SMART SENSOR SYSTEMS

Edited by

Gerard C.M. Meijer

Delft University of Technology, the Netherlands SensArt, Delft, the Netherlands

SMART SENSOR SYSTEMS

SMART SENSOR SYSTEMS

Edited by

Gerard C.M. Meijer

Delft University of Technology, the Netherlands SensArt, Delft, the Netherlands

This edition first published 2008 © 2008 John Wiley & Sons, Ltd, except for: Chapter 4 © 2008 Reinoud Wolffenbuttel. Printed by John Wiley & Sons, Ltd Chapter 5 © 2008 Michael Vellekoop. Printed by John Wiley & Sons, Ltd Chapter 6 © 2008 Sander van Herwaarden. Printed by John Wiley & Sons, Ltd

Registered office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Cover picture: copyright Sodern. The sensor on the cover picture was developed by Xensor Integration for Sodern (subsidiary of EADS)

Library of Congress Cataloging-in-Publication Data

Smart sensor systems/ edited by Gerard C.M. Meijer. p. cm. Includes bibliographical references and index. ISBN 978-0-470-86691-7 (cloth)
1. Detectors–Design and construction. 2. Detectors–Industrial applications. 3. Microcontrollers.
I. Meijer, G. C. M. (Gerard C. M.) TA165.S55 2008 681'.25–dc22 2008017675

A catalogue record for this book is available from the British Library.

ISBN: 9780470866917

Set in 10/12pt Times by Aptara Inc., New Delhi, India Printed in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

Contents

Pre	face	xiii
Ab	out the Authors	XV
1	Smart Sensor Systems: Why? Where? How?	1
	Johan H. Huijsing	
1.1	Third Industrial Revolution	1
1.2	Definitions for Several Kinds of Sensors	3
	1.2.1 Definition of Sensors	3
	1.2.2 Definition of Smart Sensors	9
	1.2.3 Definition of Integrated Smart Sensors	9
	1.2.4 Definition of Integrated Smart Sensor Systems	11
1.3	Automated Production Machines	12
1.4	Automated Consumer Products	16
	1.4.1 Smart Cars	16
	1.4.2 Smart Homes	16
	1.4.3 Smart Domestic Appliances	17
	1.4.4 Smart Toys	19
1.5	Conclusion	21
	References	21
2	Interface Electronics and Measurement Techniques for Smart	
	Sensor Systems	23
	Gerard C.M. Meijer	
2.1	Introduction	23
2.2	Object-oriented Design of Sensor Systems	24
2.3	Sensing Elements and Their Parasitic Effects	25
	2.3.1 Compatibility of Packaging	25
	2.3.2 Effect of Cable and Wire Impedances	26
	2.3.3 Parasitic and Cross-effects in Sensing Elements	27
	2.3.4 Excitation Signals for Sensing Elements	29
2.4	Analog-to-digital Conversion	30
2.5	High Accuracy Over a Wide Dynamic Range	33
	2.5.1 Systematic, Random and Multi-path Errors	33
	2.5.2 Advanced Chopping Techniques	34
	2.5.3 Autocalibration	36

	2.5.4 Dynamic Amplification	37
	2.5.5 Dynamic Division and Other Dynamic Signal-processing Techniques	40
2.6	A Universal Transducer Interface	41
	2.6.1 Description of the Interface Chip and the Applied Measurement Techniques	41
	2.6.2 Realization and Experimental Results	47
2.7	Summary and Future Trends	50
	2.7.1 Summary	50
	2.7.2 Future Trends	51
	Problems	51
	References	54
•		
3	Silicon Sensors: An Introduction	55
2.1	Paddy J. French	
3.1	Introduction	55
3.2	Measurement and Control Systems	55
3.3	Transducers	57
	3.3.1 Form of Signal-carrying Energy	57
	3.3.2 Signal Conversion in Transducers	59
	3.3.3 Smart Silicon Sensors	60
	3.3.4 Self-generating and Modulating Transducers	63
3.4	Transducer Technologies	63
	3.4.1 Introduction	63
	3.4.2 Generic Nonsilicon Technologies	64
	3.4.3 Silicon	66
3.5	Examples of Silicon Sensors	68
	3.5.1 Radiation Domain	68
	3.5.2 Mechanical Domain	70
	3.5.3 Thermal Domain	70
	3.5.4 Magnetic Domain	72
	3.5.5 Chemical Domain	74
3.6	Summary and Future Trends	75
	3.6.1 Summary	75
	3.6.2 Future Trends	75
	References	76
4	Ontical Sensors Resed on Photon Detection	79
-	Reinoud F Wolffenbuttel	1)
41	Introduction	70
4.1 4.2	Photon Absorption in Silicon	81
4.2	The Interface: Photon Transmission Into Silicon	84
т.5 Д Д	Photon Detection in Silicon Photoconductors	87
7.4	4.4.1 Photoconductors in Silicon: Operation and Static Performance	07 80
	4.4.2 Photoconductors in Silicon: Operation and Static Terjormance	09
15	Photon Detection in Silicon on Junctions	73 02
4.3	4.5.1 Defining the Depletion Layer at a nu Innetion	93 04
	4.5.1 Defining the Depletion Layer at a ph Junction 4.5.2 Electron hole Collection in the Depletion Layer	94
	4.3.2 Electron-noie Collection in the Depletion Layer	97

	4.5.3 Electron-hole Collection in the Substrate	97
	4.5.4 Electron-hole Collection Close to the Surface	99
	4.5.5 Backside-illuminated Pin Photodiode	100
	4.5.6 Electron-hole Collection in Two Stacked pn Junctions	102
4.6	Detection Limit	103
	4.6.1 Noise in the Optical Signal	104
	4.6.2 Photon Detector Noise	105
	4.6.3 Photon Detector Readout	106
4.7	Photon Detectors with Gain	108
	4.7.1 The Phototransistor	108
	4.7.2 The Avalanche Photodiode	109
	4.7.3 Time Integration of Photon-generated Charge	112
4.8	Application Examples	113
	4.8.1 Color Sensor in CMOS	113
	4.8.2 Optical Microspectrometer in CMOS	115
4.9	Summary and Future Trends	117
	4.9.1 Summary	117
	4.9.2 Future Trends	118
	Problems	119
	References	119
5	Physical Chemosensors	121
	Michael J. Vellekoop	
5.1	Introduction	121
	5.1.1 Thin-film Chemical Interfaces	122
	5.1.2 Total Analysis Systems	122
	Physical Chamosansing	100
5.2	r nysical Chemosensing	123
5.2 5.3	Energy Domains	123
5.2 5.3 5.4	Energy Domains Examples and Applications	123 124 126
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications	123 124 126 127
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter	123 124 126 127 127
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector	123 124 126 127 127 127
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System	123 124 126 127 127 127 127
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements	123 124 126 127 127 127 129 130
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose	123 124 126 127 127 127 129 130 130
5.25.35.45.55.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices	123 124 126 127 127 127 129 130 130 131
5.25.35.45.55.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer	123 124 126 127 127 127 129 130 130 131 135
5.2 5.3 5.4 5.5	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter	123 124 126 127 127 127 129 130 130 131 135 138
5.2 5.3 5.4 5.5 5.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter 5.6.3 Dielectrophoresis-based Devices	123 124 126 127 127 127 129 130 130 130 131 135 138 140
5.2 5.3 5.4 5.5 5.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter 5.6.3 Dielectrophoresis-based Devices 5.6.4 High-throughput Screening Arrays	123 124 126 127 127 127 129 130 130 130 131 135 138 140 144
5.2 5.3 5.4 5.5 5.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter 5.6.3 Dielectrophoresis-based Devices 5.6.4 High-throughput Screening Arrays 5.6.5 Contactless Conductivity Detection in CE	123 124 126 127 127 129 130 130 130 131 135 138 140 144
5.2 5.3 5.4 5.5 5.6	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter 5.6.3 Dielectrophoresis-based Devices 5.6.4 High-throughput Screening Arrays 5.6.5 Contactless Conductivity Detection in CE Conclusions	123 124 126 127 127 127 129 130 130 130 131 135 138 140 144 145 146
5.2 5.3 5.4 5.5 5.6 5.7	Energy Domains Examples and Applications Examples of <i>in situ</i> Applications 5.5.1 Blood Oximeter 5.5.2 Thermal Conductivity Detector 5.5.3 Engine Oil Monitoring System 5.5.4 Oil-condition Sensor Based on Infrared Measurements 5.5.5 Electronic Nose Microfluidics Devices 5.6.1 Projection Cytometer 5.6.2 Coulter Counter 5.6.3 Dielectrophoresis-based Devices 5.6.4 High-throughput Screening Arrays 5.6.5 Contactless Conductivity Detection in CE Conclusions Problems	123 124 126 127 127 129 130 130 130 131 135 138 140 144 145 146 147

6	Thermal Sensors		151	
	Sande	er (A.W.) van Herwaarden		
6.1	The F	The Functional Principle of Thermal Sensors		
	6.1.1	Self-generating Thermal-power Sensors	151	
	6.1.2	Modulating Thermal-conductance Sensors	152	
6.2	Heat 7	Fransfer Mechanisms	153	
6.3	Therm	nal Structures	155	
	6.3.1	Modeling	155	
	6.3.2	Floating Membranes	160	
	6.3.3	Cantilever Beams and Bridges	161	
	6.3.4	Closed Membranes	163	
6.4	Tempe	erature-Difference Sensing Elements	165	
	6.4.1	Introduction	165	
	6.4.2	Thermocouples	165	
	6.4.3	Other Elements	168	
6.5	Sensor	rs Based on Thermal Measurements	168	
	6.5.1	Microcalorimeter	169	
	6.5.2	Psychrometer	170	
	6.5.3	Infrared Sensor	171	
	6.5.4	RMS Converter	172	
	6.5.5	EM Field Sensor	173	
	6.5.6	Flow Sensor	174	
	6.5.7	Vacuum Sensor	174	
	6.5.8	Thermal Conductivity Gauge	176	
	6.5.9	Acceleration Sensors	177	
	6.5.10) Nanocalorimeter	177	
6.6	Summ	nary and Future Trends	179	
	6.6.1	Summary	179	
	6.6.2	Future Trends	179	
	Proble	ems	180	
	Refere	ences	182	

7	Smart Temperature Sensors and Temperature-Sensor Systems		185
	Gerar	d C.M. Meijer	
7.1	Introd	uction	185
7.2	Applic	cation-related Requirements and Problems of Temperature Sensors	188
	7.2.1	Accuracy	189
	7.2.2	Short-term and Long-term Stability	189
	7.2.3	Noise and Resolution	190
	7.2.4	Self-heating	192
	7.2.5	Heat Leakage along the Connecting Wires	194
	7.2.6	Dynamic Behavior	194
7.3	Resist	ive Temperature-sensing Elements	196
	7.3.1	Practical Mathematical Models	196
	7.3.2	Linearity and Linearization	198

7.4	Temperature-sensor Features of Transistors	200
	7.4.1 General Considerations	200
	7.4.2 Physical and Mathematical Models	201
	7.4.3 PTAT Temperature Sensors	203
	7.4.4 Temperature Sensors with an Intrinsic Voltage Reference	207
	7.4.5 Calibration and Trimming of Transistor Temperature Sensors	208
7.5	Smart Temperature Sensors and Systems	208
	7.5.1 A Smart Temperature Sensor with a Duty-cycle-modulated Output Signal	209
	7.5.2 Smart Temperature-sensor Systems with Discrete Elements	212
7.6	Case Studies of Smart-sensor Applications	212
	7.6.1 Thermal Detection of Micro-organisms with Smart Sensors	213
	7.6.2 Control of Substrate Temperature	217
7.7	Summary and Future Trends	220
	7.7.1 Summary	220
	7.7.2 Future Trends	221
	Problems	222
	References	223
8	Capacitive Sensors	225
	Xiujun Li and Gerard C.M. Meijer	
8.1	Introduction	225
8.2	Basics of Capacitive Sensors	226
	8.2.1 Principles	226
	8.2.2 Precision of Capacitive Sensors	226
8.3	Examples of Capacitive Sensors	227
	8.3.1 Angular Encoders	228
	8.3.2 Humidity Sensors	229
	8.3.3 Liquid-level Gauges	230
8.4	The Design of Electrode Configurations	231
	8.4.1 EMI Effects	231
	8.4.2 Electric-field-bending Effects	232
	8.4.3 Active-guard Electrodes	232
	8.4.4 Floating Electrodes	233
	8.4.5 Contamination and Condensation	234
8.5	Reduction of Field-bending Effects: Segmentation	234
	8.5.1 Three-layered Electrode Structures	235
	8.5.2 A Model for the Electrostatic Field in Electrode Structures	236
	8.5.3 Influence of the Electric-field-bending Effects on Linearity	237
8.6	Selectivity for Electrical Signals and Electrical Parameters	237
	8.6.1 Selective Detection of Band-limited Frequencies	238
	8.6.2 Selective Detection of a Selected Parameter	239
	8.6.3 Measurement Techniques to Reduce the Effects of Shunting Conductances	240
8.7	Summary and Future Trends	246
	Problems	246
	References	247

9	Integrated Hall Magnetic Sensors	249
	Radivoje S. Popović and Pavel Kejik	
9.1	Introduction	249
9.2	Hall Effect and Hall Elements	250
	9.2.1 The Hall Effect	250
	9.2.2 Hall Elements	253
	9.2.3 Characteristics of Hall Elements	253
	9.2.4 Integrated Horizontal Hall Plates	256
	9.2.5 Integrated Vertical Hall Plates	258
9.3	Integrated Hall Sensor Systems	259
	9.3.1 Biasing a Hall Device	260
	9.3.2 Reducing Offset and 1/f noise	260
	9.3.3 Amplifying the Hall Voltage	262
	9.3.4 Integrating Magnetic Functions	265
9.4	Examples of Integrated Hall Magnetic Sensors	267
	9.4.1 Magnetic Angular Position Sensor	267
	9.4.2 Fully Integrated Three-axis Hall Probe	269
	9.4.3 Integrated Hall Probe for Magnetic Microscopy	271
	Problems	276
	References	276
10	Universal Asynchronous Sensor Interfaces	279
	Gerard C.M. Meijer and Xiujun Li	
10.1	Introduction	279
10.2	Universal Sensor Interfaces	280
10.3	Asynchronous Converters	283
	10.3.1 Conversion of Sensor Signals to the Time Domain	284
	10.3.2 Wide-range Conversion of Sensor Signals to the Time Domain	
	for Very Small or Very Large Signals	287
	10.3.3 Output Signals	288
	10.3.4 Quantization Noise of Sampled Time-modulated Signals	290
	10.3.5 A Comparison between Asynchronous Converters and	
	Sigma–delta Converters	294
10.4	Dealing with Problems of Low-cost Design of Universal Interface ICs	296
10.5	Front-end Circuits	297
	10.5.1 Cross-effects and Interaction	297
	10.5.2 Interference	298
	10.5.3 Optimization of Components, Circuits and Wiring	298
10.6	Case Studies	299
	10.6.1 Front-end Circuits for Capacitive Sensors	299
	10.6.2 Front-end Circuits for Resistive Bridges	302
	10.6.3 A Front-end Circuit for a Thermocouple-voltage Processor	305
10.7	Summary and Future Trends	307
	10.7.1 Summary	307
	10.7.2 Future Trends	307
	Problems	308
	References	311

11	Data Acquisition for Frequency- and Time-domain Sensors	313
111	Sergey Y. Yurish	212
11.1	Introduction	214
11.2	DAQ Board Design for Quesi digital Sensors	216
11.5	DAQ Boald Design for Quasi-digital Sensors	216
	11.5.1 Advanced Methods for Frequency-to-digital Conversion	200
	11.5.2 Examples	322
	11.3.5 Methods for Dury-cycle-to-digital Conversion	324
11 /	11.5.4 Methods for Fluxe-shift-to-alguar Conversion	220
11.4	11.4.1. ICs for Frequency to digital Conversion: State of the Art	220
	11.4.1 ICS JOI Frequency-to-alguar Conversion. State of the Art	332
115	Applications and Examples	335
11.5	Summary and Future Trande	339
11.0	Drohlems	330
	References	340
	References	540
12	Microcontrollers and Digital Signal Processors for Smart Sensor Systems <i>Ratcho M. Ivanov</i>	343
12.1	Introduction	343
12.2	MCU and DSP Architectures, Organization, Structures, and Peripherals	344
12.3	Choosing a Low-Power MCU or DSP	347
	12.3.1 Average Current Consumption	348
	12.3.2 Oscillator and System Clocks	349
	12.3.3 Interrupts	350
	12.3.4 Peripherals	350
	12.3.5 Summary	350
12.4	Timer Modules	351
	12.4.1 Introduction to Timer Modules	351
	12.4.2 Examples of Timer Module Applications for Various Microcontrollers	355
12.5	Analog Comparators, ADCs, and DACs as Modules of Microcontrollers	370
	12.5.1 Introduction	370
	12.5.2 Application Examples of Analog Modules	370
12.6	Embedded Networks and LCD Interfacing	373
12.7	Development Tools and Support	374
12.8	Conclusions	374
	References Sites	374
Арр	endix A Material Data	375
Арр	endix B Conversion for non-SI Units	377
Inde	x	379

Solutions to Problems can be found on the Companion website

Preface

Thanks to the tremendous efforts of numerous scientists and technologists, sensor technology has now arrived in its childhood, which means that we expect that it has started a long period of growth in the intellectual and technological level of sensor systems and that it will reach a level of maturity. It is difficult to predict where this growth will end and what the final stage will look like. For the near future, we expect to see the development of autonomous sensors integrated into distributed systems with intelligent signal processors and smart control of actuators, and powered with a minimum amount of energy. For the longer term, we picture sensor systems as being components of robots in which the system architecture strongly resembles that of animals or human beings.

Of course, such ideas are not new. We can even ask ourselves why it is taking so long for such developments to happen. Is it the difficulty of making a significant step in the level of technology? Could it be possible that the introduction of nanotechnology, in which we can organize technical matter all the way down to the atom level, will bring us the new future we are looking for?

Nobody knows for sure, but it is clear that an important reason for the 'slow' progress in sensor technology can be found in the multidisciplinary character of the required knowledge. It requires the cooperation of physicists, chemists, electrical and mechanical engineers, and ICTers. Moreover, these engineers have to cooperate with medical doctors, agriculturists and horticulturists, and economists.

This book is intended as a reference for designers and users of sensors and sensor systems. It has been written based on material presented in the multidisciplinary courses 'Smart Sensor Systems' that have been organized at Delft University of Technology since 1995. The scope of these courses has been to present the basic principles of advanced sensor systems for a wide, multidisciplinary audience, to develop a common language and scientific background to discuss the problems, and to facilitate mutual cooperation. Thus, we hope to contribute to a continual expansion of the group of people contributing to these world-wide exciting developments.

During the course of writing this text, many people have assisted us. Many people have contributed to this book. We highly appreciate the support of the boards of faculties or heads of our industrial and academic institutes, who have helped us and allowed us to write this book. We have benefited from the suggestions made by our reviewers: Dr. Ferry N. Toth of Exalon, Dr. Michiel Pertijs of National Semiconductors, Ir. Jeroen van der Meer of Xensor Integration, Prof. Albert J.P. Theuwissen of TUDelft, Dr. André Bossche of TUDelft, Ir. Qi Jia of TUDelft, and all of the authors who also acted as reviewers.

At our publisher, John Wiley & Sons, Ltd, we would like to acknowledge the project manager Nicky Skinner for her technical manuscript editing, and executive commissioning editor Simone Taylor for her encouragements and her help in arranging agreements. We would also like to thank Mrs. Trudie (G.) Houweling of TUDelft for her secretarial assistance during the course of this work, and Rob Janse, who made many of the drawings in this book. We wish to extend our appreciation to Sarah von Galambos for her excellent English and linguistic corrections. Furthermore, we want to express our gratitude to the universities, research institutes and companies who allowed us to write this text and helped us with illustrative material and demonstrators to make this book attractive for our readers.

The Companion website for this book is www.wiley.com/go/meijer_smart.

Gerard C.M. Meijer Delft, the Netherlands

About the Authors

Gerard C.M. Meijer

Gerard C.M. Meijer was born in Wateringen, the Netherlands, in 1945. He received his M.Sc. and Ph.D. degrees in Electrical Engineering from Delft University of Technology, Delft, the Netherlands, in 1972 and 1982, respectively. Since 1972 he has been a member of the research and teaching staff of Delft University of Technology, where he is a professor of analog electronics and electronic instrumentation. In 1984 and part-time from 1985 to 1987 he was seconded to Delft Instruments Company, Delft, the Netherlands, where he was involved in the development of industrial level gauges and temperature transducers. In 1996 he co-founded the company SensArt, where he is a consultant for the design and development of sensor systems. In 1999 the Dutch Technology Foundation STW awarded Meijer with the honorary degree 'Simon Stevin Meester'. In 2001 he was awarded the Anthony Van Leeuwenhoek Chair at TUDelft. Meijer is chairman of the National STW Platform on Sensor Technology and director of the annual Europractice course 'Smart Sensor Systems'.

Paddy J. French

Paddy J. French received his B.Sc. in mathematics and M.Sc. in electronics from Southampton University, UK, in 1981 and 1982, respectively. In 1986 he obtained his Ph.D., also from Southampton University, for his research on the piezoresistive effect in polysilicon. After 18 months as a post-doc at Delft University of Technology, the Netherlands, he moved to Japan in 1988. For three years he worked on sensors for automotives at Central Engineering Laboratories of Nissan Motor Company. He returned to Delft University of Technology in May 1991 were he has been involved in research on micromachining and process optimization related to sensors. Since 2002 he has chaired the Laboratory for Electronic Instrumentation. In 1999 he was awarded the Anthony van Leeuwenhoek Chair. He has also received the title award of 'Simon Stevin Meester' from the Dutch Technology Foundation.

Sander (A.W.) van Herwaarden

Sander van Herwaarden was born in 1957, Rotterdam, the Netherlands. In 1982, he received his B.A. in economics from the Erasmus University in Rotterdam. In 1983 he received his M.Sc. and in 1987 his Ph.D. from Delft University of Technology, both in thermal-sensor subjects. In 1988 he co-founded Xensor Integration and has been managing director since then. His main activities are in the field of thermal sensors and silicon microstructures.

Johan H. Huijsing

Johan H. Huijsing was born in Bandung, Indonesia, on May 21, 1938. He received his M.Sc. in Electrical Engineering from Delft University of Technology, Delft, the Netherlands, in 1969, and his Ph.D. from the same University in 1981 for his work on operational amplifiers. Since 1969 he has been a member of the Research and Teaching Staff of the Electronic Instrumentation Laboratory, Department of Electrical Engineering, Delft University of Technology, where he has been a full professor of electronic instrumentation since 1990, and professor emeritus since 2003. He teaches courses on electrical measurement techniques, electronic instrumentation, operational amplifiers, and analog-to-digital converters. His field of research is analog circuit design (operational amplifiers, analog multipliers, etc.) and integrated smart sensors. He is a fellow of the IEEE. He received the title award of 'Simon Stevin Meester' from the Dutch Technology Foundation.

Ratcho M. Ivanov

Ratcho Ivanov was born in v.Razliv, Bulgaria on December 25, 1945. He received his M.Sc. and his Ph.D. in Electronics engineering from the Technical University of Sofia, Bulgaria in 1969 and 1980, respectively. From 1975 to 1977 he specialized on microprocessor-based systems at the Tokyo Institute of Technology, Japan. Since 1970, he has been employed at the Technical University of Sofia, where at present he is a professor specialized in the teaching, design, development and implementation of embedded systems, microcontroller and microprocessor-based industrial systems, smart sensors systems and applications.

Pavel Kejik

Pavel Kejik was born in the Czech Republic in 1971. He received his university degree in 1994 and Ph.D. degree in 1999 at the Czech Technical University of Prague. In 1999, he joined the Institute of Microelectronics and Microsystems at the EPFL to work on the Institute's circuit design and testing. His research interests include fluxgate magnetometry and micro-Hall sensors combined with mixed-signal IC design and low-noise circuit design for industrial applications.

Xiujun Li

Xiujun Li was born in Tianjin, China in 1963. He received his B.Sc. in physics and M.Sc. in electrical engineering from Nankai University, Tianjin, China in 1983 and 1986, respectively. In 1997, he received his Ph.D. degree from the faculty of Electrical Engineering, Delft University of Technology, the Netherlands. Since September 1996, he has been employed as a part-time senior researcher at the Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, where he is involved in research and development of smart capacitive sensors and low-cost interfaces for smart sensors. Since 1997 he has worked part-time for Smartec B.V. on smart temperature sensors and smart sensor interfaces. In 2002 he joined Bradford Engineering B.V., Heerle, the Netherlands, where he conducts research and development of instruments for the space industry.

Radivoje S. Popović

Radivoje S. Popović received the Dipl. Ing. degree in engineering physics from the University of Belgrade, Yugoslavia in 1969, and the Mag.Sc and Dr.Sc. degrees in electronics from the University of Nis, Yugoslavia in 1974 and 1978. From 1969 to 1981 he worked for

Elektronska Industrija, Nis, Yugoslavia; and from 1982 to 1993 for Landis & Gyr AG, Central R&D, Zug, Switzerland. Since 1994, he has been a professor at the Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland. His current research interests include sensors for magnetic and optical signals, interface electronics, and noise phenomena. Dr Popovic is author or co-author of about 250 publications and 100 patent applications. He is the founder of the start-up companies Sentron AG, Sentronis AD, Senis GmbH, and Ametes AG. He is a member of the Swiss Academy of Engineering Sciences and of the Serbian Academy of Engineering Sciences.

Michael J. Vellekoop

Michael J. Vellekoop was born in Amsterdam in 1960. He received his B.Sc. degree in physics in 1982 and his Ph.D. degree in electrical engineering in 1994. In 1988 he co-founded Xensor Integration B.V. where he was managing director until 1996. In that year he initiated a new group on the topic of physical chemosensors at the DIMES Electronic Instrumentation Laboratory of the Delft University of Technology, where in 1997 he became an associated professor. Since 2001 he has been a full professor of industrial sensor systems at the Institute of Sensor and Actuator Systems at the Vienna University of Technology, Austria. In 2002 he became head of this Institute. Since 2005 he has been a corresponding member of the Austrian Academy of Sciences and in the same year he received the Eurosensors Fellow award.

Sergey Y. Yurish

Sergey Y. Yurish was born in Germany in 1963. He received his M.Sc. degree in Automatic and Telemetry from the State University Lviv Polytechnic, Ukraine, in 1985. Since then, he has been involved in the development of microcontroller-based and virtual measuring instruments. In 1997 he received his Ph.D. degree in measurements from the same university. In 1996 he joined the Institute of Computer Technologies for different international joint research projects in the smart sensors area, where he worked as Head of the R&D Department. Since 2006 he has been a professor at the Technical University of Catalonia (UPC-Barcelona). Professor Yurish is the holder of nine patents and he has also published more than 130 articles, papers and four books. He is a founder and President of the International Frequency Sensor Association (IFSA) and Editor-in-Chief of Sensors & Transducers Journal.

Reinoud F. Wolffenbuttel

Reinoud F. Wolffenbuttel received his M.Sc. degree in 1984 and his Ph.D. degree in 1988, both from the Delft University of Technology. Since 1986 he has been a member of the research and teaching staff of Delft University of Technology, where he is an associate professor at the Department of Microelectronics. He is involved in research on instrumentation and measurement in general and on-chip functional integration of microelectronic circuits and silicon sensor, fabrication compatibility issues, and micromachining in silicon and microsystems in particular. He was a visiting researcher at the University of Michigan, Ann Arbor, USA in 1992, 1999 and 2001, Tohoku University, Sendai, Japan in 1995 and EPFL Lausanne, Switzerland in 1997. He is the recipient of a 1997 NWO pioneer award. He was general chairman of the Dutch National Sensor Conference in 1996, Eurosensors in 1999 and Micromechanics Europe in 2003.

1

Smart Sensor Systems: Why? Where? How?

Johan H. Huijsing

1.1 Third Industrial Revolution

Automation has three phases:

- (1) Mechanization;
- (2) Informatization;
- (3) Sensorization.

Humans have always tried to extend their capabilities. See Figure 1.1. Firstly, they extended their mechanical powers. They invented the steam engine, the combustion engine, the electric motor, and the jet engine. Mechanization thoroughly changed society. The first industrial revolution was born.

Secondly, they extended their brains, or their ratio. They invented means for artificial logic and communication: the computer and the internet. This informatization phase is changing society again, where we cannot yet fully predict the end result.

Figure 1.1 Sensorization: the third automation revolution

Smart Sensor Systems Edited by Gerard C.M. Meijer © 2008 John Wiley & Sons, Ltd

Figure 1.2 A fully automated airplane showing the triplet of mechanization, informatization and sensorization

However, this is not all. By inventing sensors, humans are now learning to artificially expand their senses. Sensorization together with mechanization and informatization will bring about the third industrial revolution of full automation or robotization.

A good example is the automated flight control system of a modern airplane (Figure 1.2). It includes many sensors to monitor the flight. The computers process the signals, compare them with the designed values, and provide control signals for the engines, rudders, and flaps that move the plane. This triptych of mechanics, computers, and sensors allows the plane to fly on autopilot.

If aircraft can fly automatically, why then can we still not have our car drive us to work by simply telling it to do so? Because the sensor system for an autodriver still weighs too much, is too bulky, and too costly to manufacture. So before we can apply sensorization to smart cars, smart homes, and industrial production machines, we must reduce the costs, size, and weight of the sensor system. This effort is the subject of our present challenge to develop Integrated Smart Sensors, as shown in Table 1.1.

Challenge:	enabling the measurement of many physical and
	(bio)chemical signals
Requirements:	low cost, low size, low weight, low power,
	self-test, bus or wireless communication
HOW:	integrating sensors, actuators and smart interface
	electronics, preferably in one IC-package

 Table 1.1
 Integrated smart sensors

1.2 Definitions for Several Kinds of Sensors

We will now provide definitions for several kinds of sensors as follows:

- Sensors
- Smart Sensors
- Integrated Smart Sensors
- Smart Sensors Systems

1.2.1 Definition of Sensors

Sensors transform signals from different energy domains to the electrical domain. Figure 1.3 classifies signals in six domains.

The uppermost domain in Figure 1.3 contains all signals of the radiant or optical domain. Optical sensors are able to translate these signals into electrical signals, which are depicted in the lowest domain. An example is an image sensor that translates a picture into an electrical signal. The next domain, to the right is the mechanical signal domain. For example, an accelerometer or airbag sensor is able to translate mechanical acceleration into an electrical signal. Similarly, a temperature sensor translates the temperature into an electrical signal. Even electrical sensors exist. They translate electrical signals into other electrical signals, for instance to measure accurately the voltage difference between two skin electrodes on the chest of a patient. To the lower left is the magnetic domain. A Hall plate is able to convert a magnetic signal into an electrical signal. And finally, from the chemical and biochemical domain sensors are able to translate these signals into electrical ones. Examples are pH sensors and DNA sensors.

The physical effects of sensors can be described by differential equations on energy or power containment [1]. Parameters of cross-effects between different energy domains describe the cross-sensitivities of a sensor between these signal domains. These effects are shown in Table 1.2, which places the physical sensor effects in a system. On the left-hand side, we find the sensor input signal domains. At the top there are the output signal domains. All effects on the left/upper-right/lower diagonal refer to effects within one signal domain. An example is photoluminescence within the radiation domain. All effects in the column with electrical output signals describe sensor effects, for example photoconductivity. All effects in the row with an electrical signal as input describe actuator effects.

Figure 1.3 Sensor classification according to six signal domains

In/Out	Radiant	Mechan.	Thermal	Electrical	Magnetic	Chemical
Rad	Photo- luminan.	Radiant pressure	Radiant heating	Photo-cond.	Photo-magn.	Photo- chem.
Mech.	Photo-elastic effect	Conservation of moment	Friction heat	Piezo- electricity	magneto- striction	Pressure- induced explos.
Therm.	Incan- descence	Thermal expansion	Heat conduction	Seebeck effect	Curie-Weiss law	Endotherm raction
Electr.	Inject. Luminan.	Piezo-electr.	Peltier effect	PNjunction effect	Ampere's law	Electrolysis
Magn.	Faraday effect	Magneto- striction	Ettinghausing effect	Hall effect	Magnetic induction	
Chem.	Chemo- lumin.	Explosion reaction	Exothermal reaction	Volta effect		Chem. reaction

 Table 1.2
 Physical sensor effects [1]

Sensors can be further divided into passive (self-generating) and active (modulating) types. This is depicted in Figure 1.4. Passive sensors such as the electrodynamic microphone obtain their output energy from the input signal; active sensors on the other hand, such as the condenser microphone, obtain it from an internal power source. Active sensors can achieve a large power gain between the input and output signals. The sensor cube in Figure 1.5 shows a three-dimensional space of input, output, and power-source signals for sensors. A further classification of sensors is shown in Figure 1.6. Two classes can be distinguished: open systems, in which there is no feedback, and closed-loop systems, with feedback. A spring balance is a good mechanical example of the first; a chemical balance is a good example of the second.

Figure 1.4 Self-generation and modulating sensors [2]

Figure 1.5 Sensor cube [1]

To measure with a chemical balance, weights have to be placed on the balance scale in order to bring the pointer to zero. The advantage of this system is that the actual sensor only needs to sense accurately around the zero point. The feedback placing of weights determines the value. In an open sensor system, the sensor has to provide the linearity and accuracy of the signal transfer all by itself.

Figures 1.7 and 1.8 depict the multitude of materials that can be chosen for sensors. Semiconductors are becoming increasingly popular as a sensor material because of their stable

(b) closed system (with feedback)

Figure 1.6 Open and closed loop sensor systems [2]

Figure 1.7 Sensor materials [3]

Figure 1.8 Which one? [2]

crystalline structure and because its standardization in mass fabrication is being improved; and because of their low price.

The production economics of sensors is often hampered by the multitude of sensor parameters to be measured. This is illustrated in Table 1.3.

Even for one parameter, such as pressure, there are many specifications: accuracy, sensitivity, noise, resolution, dynamic range, and environmental requirements. For this reason there are thousands of different pressure sensors on the market (see Figure 1.9).

Another complicating factor is the many output signal types of sensors. Some are listed in Table 1.4.

Further standardization and compacting is needed. The smart sensor is the solution (see Figure 1.10).

 mechanical parameters of solids acceleration angle 	 mechanical parameters of fluids and gases density 	 5. acoustic parameters sound frequency sound intensity sound polarization 	 8. chemical parameters cloudiness composition concentration
 area diameter distance elasticity expansion filling level force form gradiant 	 flow direction flow velocity level pressure rate of flow vacuum viscosity volume 	 sound pressure sound velocity time of travel 6. nuclear radiation ionization degree mass absorption radiation dose 	 dust concentration electrical conductivity humidity ice impurities ionization degree molar weight particle form
 gradient hardness height length mass mass flow rate moment movement orientation pitch position pressure proximity 	 3. thermal parameters enthalpy entropy temperature thermal capacity thermal conduction thermal expansion thermal radiation thermal radiation temperature 	 radiation dose radiation energy radiation flux radiation type 7. magnetic & electrical parameters capacity charge current dielectric constant electric field 	 particle form particle size percentage of foreign matter pH-value polymerization degree reaction rate rendox potential thermal conductivity water content
 revolutions per minute rotating velocity roughness tension torque torsion velocity vibration way weight 	 4. optical parameters color image light polarization light wave-length luminance luminous intensity reflection refractive index 	 electric power electric resistance frequency inductivity magnetic field phase 	 9. other significant parameters frequency pulse duration quantity time

 Table 1.3
 Sensor parameters [3]

Figure 1.9 Sensitivity? Accuracy? [2]

Table 1.4	Non-standard	sensor signals
	1 ton orangana	oonoor orginalo

Voltage:	Thermo Couple, Bandgap Voltage	
Current:	Bip. trans., P.S.D., Radiation Detector	
Resistance:	Strain-Gauge Bridge, Hall Sensor	
Capacitance:	Humidity, Tactile, Accelerometer	
Inductance:	(difficult on-chip)	

Figure 1.10 Smart sensor? [2]

Figure 1.11 Hybrid smart sensors

1.2.2 Definition of Smart Sensors

If we combine a sensor, an analog interface circuit, an analog to digital converter (ADC) and a bus interface in one housing, we get a smart sensor. Three hybrid smart sensors are shown in Figure 1.11, which differ in the degree to which they are already integrated on the sensor chip. This calls for standardization. And hence the sensor must become smarter.

In the first hybrid smart sensor, a universal sensor interface (USI) can be used to connect the sensor with the digital bus. In the second one, the sensor and signal conditioner have been integrated. However, the ADC and bus interface are still outside. In the third hybrid, the sensor is already combined with an interface circuit on one chip that provides a duty cycle or bit stream. Just the bus interface is still needed separately.

At this level, still many output formats exist, as shown in Table 1.5.

1.2.3 Definition of Integrated Smart Sensors

If we integrate all functions from sensor to bus interface in one chip, we get an integrated smart sensor, as depicted in Figure 1.12.

	-	
Sign. Cond.:	Analog Voltage	0.5 V to 4.5 V
	Analog Current	4 mA to 20 mA
Sign. Conversion:	Frequency	2 kHz to 22 kHz
	Duty Cycle	10 % to 90 %
	Bit Stream	
	Bites	
Bus Output:	IS^2, I^2C	
	D ² B, Field, CAN	

 Table 1.5
 Standard sensor interface signals

Figure 1.12 Integrated smart sensor

An integrated smart sensor should contain all elements necessary per node: one or more sensors, amplifiers, a chopper and multiplexers, an AD converter, buffers, a bus interface, addresses, and control and power management. This is shown in Figure 1.13.

Although fully integrating all functions will be expensive, mass-production of the resulting sensor can keep the cost per integrated smart sensor reasonable. Another upside is that the

Figure 1.13 Functions of an integrated smart sensor