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Preface

The “origin of this species” lies in the pages of the journal Biometrika and precedes
the birth of either of the authors. There, in his remarkable landmark 1951 paper “Random
dispersal in theoretical populations,” J.G. Skellam made a number of observations that have
profoundly affected the study of spatial ecology. First, he made the connection between
random walks as a description of movement at the scale of individual members of some
theoretical biological species and the diffusion equation as a description of dispersal of the
organism at the scale of the species’ population density, and demonstrated the plausibility
of the connection in the case of small animals using field data for the spread of the
muskrat in central Europe. Secondly, he combined the diffusive description of dispersal with
population dynamics, effectively introducing reaction-diffusion equations into theoretical
ecology, paralleling Fisher’s earlier contribution to genetics. Thirdly, Skellam in particular
examined reaction-diffusion models for the population density of a species in a bounded
habitat, employing both linear (Malthusian) and logistic population growth rate terms, one-
and two-dimensional habitat geometries, and various assumptions regarding the interface
between the habitat and the landscape surrounding it. His examinations lead him to conclude
that “[just] as the area/volume ratio is an important concept in connection with continuance
of metabolic processes in small organisms, so is the perimeter/area concept (or some
equivalent relationship) important in connection with the survival of a community of mobile
individuals. Though little is known from the study of field data concerning the laws which
connect the distribution in space of the density of an annual population with its powers of
dispersal, rates of growth and the habitat conditions, it is possible to conjecture the nature of
this relationship in simple cases. The treatment shows that if an isolated terrestrial habitat is
less than a certain critical size the population cannot survive. If the habitat is slightly greater
than this the surface which expresses the density at all points is roughly dome-shaped, and
for very large habitats this surface has the form of a plateau.”

The most general equation for a population density u mentioned in Skellam’s paper has
the form

∂u

∂t
= d∇2u+ c1(x, y)u− c2(x, y)u2.

Writing in 1951, Skellam observed that “orthodox analytic methods appear in adequate”
to treat the equation, even in the special case of a one-dimensional habitat. The
succeeding half-century since Skellam’s paper has seen phenomenal advances in
many areas of mathematics, including partial differential equations, functional analysis,
dynamical systems, and singular perturbation theory. That which Skellam conjectured
regarding reaction-diffusion models (and indeed much more) is now rigorously understood
mathematically and has been employed to provide new ecological insight into the
interactions of populations and communities of populations in bounded terrestrial (and,
for that matter, marine) habitats. Heretofore, the combined story of the mathematical
development of reaction-diffusion theory and its application to the study of populations
and communities of populations in bounded habitats has not been told in book form, and
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telling said story is the purpose of this work. Such is certainly not to suggest in anyway
that this is the first book on the mathematical development of reaction-diffusion theory or
its applications to ecology, just the first combining a (mostly) self-contained development
of the theory with the particular application at hand. There are two other principal uses of
reaction-diffusion theory in ecology, namely in the study of ecological invasions (dating
from the work of Fisher in the 1930s) and in the study of pattern formation (dating from
the work of Turing in the 1950s). It is fair to say that both these other applications have
been more widely treated than has the focus of this work. (We discuss this issue further at
an appropriate point in Chapter 1 and list some specific references.)

The book is structured as follows. In Chapter 1, we are primarily concerned with
introducing our subject matter so as to provide a suitable context–both ecologically and
mathematically–for understanding the material that follows. To this end, we begin with an
overview of ecological modeling in general followed by an examination of spatial models.
So doing enables us then to focus on reaction-diffusion models in more particular terms–
how they may be derived, what sorts of ecological questions they may answer, and how we
intend to use them to examine species’ populations and communities of such populations
on isolated bounded habitats. We follow our discussion of reaction-diffusion models as
models with a (hopefully) self-contained compilation of the mathematical results that are
needed for the analyses of subsequent chapters. For the most part, these results are well-
known, so we mainly refer the reader interested in their proofs to appropriate sources.
However, our analyses will draw on the theories of partial differential equations, functional
and nonlinear analysis, and dynamical systems, and there is quite simply no single source
available which contains all the results we draw upon. Consequently, we believe that the
inclusion of this material is not merely warranted, but rather essential to the self-containment
and readability of the remainder of the book. In Chapter 2, we consider linear reaction-
diffusion models for a single species in an isolated bounded habitat and argue that the notion
of principal eigenvalue for a linear elliptic operator is the means for measuring average
population growth of a species over a bounded habitat which Skellam anticipated in his
phrase “perimeter/area concept (or some equivalent relationship).” As with all subsequent
chapters, our approach here is a blend of ecological examples, perspective, and applications
with model development and analysis. The results in Chapter 2 enable us to turn in Chapter
3 to density dependent reaction-diffusion models for a single species in a bounded habitat.
The predictions of such models viz-a-viz persistence versus extinction of the species in
question may be described rather precisely by employing the notion of a positive (or
negative) principal eigenvalue. Frequently, a prediction of persistence corresponds to the
existence of a globally attracting positive equilibrium to the model. When we turn to the
corresponding models for interacting populations in Chapter 4, the notion of a principal
eigenvalue as a measure of average population growth retains its importance. However,
the predictive outcomes of such models are not usually so tidily described as in the
case of single species models. Frequently, a prediction of persistence cannot be expected
to correspond to a componentwise positive globally attracting equilibrium. Instead, one
needs to employ the more general notion of a globally attracting set of configurations of
positive species’ densities. Such configurations include a globally attracting equilibrium as
a special case. This notion has come to be called permanence, and Chapter 4 is devoted
to the development and application of this concept, followed in Chapter 5 with discussion
of notions of persistence beyond permanence. The material in Chapters 4 and 5 is then
applied in Chapter 6 to models for two competing species in an isolated bounded habitat
and finally in Chapter 7 to nonmonotone models such as models for predation and food
chain models.
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Series Preface

Theoretical biology is an old subject, tracing back centuries. At times, theoretical
developments have represented little more than mathematical exercises, making scant
contact with reality. At the other extreme have been those works, such as the writings
of Charles Darwin, or the models of Watson and Crick, in which theory and fact are
intertwined, mutually nourishing one another in inseparable symbiosis. Indeed, one of
the most exciting developments in biology within the last quarter-century has been the
integration of mathematical and theoretical reasoning into all branches of biology, from
the molecule to the ecosystem. It is such a unified theoretical biology, blending theory and
empiricism seamlessly, that has inspired the development of this series.

This series seeks to encourage the advancement of theoretical and quantitative approaches
to biology, and to the development of unifying principles of biological organization
and function, through the publication of significant monographs, textbooks and synthetic
compendia in mathematical and computational biology. The scope of the series is broad,
ranging from molecular structure and processes to the dynamics of ecosystems and the
biosphere, but it is unified through evolutionary and physical principles, and the interplay
of processes across scales of biological organization.

The principal criteria for publication, beyond the intrinsic quality of the work, are
substantive biological content and import, and innovative development or application of
mathematical or computational methods. Topics will include, but not be limited to, cell
and molecular biology, functional morphology and physiology, neurobiology and higher
function, immunology and epidemiology, and the ecological and evolutionary dynamics of
interacting populations. The most successful contributions, however, will not be so easily
categorized, crossing boundaries and providing integrative perspectives that unify diverse
approaches; the study of infectious diseases, for example, ranges from the molecule to the
ecosystem, involving mechanistic investigations at the level of the cell and the immune
system, evolutionary perspectives as viewed through sequence analysis and population
genetics, and demographic and epidemiological aspects at the level of the ecological
community.

The objective of the series is the integration of mathematical and computational methods
into biological work; hence the volumes published should be of interest both to fundamental
biologists and to computational and mathematical scientists, as well as to the broad
spectrum of interdisciplinary researchers that comprise the continuum connecting these
diverse disciplines.

Simon Levin





1

Introduction

1.1 Introductory Remarks

A fundamental goal of theoretical ecology is to understand how the interactions of
individual organisms with each other and with the environment determine the distribution of
populations and the structure of communities. Empirical evidence suggests that the spatial
scale and structure of environments can influence population interactions (Gause, 1935;
Huffaker, 1958) and the composition of communities (MacArthur and Wilson, 1967). In
recent decades the role of spatial effects in maintaining biodiversity has received a great
deal of attention in the literature on conservation; see for example Soulè (1986) or Kareiva
et al. (1993). One of the most common ways that human activities alter environments is
by fragmenting habitats and creating edges. Some habitat fragments may be designated as
nature reserves, but they are fragments nonetheless.

One way to try to understand how spatial effects such as habitat fragmentation influence
populations and communities is by using mathematical models; see Tilman and Kareiva
(1997), Tilman (1994), Molofsky (1994), Holmes et al. (1994), Goldwasser et al. (1994).
In this book we will examine how one class of spatial population models, namely reaction-
diffusion equations, can be formulated and analyzed. Our focus will be primarily on models
for populations or communities which occupy an isolated habitat fragment. There are several
other types of spatial population models, including cellular automata, interacting particle
systems, metapopulation models, the ideal free distribution, and dispersal models based on
integral kernels. Each type of model is based on some set of hypotheses about the scale
and structure of the spatial environment and the way that organisms disperse through it. We
describe some of these types of models a bit later in our discussion of model formulation;
see also Tilman and Kareiva (1997). Some of the ideas used in analyzing reaction-diffusion
systems also can be applied to these other types of spatial models. We also describe a few
of the connections between different types of models and some unifying principles in their
analysis.

Reaction-diffusion models provide a way to translate local assumptions or data about
the movement, mortality, and reproduction of individuals into global conclusions about the
persistence or extinction of populations and the coexistence of interacting species. They can
be derived mechanistically via rescaling from models of individual movement which are
based on random walks; see Turchin (1998) or Durrett and Levin (1994). Reaction-diffusion
models are spatially explicit and typically incorporate quantities such as dispersal rates, local
growth rates, and carrying capacities as parameters which may vary with location or time.

Spatial Ecology via Reaction-Diffusion Equations R.S. Cantrell and C. Cosner
c© 2003 John Wiley & Sons, Ltd. ISBN: 0-471-49301-5
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Thus, they provide a good framework for studying questions about the ways that habitat
geometry and the size or variation in vital parameters influence population dynamics.

The theoretical advances in nonlinear analysis and the theory of dynamical systems
which have occurred in the last thirty years make it possible to give a reasonably complete
analysis of many reaction-diffusion models. Those advances include developments in
bifurcation theory (Rabinowitz 1971, 1973; Crandall and Rabinowitz 1971, 1973), the
formulation of reaction-diffusion models as dynamical systems (Henry 1981), the creation
of mathematical theories of persistence or permanence in dynamical systems (Hofbauer and
Sigmund 1988, Hutson and Schmitt 1992), and the systematic incorporation of ideas based
on monotonicity into the theory of dynamical systems (Hirsch 1982, 1985, 1988a,b, 1989,
1990, 1991; Hess 1991; Smith 1995). One of the goals of this book is to show how modern
analytical approaches can be used to gain insight into the behavior of reaction-diffusion
models.

There are many contexts in which reaction-diffusion systems arise as models, many
phenomena that they support, and many ways to approach their analysis. Existing books on
reaction-diffusion models reflect that diversity to some extent but do not exhaust it. There
are three major phenomena supported by reaction-diffusion models which are of interest in
ecology: the propagation of wavefronts, the formation of patterns in homogeneous space,
and the existence of a minimal domain size that will support positive species density
profiles. In this book we will focus our attention on topics related to the third of those three
phenomena. Specifically, we will discuss in detail the ways in which the size and structure
of habitats influence the persistence, coexistence, or extinction of populations. Some other
treatments of reaction-diffusion models overlap with ours to some extent, but none combines
a specific focus on issues of persistence in ecological models with the viewpoint of modern
nonlinear analysis and the theory of dynamical systems. The books by Fife (1979) and
Smoller (1982) are standard references for the general theory of reaction-diffusion systems.
Both give detailed treatments of wave-propagation, but neither includes recent mathematical
developments. Waves and pattern formation are treated systematically by Grindrod (1996)
and Murray (1993). Murray (1993) discusses the construction of models in considerable
detail, but in the broader context of mathematical biology rather than the specific context
of ecology. Okubo (1980) and Turchin (1998) address the issues of formulating reaction-
diffusion models in ecology and calibrating them with empirical data, but do not discuss
analytic methods based on modern nonlinear analysis. Hess (1991) uses modern methods
to treat certain reaction-diffusion models from ecology, but the focus of his book is mainly
on the mathematics and he considers only single equations and Lotka-Volterra systems for
two interacting species. The book by Hess (1991) is distinguished from other treatments of
reaction-diffusion theory by being set completely in the context of time-periodic equations
and systems. The books by Henry (1981) and Smith (1995) give treatments of reaction-
diffusion models as dynamical systems, but are primarily mathematical in their approach and
use specific models from ecology or other applied areas mainly as examples to illustrate the
mathematical theory. Smith (1995) and Hess (1991) use ideas from the theory of monotone
dynamical systems extensively. An older approach based on monotonicity and related ideas
is the method of monotone iteration. That method and other methods based on sub- and
supersolutions are discussed by Leung (1989) and Pao (1992) in great detail. However,
Leung (1989) and Pao (1992) treat reaction-diffusion models in general without a strong
focus on ecology, and they do not discuss ideas and methods that do not involve sub- and
supersolutions in much depth. One such idea, the notion of permanence/uniform persistence,
is discussed by Hofbauer and Sigmund (1988, 1998) and in the survey paper by Hutson and
Schmitt (1992). We will use that idea fairly extensively but our treatment differs from those
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given by Hofbauer and Sigmund (1988, 1998) and Hutson and Schmitt (1992) because we
examine the specific applications of permanence/uniform persistence to reaction-diffusion
systems in more depth, and we also use other analytic methods. Finally, there are some
books on spatial ecology which include discussions of reaction-diffusion models as well
as other approaches. Those include the volumes on spatial ecology by Tilman and Kareiva
(1997) and on biological invasions by Kawasaki and Shigesada (1997). However, those
books do not go very far with the mathematical analysis of reaction-diffusion models on
bounded spatial domains.

We hope that the present volume will be interesting and useful to readers whose
backgrounds range from theoretical ecology to pure mathematics, but different readers
may want to read it in different ways. We have tried to structure the book to make that
possible. Specifically, we have tried to begin each chapter with a relatively nontechnical
discussion of the ecological issues and mathematical ideas, and we have deferred the
most complicated mathematical analyses to Appendices which are attached to the ends
of chapters. Most chapters include a mixture of mathematical theorems and ecological
examples and applications. Readers interested primarily in mathematical analysis may want
to skip the examples, and the readers interested primarily in ecology may want to skip
the proofs. We hope that at least some readers will be sufficiently interested in both the
mathematics and the ecology to read both.

To read this book effectively a reader should have some background in both mathematics
and ecology. The minimal background needed to make sense of the book is a knowledge of
ordinary and partial differential equations at the undergraduate level and some experience
with mathematical models in ecology. A standard introductory course in ordinary differential
equations, a course in partial differential equations from a book such as Strauss (1992),
and some familiarity with the ecological models discussed by Yodzis (1989) or a similar
text on theoretical ecology would suffice. Alternatively, most of the essential prerequisites
with the exception of a few points about partial differential equations can be gleaned from
the discussions in Murray (1993). Readers with the sort of background described above
should be able to understand the statements of theorems and to follow the discussion of
the ecological examples and applications.

To follow the derivation of the mathematical results or to understand why the examples
and applications are of interest in ecology requires some additional background. To be
able to follow the mathematical analysis, a reader should have some knowledge of
the theory of functions of a real variable, for example as discussed by Royden (1968)
or Rudin (1966, 1976), and some familiarity with the modern theory of elliptic and
parabolic partial differential equations, as discussed by Gilbarg and Trudinger (1977)
and Friedman (1976), and dynamical systems as discussed by Hale and Koçak (1991).
To understand the ecological issues behind the models, a reader should have some
familiarity with the ideas discussed by Tilman and Kareiva (1997), Soulè (1986),
Soulè and Terborgh (1989), and/or Kareiva et al. (1993). The survey articles by
Tilman (1994), Holmes et al. (1994), Molofsky (1994), and Goldwasser et al. (1994)
are also useful in that regard. For somewhat broader treatments of ecology and
mathematical biology respectively, Roughgarden et al. (1989) and Levin (1994) are good
sources.

1.2 Nonspatial Models for a Single Species

The first serious attempt to model population dynamics is often credited to Malthus (1798).
Malthus hypothesized that human populations can be expected to increase geometrically
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with time but the amount of arable land available to support them can only be expected
to increase at most arithmetically, and drew grim conclusions from that hypothesis. In
modern terminology the Malthusian model for population growth would be called a density
independent model or a linear growth model. In nonspatial models we can describe
populations in terms of either the total population or the population density since the total
population will just be the density times the area of the region the population inhabits. We
will typically think of the models as describing population densities since that viewpoint
still makes sense in the context of spatial models. Let P (t) denote the density of some
population at time t . A density independent population model for P (t) in continuous time
would have the form

dP

dt
= r(t)P (t); (1.1)

in discrete time the form would be

P (t + 1) = R(t)P (t). (1.2)

These sorts of models are linear in the terminology of differential or difference equations,
which is why they are also called linear growth models. In the discrete time case we
must have R(t) ≥ 0 for the model to make sense. If r is constant in (1.1) we have
P (t) = ertP (0); if R(t) is constant in (1.2) we have P (t) = RtP (0). In either case, the
models predict exponential growth or decay for the population. To translate between the
models in such a way that the predicted population growth rate remains the same we would
use R = er or r = ln R.

The second major contribution to population modeling was the introduction of population
self-regulation in the logistic equation of Verhulst (1838). The key element introduced
by Verhulst was the notion of density dependence, that is, the idea that the density of
a population should affect its growth rate. Specifically, the logistic equation arises from
the assumption that as population density increases the effects of crowding and resource
depletion cause the birth rate to decrease and the death rate to increase. To derive the logistic
model we hypothesize that the birthrate for our population is given by b(t)−a(t, P ) and the
death rate by d(t)+e(t, P ) where b, a, d, and e are nonnegative and a and e are increasing
in P . The simplest forms for a and e are a = a0(t)P and e = e0(t)P with a0, e0 ≥ 0. The
net rate of growth for a population at density P is then given by

dP

dt
= ([b(t) − a0(t)P ] − [d(t) + e0(t)P ])P

= ([b(t) − d(t)] − [a0(t) + e0(t)]P )P

= (r(t)− c(t)P )P,

(1.3)

where r(t) = b(t)− d(t) may change sign but c(t) = a0(t)+ e0(t) is always nonnegative.
We will almost always assume c(t) ≥ c0 > 0. If r and c are constant we can introduce the
new variable K = r/c and write (1.3) as

dP

dt
= r

(
1 −

[
P

K

])
P. (1.4)

Equation (1.4) is the standard form used in the biology literature for the logistic equation.
The parameter r is often called the intrinsic population growth rate, while K is called
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the carrying capacity. If r(t) > 0 then equation (1.3) can be written in the form (1.4)
with K positive. However, if K is a positive constant then letting r = r(t) in (1.4) with
r(t) negative some of the time leads to a version of (1.3) with c(t) < 0 sometimes,
which contradicts the underlying assumptions of the model. We will use the form (1.4)
for the logistic equation in cases where the coefficients are constant, but since we will
often want to consider situations where the intrinsic population growth rate r changes
sign (perhaps with respect to time, or in spatial models with respect to location) we will
usually use the form (1.3). Note that by letting p = P/K and τ = rt we can rescale
(1.4) to the form dp/dτ = p(1 − p). We sometimes assume that (1.4) has been rescaled
in this way. A derivation along the lines shown above is given by Enright (1976). The
specific forms a = a0(t)P , e = e0(t)P are certainly not the only possibilities. In fact,
the assumptions that increases in population density lead to decreases in the birth rate
and increases in the death rate may not always be valid. Allee (1931) observed that
many animals engage in social behavior such as cooperative hunting or group defense
which can cause their birth rate to increase or their death rate to decrease with population
density, at least at some densities. Also, the rate of predation may decrease with prey
density in some cases, as discussed by Ludwig et al. (1978). In the presence of such
effects, which are typically known as Allee effects, the model (1.3) will take a more
general form

dP

dt
= g(t, P )P (1.5)

where g may be increasing for some values of P and decreasing for others. A simple case
of a model with an Allee effect is

dP

dt
= r(P − α)(K − P )P (1.6)

where r > 0 and 0 < α < K . The model (1.6) implies that P will decrease if 0 < P < α

or P > K but increase if α < P < K .
The behavior of (1.4) is quite simple. Positive solutions approach the equilibrium K

monotonically as t → ∞ at a rate that depends on r , so that the equilibrium P = 0 is
unstable and P = K is stable. The behavior of (1.6) is slightly more complicated. Solutions
which start with 0 < P < α will approach 0 as t → ∞; solutions starting with P > α will
approach K monotonically as t → ∞. Thus, the equilibrium P = α is unstable but P = 0
and P = K are stable.

There are various ways that a logistic equation can be formulated in discrete time. The
solution to (1.4) can be written as P (t) = ertP /(1+ [(ert − 1)/K]P ). If we evaluate P (t)

at time t = 1 we get P (1) = erP (0)/(1 + [(er − 1)/K]P (0)); by iterating we obtain the
discrete time model

P (t + 1) = erP (t)/(1 + [(er − 1)/K]P (t)). (1.7)

The model (1.7) is a version of the Beverton-Holt model for populations in discrete time
(see Murray (1993), Cosner (1996)). A different formulation can be obtained by integrating
the equation dP/dt = r[1−(P (0)/K)]P (t); that yields P (1) = exp(r[1−(P (0)/K)])P (0)

and induces an iteration

P (t + 1) = exp(r[1 − (P (t)/K)])P (t). (1.8)
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This is a version of the Ricker model (see Murray (1993), Cosner (1996)). The difference in
the assumptions behind (1.7) and (1.8) is that in (1.7) intraspecific competition is assumed to
occur throughout the time interval (t, t1) while in (1.8) the competitive effect is only based
on conditions at time t . The behaviors of the models (1.7) and (1.8) are quite different.
Model (1.7) behaves much like the logistic model (1.4) in continuous time. Solutions that
are initially positive converge to the equilibrium P = K monotonically (see Cosner (1996)).
On the other hand, (1.8) may have various types of dynamics, including chaos, depending
on the parameters (see Murray (1993)). In most of what follows we will study continuous
time models which combine local population dynamics with dispersal through space, and
we will describe dispersal via diffusion. Some of the ideas and results we will discuss can
be extended to models in discrete time, but the examples (1.7), (1.8) show that models
in discrete time may or may not behave in ways that are similar to their continuous time
analogues, so some care is required in going from continuous to discrete time.

In many populations individuals are subject to different levels of mortality and have
different rates of reproduction at different ages or stages in their lives. Models which
account for these effects typically classify the population by developmental stage, age,
or size and specify the rates at which individuals move from one stage to another, what
fraction survive each stage of their life history, and the rates at which individuals at each
of the stages produce offspring. The type of models which have been used most frequently
to describe age or stage structured populations are discrete time matrix models of the sort
introduced by Leslie (1948) and treated in detail by Caswell (1989). These models divide a
population into n classes, with the population in each class denoted by Pi . Usually the class
P0 represents eggs, seeds, or recently born juveniles. The total population is then given by
n∑

i=0

Pi . The models typically specify the fraction Si of individuals in class i that survive

and enter class i+1 at each time step, the fraction Sn+1 that survive and remain in class n,
and the number of offspring Ri of class i = 0 produced in each time step by an individual
of class i. The models then take the form

�P (t) = M �P (t) (1.9)

where �P = (P0, . . . , Pn) and M is the matrix

M =




R0 R1 R2 . . . Rn

S1 0 0 . . . 0

0 S2
. . .

. . . . . .

...
. . .

. . . 0 0

0 . . . 0 Sn Sn+1




.

Models of the form (1.9) are discussed at length by Caswell (1989). In general the entries
in the matrix M may depend on �P in various ways. A key property of matrices of the
form shown for M with constant positive entries is that Mn has all its entries positive.
It follows from the theory of nonnegative matrices that M has a positive eigenvalue λ1
whose corresponding eigenvector �v is componentwise positive. (This is a consequence of
the Perron-Frobenius theorem. See Caswell (1989), Berman and Plemmons (1979), or the
discussion of positivity in Chapter 2.) The eigenvalue λ1 is called the principal eigenvalue
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of M , and it turns out that λ1 is larger than the real part of any other eigenvalue of M .
If λ1 > 1 then the population will increase roughly exponentially; specifically, if �v is
the componentwise positive eigenvector of unit length corresponding to λ1 we will have
P (t) ≈ λt

1(
�P (0) · �v)�v for t large. (See Caswell (1989).) Similarly, if λ1 < 1 then the

population will decline roughly exponentially. Thus, λ1 plays the same role as R plays in

(1.2). If we viewed λ1 as giving an overall growth rate for the entire population
n∑

i=0

Pi ,

which is reasonable in view of the asymptotic behavior of (1.9), we would use r = ln λ1
in the corresponding continuous model. In this case r > 0 if and only if λ1 > 1. Because
they break down the life history of an organism into simpler steps, models of the form
(1.9) are useful in deriving population growth rates from empirical data on survivorship
and fecundity; again, see Caswell (1989). The principal eigenvalue of M in effect averages
population growth rates over the age or stage classes of a structured population. The use
of eigenvalues to obtain something like an average growth rate for a structured population
will be a recurring theme in this book. However, the populations we consider will usually
be structured by spatial distribution rather than age, and the eigenvalues will generally
correspond to differential operators rather than matrices. If the entries in the matrix M

depend on �P then the model (1.9) can display the same types of behavior as (1.7) and
(1.8). See Caswell (1989) or Cosner (1996) for additional discussion of density dependent
models of the form (1.9).

It is also possible to formulate age structured population models in continuous time. The
simplest formulation of such models describes a population in terms of P (a, t) where a is
a continuous variable representing age, so that the number of individuals in the population

at time t whose ages are between a1 and a2 is given by
∫ a2

a1

P (a, t)da. The basic form of

a linear (or density independent) model for a population with a continuous age structure
consists of an equation describing how individuals age and experience mortality, and another
equation describing the rate at which new individuals are born. The equation describing
how individuals age is the McKendrick-Von Foerster equation

∂P

∂t
+ ∂P

∂a
= −d(a)P (1.10)

where d(a) is a age-specific death rate. The equation describing births is the birth law

P (0, t) =
∫ ∞

0
b(a)P (a, t)da (1.11)

where b(a) is an age dependent birth rate. Density dependent models arise if d or b depends
on P . Age structured models based on generalizations of (1.10) and (1.11) are discussed
in detail by Webb (1985).

Our main goal is to understand spatial effects, so we will usually assume that the
population dynamics of a given species at a given place and time are governed by a
simple continuous time model of the form (1.5). We will often consider situations where the
population dynamics vary with location, and we will typically model dispersal via diffusion.
Before we discuss spatial models, however, we describe some models for interacting
populations which are formulated in continuous time via systems of equations analogous
to (1.5).

The population models described above are all deterministic, and all of them can be
interpreted as giving descriptions of how populations behave as time goes toward infinity.
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It is also possible to construct models based on the assumption that changes in population are
stochastic. Typically such models predict that populations will become extinct in finite time,
and often the main issue in the analysis of such models is in determining the expected time
to extinction. We shall not pursue that modeling approach further. A reference is Mangel
and Tier (1993).

1.3 Nonspatial Models For Interacting Species

1.3.1 Mass-Action and Lotka-Volterra Models

The first models for interacting species were introduced in the work of Lotka (1925) and
Volterra (1931). Those models have the general form

dPi

dt
=

ai +

n∑
j=1

bijPj


Pi, i = 1, . . . , n, (1.12)

where Pi denotes the population density of the ith species. The coefficients ai are analogous
to the linear growth rate r(t) in the logistic model (1.3). The coefficients bii represent
intraspecies density dependence, in analogy with the term c(t)P in (1.3), so we have bii ≤ 0
for all i. The coefficients bij , i 	= j , describe interactions between different species. The
nature of the interaction–competition, mutualism, or predator-prey interaction–determines
the signs of the coefficients bij . If species i and j compete then bij , bji < 0. If species
i preys upon species j , then bij > 0 but bji < 0. If species i and j are mutualists, then
bij , bji > 0. (In the case of mutualism Lotka-Volterra models may sometimes predict that
populations will become infinite in finite time, so the models are probably less suitable for
that situation than for competition or predator-prey interactions.) Usually Lotka-Volterra
competition models embody the assumption that bii < 0 for each i, so the density of
each species satisfies a logistic equation in the absence of competitors. In the case where
species i preys on species j , it is often assumed that bjj < 0 (so the prey species satisfies
a logistic equation in the absence of predation), but that bii = 0 while ai < 0. Under
those assumptions the predator population will decline exponentially in the absence of
prey (because ai < 0), but the only mechanism regulating the predator population is
the availability of prey (because bii = 0, implying that the growth rate of the predator
population does not depend on predator density). If the predator species is territorial or
is limited by the availability of resources other than prey, it may be appropriate to take
bii < 0. Lotka-Volterra models are treated in some detail by Freedman (1980), Yodzis
(1989), and Murray (1993).

The interaction terms in Lotka-Volterra models have the form bijPiPj . If species i and
species j are competitors then the equations relating Pi and Pj in the absence of other
species are

dPi

dt
= (ai − bijPj − biiPi)Pi

dPj

dt
= (aj − bjiPi − bjjPj )Pj .

(1.13)

In the context of competition, the interaction terms appear in the same way as the self-
regulation terms in the logistic equation. Thus, if bii is interpreted as measuring the extent
to which members of species i deplete resources needed by that species and thus reduce the
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net population growth rate for species i, then bij can be interpreted as measuring the extent
to which members of species j deplete the same resources. This interpretation can be used to
study the amount of similarity in resource utilization which is compatible with coexistence;
see MacArthur (1972) or Yodzis (1989). The interpretation in the context of predator-
prey interaction is more complicated. The interaction rate bijPiPj can be interpreted as
a mass-action law, analogous to mass-action principles in chemistry. The essential idea is
that if individual predators and prey are homogeneously distributed within some region,
then the rate at which an individual predator searching randomly for prey will encounter
prey individuals should be proportional to the density of prey, but predators will search
individually, so that the number of encounters will be proportional to the prey density times
the predator density. Another assumption of the Lotka-Volterra model is that the birth rate
of predators is proportional to the rate at which they consume prey, which in turn is directly
proportional to prey density. Both of these assumptions are probably oversimplifications in
some cases.

1.3.2 Beyond Mass-Action: The Functional Response

A problem with the mass-action formulation is that it implies the rate of prey consumption
by each predator will become arbitrarily large if the prey density is sufficiently high. In
practice the rate at which a predator can consume prey is limited by factors such as the
time required to handle each prey item. This observation leads to the notion of a functional
response, as discussed by Holling (1959). Another problem is that predators and prey
may not be uniformly distributed. If predators search in a group then the rates at which
different individual predators encounter prey will not be independent of each other. Finally,
predators may spend time interacting with each other while searching for prey or may
interfere with each other, so that the rate at which predators encounter prey is affected by
predator density. These effects can also be incorporated into predator-prey models via the
functional response.

We shall not give an extensive treatment of the derivation of functional response terms,
but we shall sketch how functional responses can be derived from considerations of how
individuals utilize time and space. We begin with a derivation based on time utilization,
following the ideas of Holling (1959) and Beddington et al. (1975). Suppose a predator
can spend a small period of time �T searching for prey, or consuming captured prey,
or interacting with other predators. (The period of time �T should be short in the sense
that the predator and prey densities remain roughly constant over �T .) Let P1 denote the
predator density and P2 the prey density. Let �Ts denote the part of �T that the predator
spends searching for prey. Let �T1 denote the part of �T the predator spends interacting
with other predators and let �T2 denote the part of �T the predator spends handling prey.
We have �T = �Ts + �T1 + �T2, but �T1 and �T2 depend on the rates at which the
predator encounters other predators and prey, and on how long it takes for each interaction.
Suppose that during the time it spends searching each individual predator encounters prey
and other predators at rates proportional to the prey and predator densities, respectively
(i.e. according to mass action laws.) The number of prey encountered in the time interval
�T will then be given by e2P2�Ts , while the number of predators encountered will be
e1P1�Ts , where e1 and e2 are rate constants that would depend on factors such as the
predator’s movement rate while searching or its ability to detect prey or other predators.
If h1 is the length of time required for each interaction between predators and h2 is the
length of time required for each interaction between a predator and a prey item, then
�T1 = e1h1P1�Ts and �T2 = e2h2P2�Ts . Using the relation �T = �Ts + �T1 + �T2,
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we have �T = (1 + e1h1P1 + e2h2P2)�Ts . Also, the predator encounters e2P2�Ts prey
items during the period �T , so the overall rate of encounters with prey over the time
interval �T is given by

e2P2�Ts/�T = e2P2�Ts/(1 + e1h1P1 + e2h2P2)�Ts

= e2P2/(1 + e1h1P1 + e2h2P2).
(1.14)

The expression g(P1, P2) = e2P2/(1+ e1h1P1 + e2h2P2) is a type of functional response,
introduced by Beddington et al. (1975) and DeAngelis et al. (1975). Under the assumption
that predators do not interact with each other, so that h1 = 0, it reduces to a form derived
by Holling (1959), known as the Holling type 2 functional response. If we maintain the
assumption that the rate at which new predators are produced is proportional to the per capita
rate of prey consumed by each predator, and assume the prey population grows logistically
in the absence of predators, the resulting model for the predator-prey interaction is

dP1

dt
= ae1P2P1

1 + e1h1P1 + e2h2P2
− dP1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 − e2P1P2

1 + e1h1P1 + e2h2P2
.

(1.15)

(The coefficient a represents the predator’s efficiency at converting consumed prey into
new predators, while d represents the predator death rate in the absence of prey.) Note that
if the prey density is held fixed at the level P ∗

2 the predator equation takes the form

dP1

dt
= AP1

B + CP1
− dP1 =

[
A

B + CP1
− d

]
P1, (1.16)

where A = ae2P
∗
2 , B = 1 + e2h2P

∗
2 , and C = e1h1. If A/B > d and C > 0 the function

[A/(B+CP1)]−d is positive when P1 > 0 is small but negative when P1 is large. Thus, the
model (1.16) behaves like the logistic equation in the sense that it includes self-regulation.

The derivation of the Beddington-DeAngelis (and Holling type 2) functional response in
the preceding paragraph from considerations of time utilization retained the assumption that
the total rate of encounters between searching predators and items of prey should follow
a mass-action law. Other types of encounter rates can arise if predators or prey are not
homogeneously distributed. This point is discussed in some detail by Cosner et al. (1999).
Here we will just analyze one example of how spatial effects can influence the functional
response and then describe the results of other scenarios. Let E denote the total rate of
encounters between predators and prey per unit of search time. The rate at which prey are
encountered by an individual predator will then be proportional to E/P1 where P1 is the
predator density. The per capita encounter rate E/P1 reduces to e2P2 if E = e2P1P2, as
in the case of mass action. Substituting the form E/P1 = e2P2 into the derivation given
in the preceding paragraph yields the Holling type 2 functional response if we assume that
predators do not interact with each other. However, the mass action hypothesis E = e2P1P2
is based on the assumption that predators and prey are homogeneously distributed in space.
Suppose instead that the predators do not search for prey independently but form a group
in a single location and then search as a group. In that case, increasing the number of
predators in the system will not increase the area searched per unit time and thus the
number of encounters with prey will not depend on predator density. (This assumes that
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adding more predators to the group does not significantly increase the distance at which
predators can sense prey or otherwise increase the searching efficiency of the predators.)
In that case we would still expect the rate of encounters to depend on prey density, so
that E = e∗P2. Since E represents the total encounter rate between all predators and all
prey, the per capita rate at which each individual predator encounters prey will be given
by e∗2P2/P1. (We are assuming that predators and prey inhabit a finite spatial region so
that the numbers of predators and prey are proportional to their densities.) Since we are
assuming that all the predators are in a single group, they will not encounter any other
predators while searching for prey. Using the per capita encounter rate with prey e∗2P2/P1
instead of e2P2 in the derivation of (1.14) leads to

(e∗2P2/P1)/(1 + e∗2h2(P2/P1)) = e∗P2/(P1 + e∗2hP2). (1.17)

The corresponding predator-prey model is

dP1

dt
= ae∗2(P2/P1)P1

1 + e∗2h2(P2/P1)
− dP1 =

[
ae∗2P2

P1 + e∗2h2P2
− d

]
P1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 −

e∗2P1P2

P1 + e∗2h2P2
.

(1.18)

The model (1.18) is said to be ratio-dependent, because the functional response depends
on the ratio P2/P1. Other types of functional responses arise from other assumptions about
the spatial grouping of predators. These include the Hassell-Varley form eP2/(P

γ

1 + ehP2)

where γ ∈ (0, 1), among others; see Cosner et al. (1999). In the ratio-dependent model
(1.18) the functional response is not smooth at the origin. For that reason the model can
display dynamics which do not occur in predator-prey models of the form

dP1

dt
= [

ag(P1, P2)− d
]
P1

dP2

dt
= r

(
1 −

[
P2

K

])
P2 − g(P1, P2)P1

(1.19)

with g(P1, P2) smooth and g(P1, 0) = 0. In particular, the ratio-dependent model (1.18)
may predict that both predators and prey will become extinct for certain initial densities;
see Kuang and Beretta (1998).

There are several other forms of functional response which occur fairly often in predator-
prey models. Some of those arise from assumptions about the behavior or perceptions of
predators. An example, and the last type of functional response we will discuss in detail,
is the Holling type 3 functional response g(P2) = eP 2

2 /(1 + f P 2
2 ). The key assumption

leading to this form of functional response is that when the prey density becomes low
the efficiency of predators in searching for prey is reduced. This could occur in vertebrate
predators that have a “search image” which is reinforced by frequent contact with prey,
or that use learned skills in searching or in handling prey which deteriorate with lack of
practice; i.e. when prey become scarce. It will turn out that the fact that the Holling type
3 functional response tends toward zero quadratically rather than linearly as P2 → 0 can
sometimes be a significant factor in determining the effects of predator-prey interactions.

There are many other forms of functional response terms that have been used in predator-
prey models. Some discussion and references are given in Getz (1994) and Cosner et al.
(1999). The various specific forms discussed here (Holling type 2 and type 3, Beddington-
DeAngelis, Hassell-Varley, etc.) are sometimes classified as prey dependent (g = g(P2) in
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our notation), ratio-dependent (g = g(P2/P1)) and predator dependent (g = g(P1, P2)).
There has been some controversy about the use of ratio-dependent forms of the functional
response; see Abrams and Ginzburg (2000) for discussion and references. In a recent study
of various data sets, Skalski and Gilliam (2001) found evidence for some type of predator
dependence in many cases. In what follows we will often use Lotka-Volterra models for
predator-prey interactions, but we will sometimes use models with Holling type 2 or 3
functional response or with Beddington-DeAngelis functional response, depending on the
context. Our main focus will generally be on understanding spatial effects, rather than
exhaustively exploring the detailed dynamics corresponding to each type of functional
response, and the forms listed above represent most of the relevant qualitative features
that occur in standard forms for the functional response. We will not consider the ratio
dependent case. That case is interesting and worthy of study, but it presents some extra
technical problems, and it turns out that at least some of the scaling arguments which lead
to diffusion models can destroy ratio dependence.

1.4 Spatial Models: A General Overview

The simple models we have described so far assume that all individuals experience the
same homogeneous environment. In reality, individual organisms are distributed in space
and typically interact with the physical environment and other organisms in their spatial
neighborhood. The most extreme version of local interaction occurs among plants or
sessile animals that are fixed in one location. Even highly mobile organisms encounter
only those parts of the environment through which they move. Many physical aspects of
the environment such as climate, chemical composition, or physical structure can vary
from place to place. In a homogeneous environment any finite number of individuals will
necessarily occupy some places and not others. The underlying theoretical distribution of
individuals may be uniform, but each realization of a uniform distribution for a finite
population will involve some specific and nonuniform placement of individuals. These
observations would not be of any great interest in ecology if there were no empirical
reasons to believe that spatial effects influence population dynamics or if simple models
which assume that each individual interacts with the average environment and the average
densities of other organisms adequately accounted for the observed behavior of populations
and structure of communities. However, there is considerable evidence that space can
affect the dynamics of populations and the structure of communities. An early hint about
the importance came in the work of Gause (1935). Gause conducted laboratory experiments
with paramecium and didnium and found that they generally led to extinction of one or
both populations, even though the same species appear to coexist in nature. In a later set of
experiments Huffaker (1958) found that a predator-prey system consisting of two species
of mites could collapse to extinction quickly in small homogeneous environments, but
would persist longer in environments that were subdivided by barriers to dispersal. Another
type of empirical evidence for the significance of spatial effects comes from observations
of natural systems on islands and other sorts of isolated patches of favorable habitat in
a hostile landscape. There are many data sets which show larger numbers of species on
larger islands and smaller numbers of species on smaller islands. These form the basis for
the theory of island biogeography introduced by MacArthur and Wilson (1967); see also
Williamson (1981) or Cantrell and Cosner (1994). A different sort of empirical evidence for
the importance of space is that simple nonspatial models for resource competition indicate
that in competition for a single limiting resource the strongest competitor should exclude


