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Preface 

In a letter to Thomas Manning in 1810, Charles Lamb wrote: ‘Nothing puzzles me more
than time and space; and yet nothing troubles me less, as I never think about them.’ All of
us working in the field of Quaternary science would, I suspect, tend to agree with the first
part of this statement but take issue over the second. I for one have always been fascinated
by time and, in particular, by the way in which we are able to assign ages to events in the
distant past. My family and friends have been amused and intrigued in equal measure by
me talking, with apparent confidence and authority, about the earth being formed 4.5 billion
years ago, or the present warm period within which we live lasting 11 500 yrs. ‘But how
can you be so sure?’ is the usual question. One of my aims in writing this book is to show
them that there are indeed ways in which we can date the past and, moreover, that we can
do so with an ever-increasing sense of assurance. My principal purpose, however, is to
describe the various dating techniques that are routinely employed in Quaternary science
in a way that is comprehensible to both undergraduate students and interested lay-people
alike. I have therefore tried to avoid using mathematical formulae, although in the first
chapter I felt it necessary to cover some of the basics of chemistry in order to provide the
groundwork for what comes later. I have also orientated the book towards the practical
aspects of dating by basing it around specific examples. Hopefully, this approach will
appeal to students and others with a non-scientific background but, at the same time, will
not appear to those who are fortunate in possessing a stronger scientific pedigree to be
‘dumbing down’. Above all, however, my aim is to encourage readers (unlike Charles
Lamb) to think a little more about the past and to recognise the importance of being able
to frame the momentous events of recent earth and human history within a reasonably
secure temporal framework. 

Throughout the book I have drawn on a previous volume that I wrote with John Lowe
(Reconstructing Quaternary Environments, 1997, Addison-Wesley-Longman, London).
I make no apologies for this because I know that book has been, and continues to be,
widely used at undergraduate and postgraduate levels in both Britain and abroad. I hope
that this new book on Quaternary Dating Methods will find an equally wide readership.
John and I are about to embark on the third edition of Reconstructing Quaternary Envi-
ronments (due 2006), and during the course of preparing that revision, I hope I will be
able to reciprocate and that some of the material contained in the following pages will
find its way into Lowe and Walker Mark III. The text also includes a large number of
references. Some might find that this disrupts the flow of the narrative, but I felt that it
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xvi Preface

was important not only to acknowledge the sources of material upon which I have drawn
but, equally importantly, to point the reader in the direction of this work so that those who
might be interested in taking matters further will be able to do so. 

It is customary in a Preface to express thanks to those who have assisted either directly
or indirectly in the production of the book, and I do not intend to depart from that
practice. Over the last 15 years or so, I have enjoyed the national and international collab-
oration, and friendship, of many colleagues, first through the North Atlantic Seaboard
Programme of IGCP-253, and more recently through the INTIMATE (Integration of
ice-core, marine and terrestrial records) Programme of INQUA (International Quaternary
Union). I am particularly appreciative of the time that I have spent at a number of differ-
ent meetings with, amongst others, Hilary Birks, Sjoerd Bohncke, Svante Björck, Russell
Coope, Les Cwynar, Irka Hajdas, Jan Heinemeir, Wim Hoek, Konrad Hughen, Sigfus
Johnsen, Karen-Luise Knudsen, Nalan Koç, Thomas Litt, Jørgen Peder Steffensen, Chris
Turney, Bas van Geel and Barbara Wohlfarth. My work with the Natural Environmental
Research Council, formerly as a member and subsequently as chairman of the NERC
Radiocarbon Facilities Committee, and latterly as chairman of the NERC AMS (Accelerator
Mass Spectrometry) Strategy Group, has brought me into contact with colleagues at the
East Kilbride and Oxford Radiocarbon Dating Laboratories, notably Chris Bronk-Ramsay,
Charlotte Bryant, Doug Harkness, Robert Hedges and Tony Fallick, whose company
I have enjoyed and from whom I have learned a great deal. I should also like to thank Lin
Kay and Chris Franklin at NERC for supporting me in my role as Committee Chairman.
Finally, I am grateful to my colleagues in the Department of Archaeology and Anthropology,
University of Wales, Lampeter, especially David Austin and John Crowther, for providing
such a congenial working environment over the past four years, and to the university
itself for allowing me a period of study leave during which much of the first draft of the
book was completed. 

In writing this book, I have constantly been aware of the fact that I am approaching the
material as a member of the user community. I am not an expert in the technical aspects
of dating, and hence I have prevailed upon colleagues who know far more about these
matters than I ever will to read what I have written and to show me where I have gone
wrong. I am deeply indebted to Tim Atkinson, Simon Blockley, Charlotte Bryant, Tony
Fallick, Rob Kemp, Olav Lian, Danny McCarroll, James Scourse, Mike Summerfield,
Chris Turney and John Westgate for their careful scrutiny and constructive critical
appraisal of various sections of the text; I simply could not have completed this book
without their assistance. It goes without saying, however, that any remaining errors are
my own. Several friends and colleagues have provided me with photographs, for which I
am most grateful, and Phil Gibbard and Richard Preece helped considerably in the compi-
lation of Figure 1.4. I should also like to thank Sally Wilkinson, Keily Larkins, Lynette James
and the staff in the production department of John Wiley. Last, and by no means least,
I would like to express my gratitude to my wife, Gro-Mette, who has not only been a con-
stant source of encouragement, but who has also read the draft text from cover to cover,
and has provided many valuable inputs along the way. 

One name is missing from the above list. As colleagues within the Quaternary
community will know, for more than 30 years I have worked in collaboration with John
Lowe. We first met as postgraduate students in the University of Edinburgh and since
then we have produced more than 50 joint publications. I have no doubt whatsoever that
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Preface xvii

John could have written this book and, I suspect, he might well have made a better fist of
it. Nevertheless, I hope he will find some of the material in the following pages of interest
and that he will enjoy reading it. Not only have John and I been close academic
colleagues, but we have also remained firm friends, and in acknowledgement of this
I would like to dedicate the book to him. 

Mike Walker
October, 2004
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Quaternary Dating Methods M. Walker
© 2005 John Wiley & Sons, Ltd

1 
Dating Methods and the Quaternary 

Whatever withdraws us from the power of our senses; whatever makes the past, the distant or
the future, predominate over the present, advances us in the dignity of thinking beings. 

Samuel Johnson

1.1 Introduction 

The Quaternary is the most recent period of the geological record. Spanning the last
2.5 million years or so of geological time1 and including the Pleistocene and Holocene
epochs,2 it is often considered to be synonymous with the ‘Ice Age’. Indeed, for much of
the Quaternary, the earth’s land surface has been covered by greatly expanded ice sheets
and glaciers, and temperatures during these glacial periods were significantly lower than
those of the present. But the Quaternary has also seen episodes, albeit much shorter in
duration, of markedly warmer conditions, and in these interglacials the temperatures in
the mid- and high-latitude regions may have exceeded those of the present day. Indeed, rather
than being a period of unremitting cold, the hallmark of the Quaternary is the repeated
oscillation of the earth’s global climate system between glacial and interglacial states. 

Establishing the timing of these climatic changes, and of their effects on the earth’s
environment, is a key element in Quaternary research. Whether it is to date a particular
climatic episode, to estimate the rate of operation of past geological or geomorphological
processes, or to determine the age of an artefact or cultural assemblage, we need to be
able to establish a chronology of events. The aim of this book is to describe, evaluate
and exemplify the different dating techniques that are applicable within the field of

c01.fm  Page 1  Wednesday, March 23, 2005  3:21 AM



2 Quaternary Dating Methods

Quaternary science. It is not, however, a dating manual. Rather, it is a book that is written
from the perspective of the user community as opposed to that of the laboratory expert.
It is, above all, a book that lays emphasis on the practical side of Quaternary dating, for
the principal focus is on examples or case studies. To paraphrase the words of the actor
John Cleese, it is intended to show just what Quaternary dating can do for us! 

In this chapter, we examine the development of ideas relating to geological time and, in
particular, to Quaternary dating. We then move on to consider the ways in which the
quality of a date can be evaluated, and to discuss some basic principles of radioactive
decay as these apply to Quaternary dating. Finally, we return to the Quaternary with a
brief overview of the Quaternary stratigraphic record, and of Quaternary nomenclature
and terminology. These sections provide important background information, and both a
chronological and stratigraphic context for the remainder of the book. 

1.2 The Development of Quaternary Dating 

Early approaches to dating the past were closely associated with attempts to establish the
age of the earth. Some of the oldest writings on this topic are to be found in the classical
literature where the leitmotif of much of the Greek writings is the concept of an infinite
time, equivalent in many ways to modern day requirements for steady-state theories of
the universe (Tinkler, 1985). This position contrasts markedly with that in post-Renaissance
Europe where biblical thinking placed the creation of the world around 6000 years ago,
and when the end of the universe was predicted within a few hundred years. This restricted
chronology for earth history derives from the biblical researches of James Ussher,
Archbishop of Armagh, who in 1654 published his considered conclusion, based on
Old Testament genealogical sources, that the earth was created on Sunday 23 October
4004 BC, with ‘man and other living creatures’ appearing on the following Friday. Another
momentous event in the Old Testament, the ‘great flood’, occurred 1656 years after the
creation, between 2349 and 2348 BC. 

In his magisterial review of the history of earth science, Davies (1969) has observed
that although modern researchers have tended to scoff at Ussher’s chronology he was, in
fact, no fanatical fundamentalist but rather a brilliant and highly respected scholar of his
day. It is perhaps for this reason that his chronology had such a pervasive influence on
scientific thought, although it is perhaps less clear to modern geologists why it still forms
a cornerstone of contemporary creationist ‘science’! During the eighteenth and nineteenth
centuries, however, with the development of uniformitarianist thinking in geology,3 the
pendulum began to swing once more towards longer timescales for the formation of the
earth and for the longevity of operation of geological processes, a view encapsulated by
James Hutton’s famous observation in his Theory of the Earth (1788) that ‘. . . we find no
vestige of a beginning, no prospect of an end’. 

The difficulty was, of course, that pre-twentieth-century scientists had no bases for
determining the passage of geological time. One of the earliest attempts to tackle the
problem was William McClay’s work in 1790 on the retreat of the Niagara Falls escarpment,
which led him to propose an age of 55 440 years for the earth (Tinkler, 1985). Others tried
a different tack. The nineteenth-century scientist John Joly, for example, calculated the
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quantity of sodium salt in the world’s oceans, as well as the amount added every year
from rock erosion, and arrived at a figure of 100 million years for the age of the earth.
Increasingly, however, came an awareness that even this extended time frame was simply
not long enough to account for the entire history of the earth and, moreover, for organic
evolution, a view that was underscored by the publication of Darwin’s seminal work Origin
of Species in 1859. Further challenges to the Ussher timescale and to its successors came from
the field of archaeology, with noted antiquarians such as John Evans (and his geological
colleague Joseph Prestwich) arguing, on the basis of finds of ancient handaxes, for a
protracted period of human occupation extending into a period of antiquity ‘. . . . remote
beyond any of which we have hitherto found traces’ (Renfrew, 1973). 

It was into this atmosphere of chronological uncertainty that Louis Agassiz introduced
his revolutionary idea of a ‘Great Ice Period’, which arguably marks the birth of modern
Quaternary science. This notion, first propounded in 1837, was initially received with a
degree of scepticism by the geological establishment, but the idea not only of a single
glaciation but, indeed, of multiple glaciations rapidly gained ground. By the beginning of
the twentieth century, most geologists were subscribing to the view that four major glacial
episodes had affected the landscapes of both Europe and North America, although the basis
for dating these events remained uncertain. An early attempt at establishing a glacial–
interglacial chronology was made by the German geologist Albrecht Penck, using the
depth of weathering and ‘intensity of erosion’ in the northern Alpine region of Europe to
estimate the duration of interglacial periods. On this basis, an age of 60 000 years was
assigned to the Last Interglacial and 240 000 years to the Penultimate Interglacial, the
duration of the Quaternary being estimated at 600 000 years (Penck and Bruckner, 1909).
An alternative approach using the astronomical timescale based on observed variations in
the earth’s orbit and axis4 again arrived at a similar figure, although if older glaciations
recorded in the Alpine region were included, the time span of the Quaternary was extended
to around 1 million years (Zeuner, 1959). This figure has since been widely quoted and, for
the first half of the twentieth century at least, was generally regarded as the best estimate
of age for the Quaternary. 

At about the time that the Quaternary glacial chronology was being worked out for the
European Alps, the first attempts were being made to develop a timescale for the last
deglaciation, using laminated or layered sediment sequences which were interpreted as
reflecting annual sedimentation cycles. These are known as varves, and are still employed
as a basis for Quaternary chronology at the present day (section 5.3). Some of the earliest
studies were made on the sediments in Swiss lakes and produced estimates of between
16 000 and 20 000 years since the last glacial maximum (Zeuner, 1959), results that are
not markedly different from those derived from more recent dating programmes. The
seminal work on varved sequences, however, was carried out in Scandinavia where Gerard
de Geer (Figure 1.1) developed the world’s first high-resolution deglacial chronology in
relation to the wasting Fennoscandian ice sheet (section 5.3.3.1). This approach was
subsequently applied in North America to date glacial retreat along parts of the southern
margin of the last (Laurentide) ice sheet (Antevs, 1931). 

The early years of the twentieth century saw the development of another dating technique
which is still widely used in Quaternary science, namely dendrochronology or tree-ring
dating (section 5.2). Research on tree rings has a long history, and the relationship
between tree rings and climate (a field of study known as dendroclimatology) has
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intrigued scientists since the Middle Ages. Indeed, some of the earliest writings on this
subject can be found in the papers of Leonardo da Vinci (Stallings, 1937). The basics of
modern dendrochronology, however, were formulated by the American astronomer
Andrew Douglass, who was the first to link simple dendrochronological principles to
historical research and to climatology (Schweingruber, 1988). Together with Edmund
Schulmann, he founded the world-famous Laboratory for Tree-Ring Research at the
University of Arizona in 1937. In Europe, it was not until the end of the 1930s that
dendrochronology began to gain a foothold, largely through the work of the German

Figure 1.1 Gerard de Geer measuring varves at Beckomberga, Stockholm, in 1931. Varve
chronology was the first dating technique to provide a realistic estimate of Quaternary time
(photo: Ebba Hult de Geer, courtesy of Lars Brunnberg and Stefan Wastegård) 
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botanist, Bruno Huber. His research laid the foundation for the modern school of German
dendrochronology which has remained at the forefront of tree-ring research in Europe to
the present day. 

The most significant advance in Quaternary chronology, however, came during and
immediately after the Second World War, with the discovery that the decay of certain
radioactive elements could form a basis for dating. Although measurements had been
made more than 30 years earlier on radioactive minerals of supposedly Pleistocene age
(Holmes, 1915), it was the pioneering work of Willard Libby and his colleagues that led
to the development of radiocarbon dating, and to the establishment of the world’s first
radiocarbon dating laboratory at the University of Chicago in 1948. During the 1950s and
1960s, other radiometric methods were developed that built on technological advances
(increasingly sophisticated instrumentation) and an increasing understanding of the nuclear
decay process. These included uranium-series and potassium–argon dating (Chapter 3),
while a growing appreciation of the effects on minerals and other materials of exposure to
radiation led to the development of another family of techniques which includes thermo-
luminescence, fission track and electron spin resonance dating (Chapter 4). In the late
1960s and 1970s, advances in molecular biology enabled post-mortem changes in protein
structures to be used as a basis for dating (amino acid geochronology), while remarkable
developments in coring technology led to the recovery of long-core sequences from ocean
sediments and from polar ice sheets, out of which came the first marine and ice-core
chronologies. The last two decades of the twentieth century have been characterised by
a series of technological innovations that led not only to a further expansion in the range
of Quaternary dating techniques, but also to significant improvements in analytical
precision. A major advance was the development of accelerator mass spectrometry
(AMS), which not only revolutionised radiocarbon dating (Chapter 2), but also made
possible the technique of cosmogenic nuclide dating (section 3.4). The last decade has
also witnessed the creation of the high-resolution chronologies from the GRIP and GISP2
Greenland ice cores, and from the Vostok and EPICA cores in Antarctica (section 5.5). 

These various developments and innovations mean that Quaternary scientists now have
at their disposal a portfolio of dating methods that could not have been dreamed of only a
generation ago, and which are capable of dating events on timescales ranging from single
years to millions of years. The year 2004 sees the 350th anniversary of the publication of
the second edition of Ussher’s ground-breaking volume on the age of the earth. How he
would have reconciled the recent advances in Quaternary dating technology with his
6000-year estimate for the age of the earth is difficult to imagine! 

1.3 Precision and Accuracy in Dating 

Before going further, it is important to say something about how we can judge the quality
of an age determination. Two principal criteria reflect the quality of a date, namely
accuracy and precision, and these apply not only to dates on Quaternary events, but to
all age determinations made within the earth, environmental and archaeological sciences.
For dating practitioners and for interpreting dates, it is important to understand the
meaning and significance of these terms. Accuracy refers to the degree of correspondence
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between the true age of a sample and that obtained by the dating process. In other
words, it refers to the degree of bias in an age measurement. Precision relates to the
statistical uncertainty that is associated with any physical or chemical analysis that is
used as a basis for determining age. As we shall see, all dating methods have their own
distinctive set of problems, and hence each age measurement will have an element of
uncertainty associated with it. These uncertainties tend to be expressed in statistical
terms and provide us with an indication of the level of precision of each age determination
(Chapter 2). 

An example of the distinction between accuracy and precision in the context of a dated
sequence is shown in Figure 1.2. In sample A, there is close agreement in terms of
mean age between the four dated samples, and the standard errors (indicated by the
range bars) are small; however, the dates are 2000–2500 years younger than the ‘true
age’. These dates are therefore precise, but inaccurate. In sample B, the reverse obtains;
the dates cluster around the true age but have wide error bars. Hence they are accurate
but imprecise. In sample C, however, the dates are of similar age and have narrow error
bars. These age determinations are both accurate and precise, which is the optimal
situation in dating. 













C. Accurate
 and
 precise

A. Precise
 but
 inaccurate

B. Accurate
 but
 imprecise

5000 6000 7000 8000 9000 Years B.P.

'True'
age of
sample

Figure 1.2 Accuracy and precision in a dated sequence (modified after Lowe and Walker,
1997); see text for details 
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1.4 Atomic Structure, Radioactivity and Radiometric Dating 

Radiometric dating methods form a significant component of the Quaternary scientist’s
dating portfolio. Indeed, half of the chapters in this book that deal specifically with dating
methods are concerned with radiometric dating. All radiometric techniques are based on
the fact that certain naturally occurring elements are unstable and undergo spontaneous
changes in their structure and organisation in order to achieve more stable atomic forms.
This process, known as radioactive decay, is time-dependent, and if the rate of decay
for a given element can be determined, then the ages of the host rocks and fossils can be
established. 

In order to understand the basics of radiometric dating, it is necessary to know something
about atomic structure and the radioactive process. Matter is composed of minute particles
known as atoms, the nuclei of which contain positively charged particles (protons), and
particles with no electrical charge (neutrons), which together make up most of the mass
of an atom. Third elements are electrons, which are tiny particles of negative charge and
negligible mass that spin around the nucleus. Collectively, protons, neutrons and electrons
are referred to as elementary or sub-atomic particles, and for many years were considered
to be the fundamental building blocks of matter. With the development of large particle
accelerators however, machines that are capable of accelerating samples to such high
speeds that matter breaks down into its constituent parts, dozens of new sub-atomic par-
ticles have been discovered and current research suggests that atomic matter is made up of
elementary particles from two families, quarks and leptons. Our understanding of
electrons (which are members of the lepton family of particles) and their behaviour has
also changed. At one time it was believed that electrons orbited the nucleus in shells
(or orbitals), similar to the way in which the planets orbit the sun, and that in each of these
orbits they had certain energy. However, the situation now appears to be more complex,
as modern physics has shown that it is not possible to determine both the location and
the velocity of a sub-atomic particle.5 More recent work on atomic structure therefore
envisages electrons with a particular energy existing in volumes of space around the
nucleus, even though their exact location cannot be established. These volumes are
known as atomic orbitals. The build-up of electrons in atomic orbitals allows scientists
to explain many of the physical and chemical properties of elements, and lies at the heart
of our modern understanding of chemistry. 

When an atom gains or loses electrons, it acquires a net electrical charge, and such
atoms are known as ions. The electrical charge can be positive or negative; a positive ion
is referred to as a cation and a negative ion as an anion. The nature of the electrical
charge is based on the number of protons minus the number of electrons, and is often
referred to as the valence. Hence, an element with eight protons and eight electrons has
a net electrical charge of 0. If it gains two electrons, it has a negative electrical charge
(valence = 2−) and it becomes an anion. If it loses two electrons, it develops a positive
charge (valence = 2+) and becomes a cation. Ionisation, which is the process whereby
electrons are removed (usually) or added (occasionally) to atoms, is an important element
in radiation (see below). 

The atoms of each chemical element have a specific atomic number and atomic mass
number. The former refers to the number of protons contained in the nucleus of an atom,
while the latter is the number of protons plus neutrons. In other words, the mass number
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is the total number of particles (nucleons) in the nucleus. The atomic number is usually
written in subscript on the left-hand side of the symbol for the chemical element
(e.g. oxygen – 8O; uranium – 92U), while the atomic mass number is shown in superscript
(e.g. 16O; 238U). In some elements, although the number of protons in the nucleus remains
the same, the number of neutrons may vary. Elements that possess the same number of
protons but different numbers of neutrons are referred to as isotopes. The number of
electrons is constant for isotopes of each element, and hence they have the same chemical
properties, but the isotopes differ in mass, and this will be reflected in change in the
atomic mass number. Examples include carbon (12C, 13C, 14C) and oxygen (16O, 17O, 18O).
Individual isotopes of an element are referred to as nuclides. Most of these are stable; in
other words the binding forces created by the electrical charges are sufficient to keep the
atomic particles together. In some cases, however, where there are too many or too few
neutrons in the nucleus, for example, the nuclides are unstable and this results in a spontan-
eous emission of particles or energy to achieve a stable state. This is the process of radiation
(or radioactive ‘decay’), and such isotopes are known as radioactive nuclides. 

Unstable nuclei can rid themselves of excess energy in a variety of ways, but the three
most common forms are alpha, beta and gamma decay. In alpha (α) decay, a nucleus
emits an alpha particle consisting of two protons and two neutrons, which is a nucleus of
helium. Nuclides that emit alpha particles lose both mass and positive charge. The atomic
mass number changes to reflect this, and the result is that one chemical element can be
created by the decay of others. In beta (β) decay, a different kind of particle is ejected –
an electron. The emission of a negatively charged electron does not alter mass, hence
there is no change in atomic mass number. There is, however, a change in atomic number
because the reason for the ejection of the electron is that as the nucleus decays, a neutron
transmutes into a proton, and the nucleus must rid itself of some energy and increase its
electrical charge. The emission of an electron, with its negative charge and small amount
of excess energy, enables this to be achieved. The third common form of radioactivity is
gamma (γ) decay. Here, the nucleus does not emit a particle, but rather a highly energetic
form of electromagnetic radiation. Gamma radiation does not change the number of
protons and neutrons in the nucleus, but it does reduce the energy of the nucleus. Gamma
rays are not important in most forms of radiometric dating (with the exception of some
short-lived isotopes: Chapter 3), but they do contribute to the build-up of luminescent
properties in minerals (Chapter 4). In addition, the cosmic rays from deep space that
constantly bombard the earth’s upper atmosphere, and which initiate the chemical reaction
that leads to the formation of radiocarbon (Chapter 2) and other cosmogenic isotopes
(Chapter 3), are largely composed of gamma radiation. 

An atom that undergoes radioactive decay is termed a parent nuclide and the decay
product is often referred to as a daughter nuclide. Some parent–daughter transformations
are accomplished in a single stage, a process known as simple decay. Others involve
a more complex reaction in which the nuclide with the highest atomic number decays to a
stable form through the production of a series of intermediate nuclides, each of which is
unstable. This is known as chain decay and occurs, for example, in uranium series
(section 3.3). The intermediate nuclides that are formed during the course of decay are
therefore both the products (or daughters) of previous nuclear transformations and the
parents in subsequent radioactive decay. Such nuclides are referred to as supported.
Where the decay process involves a nuclide that has not, in itself, been created by the
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decay process, or where that nuclide has been separated from earlier nuclides in the
chain through the operation of physical, chemical or biological processes, this is known
as unsupported decay. The distinction between supported and unsupported decay
is considered further in the context of 210Pb (lead-210) dating (section 3.5.1). 

Radioactive decay processes are governed by atomic constants. The number of trans-
formations per unit of time is proportional to the number of atoms present in the sample
and for each decay pathway there is a decay constant. This represents the probability
that an atom will decay in a given period of time. Although the radioactive decay of an
individual atom is an irregular (stochastic) process, in a large sample of atoms it is possible
to establish, within certain statistical limits, the rate at which overall distintegration
proceeds. In all radioactive nuclides, the decay is not linear but exponential (e.g. Figure 2.1)
and is usually considered in terms of the half-life, i.e. the length of time that is required to
reduce a given quantity of a parent nuclide to one half. For example, if 1 gm of a parent
nuclide is left to decay, after t½ only 0.5gm of that parent will remain. It will then take the
same period of time to reduce that 0.5 gm to 0.25 gm, and to reduce the 0.25 gm to
0.125gm, and so on. The half-life concept is fundamental to all forms of radiometric dating. 

1.5 The Quaternary: Stratigraphic Framework and Terminology 

As we saw above, the Quaternary is conventionally subdivided into glacial (cold) and
interglacial (temperate) stages, with further subdivisions into stadial (cool) and intersta-
dial (warm) episodes. The distinction between glacials and stadials on the one hand, and
interglacials and interstadials on the other, is often blurred, but glacials are generally con-
sidered to be cold periods of extended duration (spanning tens of thousands of years) dur-
ing which temperatures in the mid- and high-latitude regions were low enough to
promote extensive glaciation. Stadials are cold episodes of lesser duration (perhaps
10 000 years or less) when cold conditions obtained and when short-lived glacial read-
vances occurred. Interglacials, on the other hand, were warm periods when temperatures
in the mid- and high latitudes were comparable with, or may even have exceeded, those of
the present, and whose duration may have been 10000 years or more. Interstadials, by
contrast, were short-lived (typically less than 5000 years) warmer episodes within a
glacial stage, during which temperatures did not reach those of the present day. This type
of categorisation, which is based on inferred climatic characteristics, is known as climato-
stratigraphy (Lowe and Walker, 1997). 

Evidence for former glacial and interglacial conditions (as well as stadial and interstadial
environments) has long been recognised in the terrestrial stratigraphic record. Former
cold episodes are represented by glacial deposits, by periglacial sediments and structures,
and by biological evidence (such as pollen or vertebrate remains) which are indicative of
a cold-climate régime. Interglacial and interstadial phases are reflected primarily in the
fossil record (pollen, plant macrofossils, fossil insect remains, etc.), or in biogenic
sediments that have accumulated in lakes or ponds during a period of warmer climatic
conditions. However, because of the effects of erosion, especially glacial erosion, the
Quaternary terrestrial stratigraphic record is highly fragmented and, apart from some
unusual contexts such as deep lakes in areas that have escaped the direct effects of glaciation,
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long and continuous sediment records are rarely preserved. During the later twentieth
century, therefore, Quaternary scientists turned to the deep oceans of the world, where
sedimentation has been taking place continuously over hundreds of thousands of years.
Indeed, many ocean sediment records extend in an uninterrupted fashion back through the
Quaternary and into the preceding Tertiary period. One of the great technological break-
throughs of the twentieth century was the development of coring equipment mounted on
specially designed ships (Figure 1.3) which enabled complete sediment cores to be
obtained from the deep ocean floor, sometimes from water depths in excess of 3 km! 

What these cores revealed was a remarkable long-term record of oceanographic and,
by implication, climatic change. This is reflected in the oxygen isotope ‘signal’ (or trace)
in marine microfossils contained within the ocean floor sediments. The variations in the
ratio between two isotopes of oxygen, the more common and ‘lighter’ oxygen-16 (16O)
and the rarer ‘heavier’ oxygen-18 (18O), are indications of the changing isotopic compos-
ition of ocean waters between glacial and interglacial stages. As the balance between the
two oxygen isotopes in sea water is largely controlled by fluctuations in land ice volume,6

downcore variations in the oxygen isotope ratio (δ18O) can be read as a record of glacial/
interglacial climatic oscillations, working on the principle that ice sheets and glaciers
would have been greatly expanded during glacial times but much less extensive during
interglacials (Shackleton and Opdyke, 1973). The sequence can therefore be divided into
a series of isotopic stages (marine oxygen isotope or MOI stages) and these are numbered
from the top down, interglacial (temperate) stages being assigned odd numbers, while
even numbers denote glacial (cold) stages. The record shows that over the course of the

Figure 1.3 The Joides Resolution, a specially commissioned ocean-going drilling ship for
coring deep-sea sediments (photo Bill Austin) 
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