breakdown of U.S. employment in June 2009	9
Table 2.1	Sample independent variable (X) and dependent variable	
	(Y) values	39
Table 2.2	Node-arc incidence matrix for the network of Figure 2.15	61
Table 2.3	First two non-dominated path solutions for the example in	
	Figure 2.33	85
Table 2.4	First three solutions to problem shown in Figure 2.33	87
Table 3.1	Example performance for a simple toll booth	133
Table 3.2	Increases in the variance and standard deviation of	
	the number in the system as the utilization ratio increases	134
Table 3.3	Probability that the time in the system and the waiting time	
	exceed a given value for $\lambda = 300$ and $\mu = 360$ vehicles	
	per hour	136
Table 3.4	Average number in the system as a function of	
	the utilization ratio $\rho_{\rm c}$ and the maximum number in	
	the system. M	138
Table 3.5	Example performance of an $M/M/6$ queue with a mean	
	service time of 2 minutes	143
Table 3.6	Performance measures as a function of the number of	1.0
	agents	145
Table 3.7	Probability of waiting more than a given time for an $M/M/6$	
	queue with 2.92 arrivals per minute (or 175 per hour), and	
	a mean service time of 2 minutes	146
Table 3.8	Comparison of an $M/M/6$ queue with an $M/M/1$ queue with	2.00
	$\frac{1}{2}$ the arrival rate	147
Table 3.9	Example results for an $M/M/10$ queue with no waiting	
	capacity	152
Table 3.10	Summary of analytic queueing results	156
Table 3.11	One realization of a simulation of the first 10 customers at	
	an $M/M/3$ queue with $\lambda = 3$ and $\mu = 2$	165
Table 4.1	Aggregate vs. disaggregate use of simple analytic model	
	for lower 48 states	193
Table 4.2	Shortest path distances on the tree shown in Figure 4.6	197
Table 4.3	Demand-weighted distances for each candidate city in	•
	Figure 4.6	199
	0	

Table 4.4	Table of shortest path distances for the network of Figure 4.8	205
Table 4.5	Table of coverage coefficients for the shortest path distances	
	in Table 4.4 and a coverage distance of 8	205
Table 4.6	Population and percent covered vs. number of sites for three	
	coverage distances	213
Table 4.7	Maximal covering model results for the network shown in	
	Figure 4.8 using a coverage distance of 5	217
Table 4.8	Results of using the maximal covering model to solve the	
	four-center problem for the network of Figure 4.8	219
Table 4.9	Expected coverage vs. number located for three values of	
	the P(busy) using the network of Table 4.8	225
Table 4.10	Varying the number of facilities located for the network of	
	Figure 4.8	230
Table 4.11	Fixed charge location model solutions as a function of the	
	cost per item per mile	233
Table 4.12	Effect of changing the number of facilities on the maximum	
	distance	234
Table 4.13	Tradeoff between coverage and average distance using	
	three and four facilities for the network of Figure 4.8	240
Table 4.14	Results of using the districting model on the network of	
	Figure 4.8	253
Table 4.15	Results of using the enhanced districting model on the	
	network of Figure 4.8	259
Table 4.16	Base case inputs for sample profit maximization model	265
Table 4.17	Results of varying the cost per item per mile in the profit	
	maximization model using the network of Figure 4.8	266
Table 4.18	Results of varying the demand factor in the profit	
	maximization model using the network of Figure 4.8	267
Table 5.1	Example inputs for multiple SKU examples	295
Table 5.2	Naive model results	296
Table 5.3	Optimal total cost with a single joint order	296
Table 5.4	Example monthly demand data	307
Table 5.5	Comparison of infinite horizon and finite horizon annual	
	costs for the data of Table 5.4 with a per unit per month	
	holding cost of \$10	309
Table 5.6	Example probabilities of dress sales	317
Table 5.7	Net profit as a function of number of dresses purchased	317
Table 5.8	Sample probability mass function for the number of	
	snowfalls	323
Table 5.9	Expected cost for each number of contracted plowings	324
Table 6.1	Example resource allocation problems	343
Table 6.2	Summary of ways of handling infeasibility	357
Table 6.3	Sample student rankings of seminars	358
Table 6.4	Results for student/seminar assignment model with linear	
	costs	361

Table 6.5	Results for student/seminar assignment model with concave	2(2
T 11 ((COSIS	362
Table 6.6	Link parameters for network flow diagram in Figure 6.12	366
Table 6.7	Results for the districting seeds shown in Figure 4.31	3/2
Table 7.1	Example workforce requirements by time of day	381
Table 7.2	Summary of costs and employee counts for the example of	207
TIL 7 0	Table 7.1	38/
Table 7.3	Example cook and CSR requirements	388
Table 7.4	Sample results for nurse scheduling problem with service	101
	determination	401
Table 7.5	Total person hours in the system as a function of the number	40.0
— • • • • •	of nurses employed and how frequently they can start a shift	403
Table 8.1	Example inputs for simple workforce planning model	420
Table 8.2	One optimal solution to the simple problem of Table 8.1	421
Table 8.3	Sample data for a problem over time	428
Table 8.4	Requirements, availability and contractor needs	430
Table 8.5	Optimal number of our own employees to hire when we	
	plan for 9 projects	446
Table 8.6	Results of uncertainty analysis in the joint project	
	scheduling/workforce management problem	446
Table 9.1	Maximum number of servers that allow equation (9.1) to be	
	computed in Excel	463
Table 9.2	Comparison of equations (9.1) and (9.2)	464
Table 9.3	Sample priority queueing results: Single server, Poisson	
	arrivals, exponential service	467
Table 9.4	Example data for setting the priority classes	470
Table 9.5	Evaluation of all possible class orderings for the inputs of	
	Table 9.4	470
Table 9.6	Example data for setting the priority classes with values of	
	customer waiting time	471
Table 9.7	Evaluation of all possible class orderings for the inputs of	
	Table 9.6	471
Table 9.8	Impact of increasing the number of servers while holding	
	the utilization ratio fixed	474
Table 9.9	Comparison of queueing with and without preemption	475
Table 9.10	Example of approximating the probability of waiting with the	
	normal distribution	482
Table 9.11	Number of servers needed to attain a given level of service	483
Table 9.12	The Halfin-Whitt approximation	483
Table 9.13	Best approximation as a function of beta and theta/mu	490
Table 9.14	Base case parameters for patient scheduling example	494
Table 9.15	Sample results for base case inputs	495
Table 9.16	Sample results for Bailey-Welch rule	496
Table 9.17	Sample results from scheduling patients with 2 minutes of	
	expected slack between patient arrivals	497
	enpetted shall between puter arrivals	171

Table 9.18	Impact of the policy input on scheduled surgical times for a	
	2-hour procedure	500
Table 10.1	Pairs of odd-degree nodes than can be paired from the	
	network of Figure 10.4	521
Table 10.2	Number of possible pairings as a function of the number of	
	odd-degree nodes in a network	523
Table 10.3	In-degree and out-degree of each node in Figure 10.6	526
Table 10.4	Sample coordinates for a TSP problem	534
Table 10.5	Inter-nodal distances for the problem with coordinates	
	shown in Table 10.4	535
Table 10.6	Sample routing data	550

xxiv

PREFACE

We depend on services and service providers for many of our day-to-day activities, from the news we wake up to on our clock radio to the e-mail we check before breakfast, from the dry cleaner we stop at on our way to work to the express mail delivery service that dropped off our latest holiday gifts, from the cute corner bistro we patronize daily for lunch to the movie theater at which we unwind on the weekends. Many services are implicit in our lives including banking, investments, insurance, police and fire services, and (hopefully) our heath care providers. Without service providers, our lives would simply not be what they are today.

The service sector in the United States is rapidly growing as a percentage of the economy. Sixty years ago, the service sector represented only 20 percent of the gross domestic product; today, services account for over 40 percent of the gross domestic product. The percentage of the GDP accounted for by the production of non-durable goods (e.g., food, clothing, and energy) has seen a commensurate decline. In 1960, slightly less than one out of every two people employed in the United States was employed in the service sector; today, more than two out of every three employees work in some form of service industry.

Given our daily dependence on services and the enormous role that the service sector plays in the economy—not only of the United States, but also of every developed country around the world—it is important that we understand the operation of this sector and that services be provided in an efficient and effective manner. Much of the current debate in the United States over health care reform—and health care is part of the service sector—focuses on ways of increasing access, reducing inequities, and containing costs.

This book will provide students with the tools and background needed to analyze and improve the provision of services in our economy.

Following a brief introduction to the service sector, Part I of the text deals with the methodological background needed to analyze service systems. Two core methodologies are introduced: optimization and queueing modeling. For students who have not had a course on one or both of these topics, these chapters provide the background necessary to master the material in the remainder of the text. In addition, the online Appendix B summarizes probability theory at a level that will allow students who have limited backgrounds to understand the chapter on queueing models.

While many students may have a background in optimization and queueing, topics covered near the end of each chapter are typically not included in

introductory courses. Section 2.8 deals with multi-objective optimization. This is critical in the analysis of many services because service providers must often balance conflicting objectives. A local government operating an emergency medical service department (ambulances) must carefully balance the need for rapid response against the demands for fiscal responsibility. Similarly, a cell phone company must balance the demands for expanded and enhanced service area coverage against the need to show a profit at the end of the year. Section 2.9 addresses a number of common mistakes that students (and professionals) make in formulating optimization problems. Section 3.5 summarizes key queueing results that extend beyond those included in many introductory stochastic processes books. Section 3.6 outlines how to solve queueing models numerically using Excel and section 3.7 discusses queueing problems in which the input or operating conditions change over time. Such problems are critical in the analysis of services. For example, there is typically a three or four to one ratio between the peak and off-peak call rates for emergency medical service. Planning for the average daily arrival rate of calls would lead to serious delays during the peak and excess capacity during the off-peak periods. Many other services experience daily, monthly, or annual spikes in demand. Even students with good backgrounds in optimization and queueing might find these sections useful.

The remainder of the text is devoted to the application of optimization and queueing to the analysis and design of service systems. Chapter 4 deals with strategic decisions regarding the number and location of service facilities. Cell phone service providers must, for example, determine the number and location of their cell phone towers to provide cost-effective coverage to a service region. Fast food restaurants must also determine how many stores to have and where they should be to balance easy access against the possibility of self-cannibalizing the market. Many service providers partition the service region into districts that are then served by individual customer service agents. The chapter concludes with a discussion of districting problems.

Many authors argue that the inability to store services in inventory is a key differentiator between the service sector and the manufacturing sector. A car that is not sold today can be stored in inventory for sale tomorrow or next week. On the other hand, a surgeon who takes an afternoon off from work to watch his son star in a school play cannot place the missed operating room hours in inventory for use later in the week. While the service itself cannot be stored in inventory for future use, many service providers depend critically on the ready availability of inventory to assist in the provision of the services they deliver. The same surgeon relies on the availability of sterile instruments in the operating theater at the beginning of each procedure. The local shoe store must stock shoes in numerous styles and sizes for its customers. Thus, an understanding of inventory problems and decisions is critical for students of the service industries. Furthermore, in contracting for services, individuals and firms must often make commitments before the demand for the services is realized. For example, many of us can place pre-tax funds in special accounts to pay for qualified medical expenses. We must decide in the Fall of one year how much money to set aside

xxvii

during the following year before knowing what our medical expenses will be during the coming year. Any unused funds at the end of a year are lost. Such problems are known as newsvendor problems and are discussed at the end of Chapter 5 on inventory modeling.

At its core, many decisions in the provision of services boil down to resource allocation decisions. A college or university must allocate classroom space to courses. Colleges and universities must also allocate limited dormitory space to students and must also assign students to courses based on the students' preferences and requirements and the availability of space in the courses. Airlines must allocate gates to aircraft. Chapter 6 deals with resource allocation decisions.

Chapters 7 and 8 address short-term and long-term workforce management decisions and problems. In the short-term, service providers must determine how many staff to employ during each period of the day. For example, a hospital must decide how many full-time nurses to hire during each shift. It must also determine how it will staff each unit in the event that the number of patients on the unit exceeds the expected number. Typically, nurses are asked to perform overtime duty or more expensive temporary nurses are hired to fill in for the permanent staff.

In the long-term, providers must determine how many employees to hire, to promote, to release, and to retrain. A consulting firm, for example, needs to determine how many college seniors to hire each year in each of the specialty areas of the firm. Some of the more senior analysts at the firm may be targeted for management training. When the firm's business base changes, the firm may need to either retrain some of its employees or release the less productive members of its staff to make room for newer, better-trained employees in the growth areas. Chapter 8 addresses these problems.

Chapter 9 extends the discussion of queueing models to three particular topics that arise in many service providers. Not all customers are equal. An elderly woman presenting in an emergency room in active cardiac arrest is likely to be served long before a six-year-old boy who fell of his bicycle and who may have a broken leg or twisted ankle. Frequent customers may be flagged for improved service in many industries. Thus, priority service systems comprise the first part of this chapter. Nearly every major company and government service provider operates a call center to provide service to its customers. When it comes to call centers, bigger really is better. The second section of this chapter addresses the design and operation of call centers. Finally, in many services, customers can be scheduled for service. A dermatologist can schedule most of her patients. Issues in customer scheduling are outlined in the final portion of the chapter.

Finally, many services entail the delivery or pickup of customers or goods. A local public school must provide bussing to its students to pick them up from their homes in the morning and to return them home at the end of the school day. Large white goods (refrigerators, freezers, dish washers, washing machines, and dryers) must be delivered to customer homes in a timely manner following the purchase of the items. The mail must be delivered daily and streets must be

cleaned during the summer and plowed during the winter. Chapter 10 introduces vehicle routing problems and models as they arise in the delivery of services.

In addition to the mathematical derivation and formulation of the models outlined in the text, the book includes numerous sections summarizing how to implement the models using Microsoft[®] Office Excel[®]. These sections are highlighted in the text, just as this paragraph is highlighted. The example spreadsheets are available from the author's website. Equations or formulae in Excel are enclosed in single quotes such as 'IF(C1<0,1,0)'. This discussion and the spreadsheets should make the models accessible to a broader audience.

All referenced files may be found at http://umich.edu/~msdaskin/servicescience/

The course that I taught at Northwestern University, which operates on a 10-week quarter system, had prerequisites of (a) deterministic optimization, (b) probability, (c) statistics, and (d) stochastic modeling, including an introduction to queueing theory. Thus, students were largely well-prepared in terms of methodological backgrounds. Because of their background in optimization, after a quick summary of the first chapter, I was able to cover only sections 2.8 and 2.9 of Chapter 2. I usually did a one- or two-day review of queueing theory including a quick introduction to time-dependent problems covered in section 3.7. I typically would spend two weeks on location models (Chapter 4). My coverage of inventory theory focused on the newsvendor problem (section 5.6). Resource allocation problems (Chapter 6) were typically introduced during the review of optimization. I would often spend a week each on Chapters 7 and 8 on short-term and long-term workforce management. Topics from Chapter 9 on priority queueing systems, call centers, and customer scheduling typically rounded out the course. Routing and inventory were, with the exception of the newsvendor problem, not covered in the course as there was a separate supply chain management course as well as a production scheduling course that covered routing and inventory. Although students had to take only one of the three courses-supply chain management, production scheduling, or service operations managementmany students took two or even all three of the courses. Excessive duplication of material was deemed inappropriate by those of us teaching these three courses.

In short, I encourage faculty and students using the text to pick and choose those topics that are of most interest to them. For students with a strong methodological background in optimization and stochastic modeling, Chapters 4 through 10 should generally stand on their own and can, to a large extent, be covered in any order and in a level of detail that suits the instructor and the class.

I hope you enjoy using the text as much as I enjoyed writing it and teaching the course, which was the genesis of the book.