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9.1 Introduction 249
9.2 Hall Effect and Hall Elements 250

9.2.1 The Hall Effect 250
9.2.2 Hall Elements 253
9.2.3 Characteristics of Hall Elements 253
9.2.4 Integrated Horizontal Hall Plates 256
9.2.5 Integrated Vertical Hall Plates 258

9.3 Integrated Hall Sensor Systems 259
9.3.1 Biasing a Hall Device 260
9.3.2 Reducing Offset and 1/f noise 260
9.3.3 Amplifying the Hall Voltage 262
9.3.4 Integrating Magnetic Functions 265

9.4 Examples of Integrated Hall Magnetic Sensors 267
9.4.1 Magnetic Angular Position Sensor 267
9.4.2 Fully Integrated Three-axis Hall Probe 269
9.4.3 Integrated Hall Probe for Magnetic Microscopy 271

Problems 276
References 276

10 Universal Asynchronous Sensor Interfaces 279
Gerard C.M. Meijer and Xiujun Li

10.1 Introduction 279
10.2 Universal Sensor Interfaces 280
10.3 Asynchronous Converters 283

10.3.1 Conversion of Sensor Signals to the Time Domain 284
10.3.2 Wide-range Conversion of Sensor Signals to the Time Domain

for Very Small or Very Large Signals 287
10.3.3 Output Signals 288
10.3.4 Quantization Noise of Sampled Time-modulated Signals 290
10.3.5 A Comparison between Asynchronous Converters and

Sigma–delta Converters 294
10.4 Dealing with Problems of Low-cost Design of Universal Interface ICs 296
10.5 Front-end Circuits 297

10.5.1 Cross-effects and Interaction 297
10.5.2 Interference 298
10.5.3 Optimization of Components, Circuits and Wiring 298

10.6 Case Studies 299
10.6.1 Front-end Circuits for Capacitive Sensors 299
10.6.2 Front-end Circuits for Resistive Bridges 302
10.6.3 A Front-end Circuit for a Thermocouple-voltage Processor 305

10.7 Summary and Future Trends 307
10.7.1 Summary 307
10.7.2 Future Trends 307
Problems 308
References 311



P1: OTE/OTE/SPH P2: OTE
fm JWBK268-Meijer August 11, 2008 10:5 Printer Name: Yet to Come

Contents xi

11 Data Acquisition for Frequency- and Time-domain Sensors 313
Sergey Y. Yurish

11.1 Introduction 313
11.2 DAQ Boards: State of the Art 314
11.3 DAQ Board Design for Quasi-digital Sensors 316

11.3.1 Advanced Methods for Frequency-to-digital Conversion 316
11.3.2 Examples 322
11.3.3 Methods for Duty-cycle-to-digital Conversion 324
11.3.4 Methods for Phase-shift-to-digital Conversion 326

11.4 Universal Frequency-to-digital Converters (UFDC) 330
11.4.1 ICs for Frequency-to-digital Conversion: State of the Art 332
11.4.2 UFDC: Features and Performances 333

11.5 Applications and Examples 335
11.6 Summary and Future Trends 338

Problems 339
References 340

12 Microcontrollers and Digital Signal Processors for Smart Sensor Systems 343
Ratcho M. Ivanov

12.1 Introduction 343
12.2 MCU and DSP Architectures, Organization, Structures, and Peripherals 344
12.3 Choosing a Low-Power MCU or DSP 347

12.3.1 Average Current Consumption 348
12.3.2 Oscillator and System Clocks 349
12.3.3 Interrupts 350
12.3.4 Peripherals 350
12.3.5 Summary 350

12.4 Timer Modules 351
12.4.1 Introduction to Timer Modules 351
12.4.2 Examples of Timer Module Applications for Various Microcontrollers 355

12.5 Analog Comparators, ADCs, and DACs as Modules of Microcontrollers 370
12.5.1 Introduction 370
12.5.2 Application Examples of Analog Modules 370

12.6 Embedded Networks and LCD Interfacing 373
12.7 Development Tools and Support 374
12.8 Conclusions 374

References Sites 374

Appendix A Material Data 375

Appendix B Conversion for non-SI Units 377

Index 379

Solutions to Problems can be found on the Companion website



P1: OTE/OTE/SPH P2: OTE
fm JWBK268-Meijer August 11, 2008 10:5 Printer Name: Yet to Come



P1: OTE/OTE/SPH P2: OTE
fm JWBK268-Meijer August 11, 2008 10:5 Printer Name: Yet to Come

Preface

Thanks to the tremendous efforts of numerous scientists and technologists, sensor technology
has now arrived in its childhood, which means that we expect that it has started a long period
of growth in the intellectual and technological level of sensor systems and that it will reach a
level of maturity. It is difficult to predict where this growth will end and what the final stage
will look like. For the near future, we expect to see the development of autonomous sensors
integrated into distributed systems with intelligent signal processors and smart control of actu-
ators, and powered with a minimum amount of energy. For the longer term, we picture sensor
systems as being components of robots in which the system architecture strongly resembles
that of animals or human beings.

Of course, such ideas are not new. We can even ask ourselves why it is taking so long for
such developments to happen. Is it the difficulty of making a significant step in the level of
technology? Could it be possible that the introduction of nanotechnology, in which we can
organize technical matter all the way down to the atom level, will bring us the new future we
are looking for?

Nobody knows for sure, but it is clear that an important reason for the ‘slow’ progress in
sensor technology can be found in the multidisciplinary character of the required knowledge.
It requires the cooperation of physicists, chemists, electrical and mechanical engineers, and
ICTers. Moreover, these engineers have to cooperate with medical doctors, agriculturists and
horticulturists, and economists.

This book is intended as a reference for designers and users of sensors and sensor systems.
It has been written based on material presented in the multidisciplinary courses ‘Smart Sensor
Systems’ that have been organized at Delft University of Technology since 1995. The scope
of these courses has been to present the basic principles of advanced sensor systems for a
wide, multidisciplinary audience, to develop a common language and scientific background
to discuss the problems, and to facilitate mutual cooperation. Thus, we hope to contribute
to a continual expansion of the group of people contributing to these world-wide exciting
developments.

During the course of writing this text, many people have assisted us. Many people have
contributed to this book. We highly appreciate the support of the boards of faculties or heads
of our industrial and academic institutes, who have helped us and allowed us to write this
book. We have benefited from the suggestions made by our reviewers: Dr. Ferry N. Toth of
Exalon, Dr. Michiel Pertijs of National Semiconductors, Ir. Jeroen van der Meer of Xensor
Integration, Prof. Albert J.P. Theuwissen of TUDelft, Dr. André Bossche of TUDelft, Ir. Qi
Jia of TUDelft, and all of the authors who also acted as reviewers.
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xiv Preface

At our publisher, John Wiley & Sons, Ltd, we would like to acknowledge the project man-
ager Nicky Skinner for her technical manuscript editing, and executive commissioning editor
Simone Taylor for her encouragements and her help in arranging agreements. We would also
like to thank Mrs. Trudie (G.) Houweling of TUDelft for her secretarial assistance during the
course of this work, and Rob Janse, who made many of the drawings in this book. We wish to
extend our appreciation to Sarah von Galambos for her excellent English and linguistic cor-
rections. Furthermore, we want to express our gratitude to the universities, research institutes
and companies who allowed us to write this text and helped us with illustrative material and
demonstrators to make this book attractive for our readers.

The Companion website for this book is www.wiley.com/go/meijer smart.

Gerard C.M. Meijer
Delft, the Netherlands
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1
Smart Sensor Systems:
Why? Where? How?

Johan H. Huijsing

1.1 Third Industrial Revolution

Automation has three phases:

(1) Mechanization;
(2) Informatization;
(3) Sensorization.

Humans have always tried to extend their capabilities. See Figure 1.1. Firstly, they extended
their mechanical powers. They invented the steam engine, the combustion engine, the elec-
tric motor, and the jet engine. Mechanization thoroughly changed society. The first industrial
revolution was born.

Secondly, they extended their brains, or their ratio. They invented means for artificial logic
and communication: the computer and the internet. This informatization phase is changing
society again, where we cannot yet fully predict the end result.

Mechanization

1900 1950 2000 2050

Informatization Sensorization

Figure 1.1 Sensorization: the third automation revolution

Smart Sensor Systems Edited by Gerard C.M. Meijer
C© 2008 John Wiley & Sons, Ltd
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2 Smart Sensor Systems

Figure 1.2 A fully automated airplane showing the triplet of mechanization, informatization and
sensorization

However, this is not all. By inventing sensors, humans are now learning to artificially ex-
pand their senses. Sensorization together with mechanization and informatization will bring
about the third industrial revolution of full automation or robotization.

A good example is the automated flight control system of a modern airplane (Figure 1.2).
It includes many sensors to monitor the flight. The computers process the signals, compare
them with the designed values, and provide control signals for the engines, rudders, and flaps
that move the plane. This triptych of mechanics, computers, and sensors allows the plane to
fly on autopilot.

If aircraft can fly automatically, why then can we still not have our car drive us to work
by simply telling it to do so? Because the sensor system for an autodriver still weighs too
much, is too bulky, and too costly to manufacture. So before we can apply sensorization to
smart cars, smart homes, and industrial production machines, we must reduce the costs, size,
and weight of the sensor system. This effort is the subject of our present challenge to develop
Integrated Smart Sensors, as shown in Table 1.1.

Table 1.1 Integrated smart sensors

Challenge: enabling the measurement of many physical and
(bio)chemical signals

Requirements: low cost, low size, low weight, low power,
self-test, bus or wireless communication

HOW: integrating sensors, actuators and smart interface
electronics, preferably in one IC-package
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1.2 Definitions for Several Kinds of Sensors

We will now provide definitions for several kinds of sensors as follows:

� Sensors
� Smart Sensors
� Integrated Smart Sensors
� Smart Sensors Systems

1.2.1 Definition of Sensors

Sensors transform signals from different energy domains to the electrical domain. Figure 1.3
classifies signals in six domains.

The uppermost domain in Figure 1.3 contains all signals of the radiant or optical domain.
Optical sensors are able to translate these signals into electrical signals, which are depicted
in the lowest domain. An example is an image sensor that translates a picture into an elec-
trical signal. The next domain, to the right is the mechanical signal domain. For example,
an accelerometer or airbag sensor is able to translate mechanical acceleration into an electri-
cal signal. Similarly, a temperature sensor translates the temperature into an electrical signal.
Even electrical sensors exist. They translate electrical signals into other electrical signals, for
instance to measure accurately the voltage difference between two skin electrodes on the chest
of a patient. To the lower left is the magnetic domain. A Hall plate is able to convert a mag-
netic signal into an electrical signal. And finally, from the chemical and biochemical domain
sensors are able to translate these signals into electrical ones. Examples are pH sensors and
DNA sensors.

The physical effects of sensors can be described by differential equations on energy or
power containment [1]. Parameters of cross-effects between different energy domains describe
the cross-sensitivities of a sensor between these signal domains. These effects are shown in
Table 1.2, which places the physical sensor effects in a system. On the left-hand side, we find
the sensor input signal domains. At the top there are the output signal domains. All effects
on the left/upper-right/lower diagonal refer to effects within one signal domain. An example
is photoluminescence within the radiation domain. All effects in the column with electrical
output signals describe sensor effects, for example photoconductivity. All effects in the row
with an electrical signal as input describe actuator effects.

Figure 1.3 Sensor classification according to six signal domains
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Table 1.2 Physical sensor effects [1]

In/Out Radiant Mechan. Thermal Electrical Magnetic Chemical

Rad Photo-
luminan.

Radiant
pressure

Radiant
heating

Photo-cond. Photo-magn. Photo-
chem.

Mech. Photo-elastic
effect

Conservation
of moment

Friction heat Piezo-
electricity

magneto-
striction

Pressure-
induced
explos.

Therm. Incan-
descence

Thermal
expansion

Heat
conduction

Seebeck
effect

Curie-Weiss
law

Endotherm
raction

Electr. Inject.
Luminan.

Piezo-electr. Peltier effect PNjunction
effect

Ampere’s
law

Electrolysis

Magn. Faraday
effect

Magneto-
striction

Ettinghausing
effect

Hall effect Magnetic
induction

Chem. Chemo-
lumin.

Explosion
reaction

Exothermal
reaction

Volta effect Chem.
reaction

Sensors can be further divided into passive (self-generating) and active (modulating) types.
This is depicted in Figure 1.4. Passive sensors such as the electrodynamic microphone ob-
tain their output energy from the input signal; active sensors on the other hand, such as the
condenser microphone, obtain it from an internal power source. Active sensors can achieve a
large power gain between the input and output signals. The sensor cube in Figure 1.5 shows a
three-dimensional space of input, output, and power-source signals for sensors. A further clas-
sification of sensors is shown in Figure 1.6. Two classes can be distinguished: open systems,
in which there is no feedback, and closed-loop systems, with feedback. A spring balance is a
good mechanical example of the first; a chemical balance is a good example of the second.

subject of
measurement

subject of
measurement

input signal

input signal

sensor

sensor

output power

output signal

output power

output signal

losses

losses

(a) self-generating sensor

(b) modulating sensor

power of the
phenomenon

power of the
phenomenon

power of 
input signal

power of 
input signal

power
source

Figure 1.4 Self-generation and modulating sensors [2]
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Figure 1.5 Sensor cube [1]

To measure with a chemical balance, weights have to be placed on the balance scale in
order to bring the pointer to zero. The advantage of this system is that the actual sensor only
needs to sense accurately around the zero point. The feedback placing of weights determines
the value. In an open sensor system, the sensor has to provide the linearity and accuracy of
the signal transfer all by itself.

Figures 1.7 and 1.8 depict the multitude of materials that can be chosen for sensors. Semi-
conductors are becoming increasingly popular as a sensor material because of their stable

spring balance

input

input

converter
(spring)

comparator deviation

(inclination of
the rod 0)

(a) open system (no feedback)

(b) closed system (with feedback)

chemical balance

* adjustment weights are added or removed to make the deviation zero

displacement
output

output

mass
(extension
of spring)

adjustments
weights*

mass

mass

Figure 1.6 Open and closed loop sensor systems [2]
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Figure 1.7 Sensor materials [3]

Figure 1.8 Which one? [2]
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crystalline structure and because its standardization in mass fabrication is being improved;
and because of their low price.

The production economics of sensors is often hampered by the multitude of sensor
parameters to be measured. This is illustrated in Table 1.3.

Even for one parameter, such as pressure, there are many specifications: accuracy, sensitiv-
ity, noise, resolution, dynamic range, and environmental requirements. For this reason there
are thousands of different pressure sensors on the market (see Figure 1.9).

Another complicating factor is the many output signal types of sensors. Some are listed in
Table 1.4.

Further standardization and compacting is needed. The smart sensor is the solution (see
Figure 1.10).

Table 1.3 Sensor parameters [3]

1. mechanical
parameters of solids
• acceleration
• angle
• area
• diameter
• distance
• elasticity
• expansion
• filling level
• force
• form
• gradient
• hardness
• height
• length
• mass
• mass flow rate
• moment
• movement
• orientation
• pitch
• position
• pressure
• proximity
• revolutions per

minute
• rotating velocity
• roughness
• tension
• torque
• torsion
• velocity
• vibration
• way
• weight

2. mechanical
parameters of fluids
and gases
• density
• flow direction
• flow velocity
• level
• pressure
• rate of flow
• vacuum
• viscosity
• volume

3. thermal parameters
• enthalpy
• entropy
• temperature
• thermal capacity
• thermal conduction
• thermal expansion
• thermal radiation
• thermal radiation

temperature

4. optical parameters
• color
• image
• light polarization
• light wave-length
• luminance
• luminous intensity
• reflection
• refractive index

5. acoustic parameters
• sound frequency
• sound intensity
• sound polarization
• sound pressure
• sound velocity
• time of travel

6. nuclear radiation
• ionization degree
• mass absorption
• radiation dose
• radiation energy
• radiation flux
• radiation type

7. magnetic &
electrical parameters

• capacity
• charge
• current
• dielectric constant
• electric field
• electric power
• electric resistance
• frequency
• inductivity
• magnetic field
• phase

8. chemical parameters
• cloudiness
• composition
• concentration
• dust concentration
• electrical

conductivity
• humidity
• ice
• impurities
• ionization degree
• molar weight
• particle form
• particle size
• percentage of

foreign matter
• pH-value
• polymerization

degree
• reaction rate
• rendox potential
• thermal conductivity
• water content

9. other significant
parameters

• frequency
• pulse duration
• quantity
• time
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Figure 1.9 Sensitivity? Accuracy? [2]

Table 1.4 Non-standard sensor signals

Voltage: Thermo Couple, Bandgap Voltage
Current: Bip. trans., P.S.D., Radiation Detector
Resistance: Strain-Gauge Bridge, Hall Sensor
Capacitance: Humidity, Tactile, Accelerometer
Inductance: (difficult on-chip)

Figure 1.10 Smart sensor? [2]
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Figure 1.11 Hybrid smart sensors

1.2.2 Definition of Smart Sensors

If we combine a sensor, an analog interface circuit, an analog to digital converter (ADC) and
a bus interface in one housing, we get a smart sensor. Three hybrid smart sensors are shown
in Figure 1.11, which differ in the degree to which they are already integrated on the sensor
chip. This calls for standardization. And hence the sensor must become smarter.

In the first hybrid smart sensor, a universal sensor interface (USI) can be used to connect
the sensor with the digital bus. In the second one, the sensor and signal conditioner have
been integrated. However, the ADC and bus interface are still outside. In the third hybrid, the
sensor is already combined with an interface circuit on one chip that provides a duty cycle or
bit stream. Just the bus interface is still needed separately.

At this level, still many output formats exist, as shown in Table 1.5.

1.2.3 Definition of Integrated Smart Sensors

If we integrate all functions from sensor to bus interface in one chip, we get an integrated
smart sensor, as depicted in Figure 1.12.

Table 1.5 Standard sensor interface signals

Sign. Cond.: Analog Voltage 0.5 V to 4.5 V
Analog Current 4 mA to 20 mA

Sign. Conversion: Frequency 2 kHz to 22 kHz
Duty Cycle 10 % to 90 %
Bit Stream
Bites

Bus Output: IS2, I2C
D2B, Field, CAN



P1: OTA/XYZ P2: ABC
c01 JWBK268-Meijer August 13, 2008 17:27 Printer Name: Yet to Come

10 Smart Sensor Systems

optical
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thermal
mag-
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Figure 1.12 Integrated smart sensor

An integrated smart sensor should contain all elements necessary per node: one or more
sensors, amplifiers, a chopper and multiplexers, an AD converter, buffers, a bus interface,
addresses, and control and power management. This is shown in Figure 1.13.

Although fully integrating all functions will be expensive, mass-production of the resulting
sensor can keep the cost per integrated smart sensor reasonable. Another upside is that the

supply
ground
clock
data

addr. interface contr.

digital

analog

one chipsensor 2sensor 1

amplifier

chopper/multiplexer

A/D converter

counter

Figure 1.13 Functions of an integrated smart sensor


