Crystal Growth Technology

HANS J. SCHEEL

SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland hans.scheel@bluewin.ch

TSUGUO FUKUDA

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan t-fukuda@tagen.tohoku.ac.jp

Crystal Growth Technology

Crystal Growth Technology

HANS J. SCHEEL

SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland hans.scheel@bluewin.ch

TSUGUO FUKUDA

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan t-fukuda@tagen.tohoku.ac.jp

Copyright © 2003

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Scheel, Hans J.
Crystal growth technology / Hans J. Scheel, Tsuguo Fukuda.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-49059-8 (pbk. : alk. paper)
1. Crystallization. 2. Crystal growth. I. Fukuda, Tsuguo. II. Title.

TP156.C7S34 2003 660'.284298 - dc21

2003050193

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49059-8

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

CONTENTS

Col	Contributors		xix
Pre	Preface		
	RT 1: G CHNOI	GENERAL ASPECTS OF CRYSTAL GROWTH	1
1	The D	evelopment of Crystal Growth Technology	3
	H. J. S	Scheel	
		Abstract	3
	1.1	Historical Introduction	4
	1.2		5
	1.3	- ,	10
	1.4		13
		References	13
2	Thern	nodynamic Fundamentals of Phase Transitions Applied	
		stal Growth Processes	15
	P. Rua	lolph	
	2.1	Introduction	15
	2.2	Perfect and Real Structure of Grown Crystals	16
		2.2.1 The Principle of Gibbs Free Energy Minimization	16
		2.2.2 Equilibrium Point-defect Concentration	17
	2.3	Thermodynamics of Phase Equilibrium	19
		2.3.1 The Phase Transition	19
		2.3.2 Two-component Systems with Ideal and Real Mixing	21
		2.3.3 Phase Boundaries and Surfaces	23
	2.4	Thermodynamics of Topical Crystal Growth Problems	25
		2.4.1 Mixed Crystals with Nearly Ideal Solid Solution	25
		2.4.2 Systems with Compound Formation	28
		2.4.3 Compositional Modulation and Ordering in Mixed	
		Semiconductor Thin Films	34
	2.5		36
		2.5.1 Driving Force of Crystallization	36
		2.5.2 Growth Mode with Two-dimensional Nucleation	39
		References	40

3		ace-kinetics-driven Facet Formation During Melt Growth	42
		de Crystals	43
	S. Brai	ndon, A. Virozub and Y. Liu	42
	2 1	Abstract	43
		Introduction	44
	3.2	Model Development	46
		3.2.1 Mathematical Formulation	46
	2.2	3.2.2 Numerical Technique	51
	3.3	Results and Discussion	52
		3.3.1 Effect of Operating Parameters on Facetting	52
		3.3.2 Interaction between Melt Flow and Facet Formation	55
		3.3.3 Transparent Crystalline Phase	60
	2.4	3.3.4 Positioning of Facets along the Interface	61
	3.4		62
		Acknowledgments	64
		Note Added in Proof	65
		References	65
4		etical and Experimental Solutions of the Striation Problem	69
	H. J. S		
		Abstract	69
		Introduction	69
	4.2	Origin and Definitions of Striations	70
	4.3	Homogeneous Crystals with $k_{\rm eff} \rightarrow 1$	74
	4.4	Segregation Phenomena and Thermal Striations	76
	4.5	, , , , , , , , , , , , , , , , , , ,	82
	4.6	11	84
	4.7		89
		References	89
5	High-1	resolution X-Ray Diffraction Techniques for Structural	
	Chara	cterization of Silicon and other Advanced Materials	93
	K. Lal		
	5.1	Introduction	93
	5.2	High-resolution X-Ray Diffraction Techniques	94
		5.2.1 Theoretical Background	94
		5.2.2 High-resolution X-Ray Diffraction Experiments: A	
		Five-crystal X-Ray Diffractometer	96
	5.3	Evaluation of Crystalline Perfection and Characterization	100
	_ .	of Crystal Defects	100
	5.4	Accurate Determination of Crystallographic Orientation	104
	5.5	Measurement of Curvature or Bending of Single-crystal	100
	56	Wafers Characterization of Process-induced Defects in Semicon-	108
	5.6		110
		ductors: Implantation-induced Damage	110

Contents

	5.7	Conclusions	112
		5.7.1 Acknowledgement	112
		References	112
6	Comp	utational Simulations of the Growth of Crystals from	
U	Liquic		115
	-	kel and J. J. Derby	
	6.1	Introduction	115
	6.2	Transport Modeling in Bulk Crystal Growth	116
		6.2.1 Governing Equations	116
		6.2.2 Boundary Conditions	118
	6.3	Computational Issues	121
		6.3.1 Numerical Methods	121
		6.3.2 Software: Commercial versus Research, General	
		versus Specialty	122
	6.4	I I I I I I I I I I	123
		6.4.1 Can we still Learn from a 1D Model?	123
		6.4.2 Is 2D Modeling Routine and Accurate?	125
		6.4.3 When are 3D Models Necessary?	129
	6.5	······································	135
		Acknowledgments	135
		References	136
7	Heat a	nd Mass Transfer under Magnetic Fields	139
7	Heat a K. Kak		139
7			139
7	K. Kak 7.1	<i>imoto</i> Abstract Introduction	
7	<i>K. Kak</i> 7.1 7.2	imoto Abstract Introduction Magnetic Fields Applied to Czochralski Growth	139
7	<i>K. Kak</i> 7.1 7.2 7.3	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling	139 139 140 141
7	K. Kak 7.1 7.2 7.3 7.4	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF)	139 139 140 141 143
7	K. Kak 7.1 7.2 7.3 7.4 7.5	imoto Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF)	139 139 140 141 143 147
7	K. Kak 7.1 7.2 7.3 7.4 7.5 7.6	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF)	139 139 140 141 143 147 150
7	K. Kak 7.1 7.2 7.3 7.4 7.5	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary	139 139 140 141 143 147 150 150
7	K. Kak 7.1 7.2 7.3 7.4 7.5 7.6	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment	139 139 140 141 143 147 150 150 151
7	K. Kak 7.1 7.2 7.3 7.4 7.5 7.6	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary	139 139 140 141 143 147 150 150
8	K. Kak 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References	139 139 140 141 143 147 150 150 151
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics	139 139 140 141 143 147 150 150 151
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References	139 139 140 141 143 147 150 150 151 152
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H <i>V. I. P</i> 8.1	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaev Introduction	139 139 140 141 143 147 150 150 151 152
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H <i>V. I. P</i>	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaev Introduction Technologically Important Hydrodynamics Processes	139 139 140 141 143 147 150 150 151 152 155
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H <i>V. I. P</i> 8.1 8.2	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaev Introduction Technologically Important Hydrodynamics Processes during Crystal Growth	139 139 140 141 143 147 150 150 151 152 155 155
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H <i>V. I. P</i> 8.1 8.2 8.3	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaev Introduction Technologically Important Hydrodynamics Processes during Crystal Growth Benchmark Problem	139 139 140 141 143 147 150 150 151 152 155
	<i>K. Kak</i> 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Model and H <i>V. I. P</i> 8.1 8.2	Abstract Introduction Magnetic Fields Applied to Czochralski Growth Numerical Modeling Vertical Magnetic Field (VMF) Cusp-shaped Magnetic Fields (CMF) Transverse Magnetic Fields (TMF) Summary Acknowledgment References ing of Technologically Important Hydrodynamics eat/Mass Transfer Processes during Crystal Growth olezhaev Introduction Technologically Important Hydrodynamics Processes during Crystal Growth	139 139 140 141 143 147 150 150 151 152 155 155

vii

	8.5	Gravity-driven Convection Instability and Oscillations in	170
	8.6	Benchmark Configuration	172
	8.0	Convective Interaction and Instabilities in Configuration of Industrial GaAs Czochralski Growth	173
		8.6.1 Axisymmetrical Approach: Nonlinear Coupling Fluid	1/5
		Flow and Control Possibilities	174
		8.6.2 Three-Dimensional Analysis	174
	8.7	Conclusions	181
	0.7		181
		Acknowledgments References	182
		Kelelelices	162
PA	RT 2: S	ILICON	187
9		nce of Boron Addition on Oxygen Behavior in Silicon	400
	Melts		189
	K. Tere	ashima	
		Abstract	189
	9.1	Introduction	189
	9.2	78	190
		9.2.1 Oxygen Solubility in Silicon Melt	191
		9.2.2 Fused Quartz Dissolution Rate in Silicon Melts9.2.3 Evaporation from Free Surface of Boron-doped Sil-	196
		icon Melts in Fused-quartz Crucible	200
	9.3		203
		Acknowledgments	203
		References	204
10	Octah	edral Void Defects in Czochralski Silicon	205
	M. Itsı	ımi	
	10.1	Background	205
	10.2	Observation Methods	206
	10.3	Characterization	209
	10.4	Generation Mechanism	213
	10.5	Elimination	215
	10.6	Oxide Defect Generation	216
	10.7	Concluding Remarks	219
		References	222
11	The C	ontrol and Engineering of Intrinsic Point Defects in Sili-	
	con W	afers and Crystals	225
	R. Fal.	ster, V. V. Voronkov and P. Mutti	
		Abstract	225
	11.1	Introduction	225
		11.1.1 Vacancy-type Defects	226

Contents

12

	11.1.2	Silicon Self-interstitial-type Defects	226
	11.1.3		226
11.2	The Cor	ntrol of the Agglomeration of Intrinsic Point Defects	
	during (Crystal Growth	227
	11.2.1	The v/G Rule for the Type of Grown-in Microdefects	227
	11.2.2	Alternative Views to the v/G Rule	228
	11.2.3	Void Reaction Control	229
	11.2.4	Perfect Silicon	230
11.3		ntrol of Oxygen Precipitation through the Engineer-	
	ing of	Vacancy Concentration in Silicon Wafers: Magic	
	Denude	d Zone TM Wafers	231
	11.3.1	'Tabula Rasa' Silicon and the Suppression of Oxy-	
		gen Precipitation in Low-Vacancy-Concentration	
		Material	231
	11.3.2	Material 'Switching' and Transfer Functions	233
	11.3.3	Comparison of Conventional and Vacancy-	
		Engineered Control of Oxygen Precipitation	233
	11.3.4	The Installation of Vacancy Concentration Profiles	
		in Thin Silicon Wafers	235
	11.3.5	Advantages of the Use of Vacancies to Control	• • • •
	1126	Oxygen Precipitation in Wafers	236
	11.3.6	The Mechanism of the Vacancy Effect on Oxygen	226
11 /	Canalus	Precipitation	236
11.4		sions Drawn Regarding the Intrinsic Point-Defect	
		ters taken from the Combination of Crystal Growth	220
		DZ Experiments Recombination Rate	238 238
	11.4.1		
	11.4.2	2	239
	11.4.3 11.4.4	Vacancy Diffusivity The Difference of Equilibrium Vacancy and Inter-	239
	11.4.4	stitial Concentrations	239
	11 / 5	Formation Energies	239 240
	11.4.5 11.4.6	e	240
			241
11.5	11.4.7 Unified	Vacancy Binding by Oxygen Schematic Pictures of Vacancy Control for Crystal	241
11.5		and Wafer Processing	242
		vledgments	248
	Referen	6	248
	KUUUU		<i>2</i> 40
The F	rmation	n of Defects and Growth Interface Shapes in CZ	
Silicon		To Derects and Orowin interface shapes in CL	251
T. Abe			431
1. ADE			

	Abstract	251
12.1	Introduction	251
12.2	Experiments	254

ix

Contents

	12.3	Results	256
	12.4	Discussion	258
		12.4.1 Balance Equation	258
		12.4.2 Discussion of Voronkov's Relation	262
		12.4.3 Interface-shape Formation	263
	12.5	Conclusions	264
		References	264
13		a Crystal Growth for Photovoltaics	267
	T. F. C		
		Introduction	267
	13.2	Basic Concepts	268
		13.2.1 The Photovoltaic Effect	268
		13.2.2 Minority-carrier Lifetime, τ	269
		13.2.3 Light Absorption	271
	13.3		272
	13.4	•	275
		13.4.1 Single-crystal Growth	276
		13.4.2 Multicrystalline Growth	277
	13.5		279
	13.6		283
	13.7	1	285
	13.8	Future Trends	285
		References	287
PAI	RT 3: C	COMPOUND SEMICONDUCTORS	291
14	of Hig	mental and Technological Aspects of Czochralski Growth h-quality Semi-insulating GaAs Crystals	293
	P. Rud	lolph and M. Jurisch	
	14.1		293
		14.1.1 Historical Background	293
	14.2	14.1.2 The Importance of SI GaAs and its Performance Features and Fundamental Aspects of LEC Growth of SI	295
		GaAs Crystals	297
		14.2.1 The Principle of Modern LEC Technique14.2.2 Correlation between Heat Transfer, Thermomechan-	297
		ical Stress and Dislocation Density	300
		14.2.3 Dislocation Patterns	303
		14.2.4 Principles of Native-defect Control	305
		14.2.5 Carbon Control	310
	14.3	Modified Czochralski Technologies 14.3.1 Vapour-pressure-controlled Czochralski (VCz)	313
		Method	313

Con	tents		xi
		14.3.2 Fully-Encapsulated Czochralski (FEC) Growth	315
		14.3.3 Hotwall Czochralski (HWC) Technique	316
	14.4	Conclusions and Outlook	317
		Acknowledgement	318
		References	318
15	Growt	h of III-V and II-VI Single Crystals by the Vertical-	
	gradie	nt-freeze Method	323
	T. Asa	hi, K. Kainosho, K. Kohiro, A. Noda, K. Sato and O. Oda	
	15.1		323
	15.2	InP Crystal Growth by the VGF Method	324
	15.3		331
		15.3.1 Growth of Undoped GaAs	331
		15.3.2 Growth of Si-doped GaAs Crystals	335
		15.3.3 Growth of Zn-doped Crystals	336
	15.4		225
	15.5	Crystals ZnTe Crystal Growth by VGF without Seed Crystals using	337
	15.5	the High-pressure Furnace	344
	15.6	Summary	344
	15.0	References	346
			210
16		h Technology of III-V Single Crystals for Production	349
		vase, M. Tatsumi and Y. Nishida	
		Introduction	349
		Properties of III-V Materials	349
	16.3	0,	350
		16.3.1 HB and HGF Techniques	351
		16.3.2 LEC Technique	352
		16.3.3 Vapor-pressure-controlled Czochralski (VCZ)	252
		Technique 16.3.4 VB and VGF Techniques	353 355
	16.4		555
	10.4	Crystals	356
	16.5	Growth of Large Single Crystals	357
	16.6	Growth of Low-Dislocation-Density GaAs Crystal	359
	16.7	Control of Quality and Yield of GaAs Crystals	361
	10.7	16.7.1 Twinning	362
		16.7.2 Lineage	364
	16.8	Control of the Electronic Quality of GaAs	365
	- 0.0	16.8.1 Absolute Value of Resistivity	365
		5	
		16.8.2 Uniformity of Microscopic Resistivity	366
	16.9	16.8.2 Uniformity of Microscopic Resistivity Trend of Growth Methods for GaAs	366 367

Contents

	16.11	Summary	369
		References	369
17	CdTe	and CdZnTe Growth	373
	R. Trił		
		Introduction	373
	17.2		373
	17.3	5	277
	17 4	Characteristics	377
	17.4 17.5	Crystal Growth Bridgman Growth Modeling and Interface-shape	381
	17.5	Determination	388
	17.6	CdZnTe Properties	393
	17.0	17.6.1 Properties at Macroscopic and Microscopic Scale	393
		17.6.2 Segregation	394
		17.6.3 Industrial Growth	396
	17.7	Properties and Defects of the Crystals	396
		Purity, Contamination, Doping	399
	17.9		400
		References	400
PA	RT 4• С	XIDES AND HALIDES	407
			-107
18		diagram Study for Growing Electro-optic Single	400
	Crysta		409
	S. Miy		400
	10.1	Abstract	409
	18.1	Introduction Phase relation Study of LiTeO	409
	18.2	3 3	410 411
		18.2.1 Preliminary Studies by X-Ray Diffractometry18.2.2 Determination of the Congruently Melting	411
		Composition	412
		18.2.3 Optical Quality of the Congruent LiTaO ₃	415
		18.2.4 Conclusion	417
	18.3		418
		18.3.1 Re-examination of Phase Diagram	419
		18.3.2 Lattice-constant Variations of the $Bi_{12}TiO_{20}$	-
		Phase	419
		18.3.3 New Phase Diagram	422
		18.3.4 Growth of Long Single Crystals	424
		18.3.5 Conclusion	426
	18.4	Summary	426
		Acknowledgment	427
		References	427

Con	tents		xiii
19	and N	Growth of Oxide Crystals for SAW, Piezoelectric, onlinear-Optical Applications	429
	к. <i>Snii</i> 19.1	mamura, T. Fukuda and V. I. Chani Introduction	429
		LiTaO ₃ for SAW Devices	429 431
	19.2	-	431
	19.5	Nonlinear-Optical Crystals for Blue SHG	439
	19.4	Summary	441
	17.5	References	443
20	Growt	th of Nonlinear-optical Crystals for Laser-frequency	
	Conve		445
	T. Sase	aki, Y. Mori and M. Yoshimura	
	20.1	Introduction	445
	20.2	Crystals Grown from Low-temperature Solutions 20.2.1 Growth of Large KDP (Potassium Dihydrogen	445
		Phosphate) Crystals of Improved Laser-damage	445
		Threshold 20.2.2 Growth and Characterization of Organic NLO	445
	20.3	Crystals	448 451
	20.3	Crystals Grown from High-temperature Solutions 20.3.1 Growth and Optical Characterization of KTP (Potassium Titanyl Phosphate) Crystal	451
		[12–14]	451
		20.3.2 Growth and NLO Properties of Cesium Lithium	
		Borate CLBO	454
	20.4	Conclusions	458
		References	458
21		th of Zirconia Crystals by Skull-Melting Technique	461
		<i>Comonova and V. V. Osiko</i> Introduction	461
	21.1	Physical and Technical Aspects of the Direct Radio-	401
	21.2	frequency Melting in a Cold Container (Skull Melting)	462
	21.3 21.4	RF-furnaces for Zirconia Melting and Crystallization Phase Relations in Zirconia Solid Solutions. Y-stabilized	467
	21.4	(YCZ) and Partially Stabilized (PSZ) Zirconia	470
	21.5	Growth Processes of YCZ and PSZ Crystals	472
	21.5	Structure, Defects, and Properties of YCZ and PSZ	
	01 -	Crystals	475
	21.7	Applications of YCZ and PSZ Crystals	479
	21.8	Conclusion	482
		Acknowledgments	484
		References	484

xiv			Contents
22	-	d Sapphire Production	487
		Lytvynov Introduction	487
		Crystal-growth Installation	487
		Growing of Crucibles	488
		Growth of Complicated Shapes	492
		Dice	494
		Group Growth	496
		Local Forming	498
		Sapphire Products for Medicine	499
		Improvement of Structure Quality of Profile Sapphire	502
		References	509
23	Halog	enide Scintillators: Crystal Growth and Performance	511
	A. V. C	Gektin and B. G. Zaslavsky	
	23.1		511
	23.2	Modern Tendency in A ^I B ^{VII} Crystal Growth	511
		23.2.1 R&D for Halogenide Crystal Perfection	511
		23.2.2 Traditional Crystal Growth Methods	513
	23.3	23.2.3 Automated Growth Principles and Technique Modified Method of Automated Pulling of Large-size	514
		Scintillation Crystals	517
		23.3.1 Principles of the Method23.3.2 The Method Model and the Process Control	517
		Parameter	518
		Experimental and Practical Method Realization	521
	23.5		524
		23.5.1 Activated Scintillators	524
		23.5.2 Undoped Scintillators	525
	23.6		527
		References	527
PAI	RT 5: C	CRYSTAL MACHINING	529
24	Advar	nced Slicing Techniques for Single Crystals	531
	C. Hai	user and P. M. Nasch	
		Abstract	531
	24.1	Introduction	531
	24.2	Geometrical Parameters	532
	24.3	Survey on Slicing Methods for Silicon Single Crystal	533
	24.4	Material-removal Process	537
	24.5	General Comparison of Different Slicing Methods	541
	24.6	Surface Damage	542
	24 7	Economics	544

	24.8	Crystal Orientation References	548 557
25	Methods and Tools for Mechanical Processing of Anisotropic Scintillating Crystals M. Lebeau		
	м. Let 25.1	Jeau Introduction	561
	25.1	Crystals	561
		Machine-tools and Diamond Cutting Disks	565
	25.5		567
	23.4	25.4.1 Traveling (Setting) Reference Base	567
		25.4.2 Processing Reference Base	568
		25.4.3 Positioning Tools	568
		25.4.4 Inspection Tools	573
	25.5 25.6	Tools for Lapping and Polishing Operations Optical Method for Inspection of Crystal Residual	575
		Stresses	578
	25.7	Conclusions and Production Forecasts	585
		References	585
26		a-CVM (Chemical Vaporization Machining)	587
		i, K. Yamamura, and Y. Sano	
	26.1	Introduction	587
	26.2	Concepts of Plasma-CVM	587
		Applications of Plasma-CVM	588
	26.4		589
		26.4.1 Slicing Machine	589
		26.4.2 Slicing Rate	590
		26.4.3 Kerf Loss	591
	26.5	26.4.4 Slicing of Silicon Ingot	592 594
	20.3	Planarization 26.5.1 Planarization Machine	594 594
			594 595
	26.6		595 598
	26.6	Figuring 26.6.1 Numerically Controlled Plasma-CVM System	598 598
		26.6.2 Machining Properties	598 601
		26.6.3 Fabrication of the Flat Mirror	605
		Acknowledgements	605
		References	605
27	Nume	rically Controlled EEM (Elastic Emission Machining) Sys-	

tem for Ultraprecision Figuring and Smoothing of Aspherical Surfaces

Y. Mori, K. Yamauchi, K. Hirose, K. Sugiyama, K. Inagaki and H. Mimura

XV

607

Contents

	27.1		607
	27.2		607
	27.3		610
		27.3.1 General View	610
		27.3.2 Process Simulation and Results	611
	27.4	Numerically Controlled EEM System	614
		27.4.1 Requirement of Ultraclean Environmental Control	614
		27.4.2 Numerically Controlled Stage System	614
		27.4.3 EEM Heads	615
		27.4.4 In-process Refining System of the Mixture Fluid	617
	27.5	Numerical Control System	617
		27.5.1 Concepts for Ultraprecise Figuring	617
		27.5.2 Software for Calculating Scanning Speed	617
		27.5.3 Performances of Numerically Controlled Processing	618
	27.6	Conclusion	619
		Acknowledgement	620
		References	620
PA	RT 6: E	PITAXY AND LAYER DEPOSITION	621
28	Contro H. J. S	ol of Epitaxial Growth Modes for High-performance Devices	623
	п. ј. з	Abstract	623
	28.1		623
	28.1		023
	20.2	of Growth Parameters	624
	28.3		635
	28.4		641
	20.4	General References	642
		References	642
29		rate Deposition of Amorphous Silicon Films by Atmospheric- ure Plasma Chemical Vapor Deposition	645
		ri, H. Kakiuchi, K. Yoshii and K. Yasutake	045
	1. 10101	Abstract	645
	29.1	Introduction	645
	29.1	Atmospheric-Pressure Plasma CVD	646
	29.2	29.2.1 Atmospheric Pressure, VHF Plasma	646
		29.2.1 Athospheric ressure, vin riasha 29.2.2 Utilization of Rotary Electrode	646
	29.3	Experimental	640
	29.3 29.4	Results and Discussion	648
	29.4		648
		29.4.1 Deposition Rate29.4.2 Electrical and Optical Properties	648 648
		29.4.2 Electrical and Optical Properties	048

Contents		xvii
29.5	Conclusion	651
	Acknowledgements	651
	References	651
Index		653

CONTRIBUTORS

Abe, Takao

Shin-Etsu Handotai, Isobe R&D Center, 2-13-1 Isobe, Annaka-shi, Gunma-ken 379-01, Japan

Asahi, T.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Brandon, Simon

Department of Chemical Engineering, Tianjin University, Tianjin 300072, P.R China

Chani, Valery I.

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L85 4M1, Canada

Ciszek, T. F.

National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, USA

Derby, Jeffrey J.

Department of Chemical Engineering and Materials Science, Army HPC Research Center & Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0132, USA

Falster, R.

MEMC Electronic Materials SpA, Viale Gherzi 31, 28100 Novara, Italy

Fukuda, Tsuguo

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahiraa, Aoba-ku, Sendai 980 8577, Japan

Gektin, A. V.

Institute for Single Crystals, Lenin Av 60, 310001 Kharkov, Ukraine

Hauser, C. (Retired)

HCT Shaping Systems SA, 1033 Cheseaux, Switzerland

Hirose, Kikuji

Department of Precision Science and Technology, Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Inagaki, Kohji

Dept of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Itsumi, Manabu

NTT Lifestyle & Environmental Technology Laboratories, 3-1 Morinosato Wakamiya, Atsugi-Shi, Kanagawa, 243-0198, Japan

Jurisch, M.

Freiberger Compound Materials GmbH, Am Junger Löwe Schacht, D-09599 Freiberg, Germany

Kainosho, K.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Kakimoto, Koichi

Institute of Advanced Material Study, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan

Kakiuchi, Hiroaki

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Kawase, Tomohiro

Sumitomo Electric Industries, Ltd., 1-1-1, Koya-kita, Itami, Hyogo 664-0016, Japan

Kohiro, K.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Lal, Krishnan

National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012, India

Contributors

Lebeau, Michel

CERN, 1211 Geneva 23, Switzerland

Liu, Yongcai

Department of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China

Lomonova, E. E.

Laser Materials and Technology Research Center, General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

Lytvynov, Leonid A.

Institute of Single Crystals, Lenin Av., 60, Kharkov, 61001, Ukraine

Mimura, Hidekazu

Department of Precision Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871

Miyazawa, Shintaro

Shinkosha Co. Ltd., 3-4-1 Kosugaya, Sakae-ku, Yokohama, Kanagawa 247-0007, Japan

Mori, Yusuke

Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Mori, Yuzo

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Mutti, P.

MEMC Electronic Materials SpA, Via Nazionale 59, 39012 Merano, Italy

Nasch, P. M.

HCT Shaping Systems SA, Route de Genève 42, Cheseaux Sur-Lausanne CH-1033, Switzerland

Nishida, Yasuhiro

Sumitomo Electric Industries Ltd., 1-1-1, Koya-kita, Itami, Hyogo 664-0016, Japan

Noda, A.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Oda, O.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Osiko, V. V.

Laser Materials and Technology Research Center, General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow 119991, Russia

Polezhaev, V. I.

Institute for Problems in Mechanics, Russian Academy of Sciences, Prospect Vernadskogo 101, 117526 Moscow, Russia

Rudolph, Peter

Institute for Crystal Growth, Rudower Chaussee 6, D-12489 Berlin, Germany

Sano, Yasuhisa

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Sasaki, Takatomo

Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Sato, K.

Central R&D Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335-8502, Japan

Scheel, Hans J.

SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland

Shimamura, Kiyoshi,

Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku 169-0051, Japan

Sugiyama, Kazuhisa

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Tatsumi, M.

Sumitomo Electric Industries Ltd., 1-1-1, Koya-kita, Itami, Hyogo 664-0016, Japan

xxii

Contributors

Terashima, Kazutaka

Silicon Melt Advanced Project, Shonan Institute of Technology, 1-1-1 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251, Japan

Triboulet, R.

Laboratoire de Physique des Solides de Bellevue CNRS, 1, Place A. Briand, F-92195 Meudon Cedex, France

Virozub, Alexander

Department of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China

Voronkov, V. V.

MEMC Electronic Materials SpA, Via Nazionale 59, 39012 Merano, Italy

Yamamura, Kazuya

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Yamauchi, Kazuto

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Yasutake, Kiyoshi

Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Yeckel, Andrew

Department of Chemical Engineering and Materials Science, Army HPC Research Center & Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0132, USA

Yoshii, Kumayasu

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Yoshimura, Masashi

Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

Zaslavsky, B. G.

Institute for Single Crystals, Lenin Av 60, 310001 Kharkov, Ukraine

PREFACE

This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial aspects of crystal production. Therefore, it will be of use to all scientists, engineers, professors and students who are active in these fields, or who want to study them. Highestquality crystals and epitaxial layers (epilayers) form the basis for many industrial technological advances, including telecommunications, computer and electrical energy technology, and those technologies based on lasers and nonlinear-optical crystals. Furthermore, automobile electronics, audiovisual equipment, infrared night-vision and detectors for medicine (tomography) and large nuclear-physics experiments (for example in CERN) are all dependent on high-quality crystals and epilayers, are as novel technologies currently in development and planned for the future. Crystals and epilayers will gain special importance in energy saving and renewable energy. Industrial crystal and epilayer production development has been driven by the above technological advances and also by the needs of the military and a multibillion-dollar industry. From the nearly 20000 tons of crystals produced annually, the largest fraction consists of the semiconductors silicon, gallium arsenide, indium phosphide, germanium, and cadmium telluride. Other large fractions are optical and scintillator crystals, and crystals for the watch and jewellery industries.

For most applications the crystals have to be machined, i.e. sliced, lapped, polished, etched, or surface-treated. These processes have to be better understood in order to improve yields, reduce the loss of valuable crystal, and improve the performance of machined crystals and wafers.

Despite its importance, the scientific development and understanding of crystal and epilayer fabrication is not very advanced, and the education of specialized engineers and scientists has not even started. The first reason for this is the multidisciplinarity of crystal growth and epitaxial technology: neither chemical and materials engineering departments on the preparative side, nor physics and electrical engineering on the application side feel responsible, or capable of taking care of crystal technologies. Other reasons for the lack of development and recognition are the complexity of the multi-parameter growth processes, the complex phase transformation from the the mobilized liquid or gaseous phase to the solid crystal, and the scaling problem with the required growth-interface control on the nm-scale within growth systems of m-scale.

An initial workshop, named 'First International School on Crystal Growth Technology ISCGT-1' took place between September 5–14, 1998 in Beatenberg, Switzerland, and ISCGT-2 was held between August 24–29, 2000 in Mount

Zao Resort, Japan with H. J. Scheel and T. Fukuda action as the co-chairmen. Extended lectures were given by leading specialists from industries and universities, and the majority of crystal-producing factories were represented. This book contains 29 selected review papers from ISCGT-1 and discusses scientific and technological problems of production and machining of industrial crystals for the first time. Thus, it is expected that this volume will serve all scientists and engineers involved in crystal and epilayer fabrication. Furthermore, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering and precision-machining, microtechnology, and in solid-state sciences. Also, consultants and specialists from funding agencies may profit from reading this book, as will all those with an interest in crystals, epilayers, and their production, and those concerned with saving energy and in renewable energy.

In Section I, general aspects of crystal growth are reviewed: the present and future of crystal growth technology, thermodynamic fundamentals of phase transitions applied to crystal-growth processes, interface and faceting effects, striations, modeling of crystal growth from melts and from solutions, and structural characterization to develop the growth of large-diameter crystals, In Section II, the problems relating to silicon are discussed: structural and chemical characteristics of octahedral void defects, intrinsic point defects and reactions in silicon, heat and mass transfer in melts under magnetic fields, silicon for photovoltaics, and slicing and novel precision-machining methods for silicon. Section III treats problems of the growth of large, rather than perfect, crystals of the compound semiconductors GaAs, InP, and CdTe. Section IV discussed oxides for surface-acoustic-wave and nonlinear-optic applications and the growth of large halogenide scintillator crystals. Section V deals with crystal machining: crystal orientation, sawing, lapping, and polishing and also includes the novel technologies EEM and CVM. Finally, Section VI treats the control of epitaxial growth modes to achieve highestperformance optoelectronic devices, and a novel, fast deposition process for silicon from high-density plasmas is presented.

The editors would like to thank the contributors for their valuable reviews, the referees (especially D. Elwell), and the sponsors of ISCGT-1. Furthermore, the editors acknowledge the competent copy-proof reading of P. Capper, and the work from J. Cossham, L. James and L. Bird of John Wiley & Sons Ltd, the publishers: also for pleasant collaboration and their patience.

It is hoped that this book may contribute to the scientific development of crystal technologies, and that it is of assistance for the necessary education in this field.

Part 1

General Aspects of Crystal Growth Technology