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Preface

Almost no one bears the ceaseless variability of the mid-latitude atmosphere without

a firm opinion and at least some degree of interest. The parade of weather systems

that are continuously developed and extinguished over this part of the globe ensures

that its denizens never need to wait long for unmistakable, and sometimes dramatic,

changes in the local weather. For the physical scientist with an interest in (or, as is most

often the case for us, the captivated, a fascination with) the weather, the unsurprising,

yet still remarkable, fact is that this variability is governed by the basic laws of physics

first articulated by Newton centuries ago. The exact manner by which those laws

are brought to bear upon an analysis of the dynamics of the atmospheric fluid has,

especially in the last 100 years, become a separate branch of physics. This book is

dedicated to providing an introduction to the physical and mathematical description

of mid-latitude atmospheric dynamics accessible to any student possessing a solid

background in classical physics and a working knowledge of calculus.

When one begins to wade through the average textbook, one often gets the sense

that the author has poured everything he/she knows into the text without regard

for whether it is all necessary to accomplish the educational goals of the book. My

many years of teaching this material to hundreds of students have provided me

with two main motivations for writing this textbook. First, students have invariably

complained that the available textbooks are difficult to employ as study tools, often

skipping steps in mathematical derivations and thus, on occasion, contributing more

to frustration than to edification. They often wonder how the subject matter can seem

so clear in lectures and then so confusing that night in the library. Second, there is

no other currently available text that serves as a concise primer in the application of

elementary dynamics to the central problems of modern synoptic–dynamic meteo-

rology: the diagnosis of vertical motion, fronts and frontogenesis, and the dynamics

of the cyclone life cycle from both the ω-centric and potential vorticity perspectives.

In this book I have attempted to remedy both of these shortcomings by presenting

an introduction to atmospheric dynamics and its application to the understanding of

mid-latitude weather systems in a penetrating conceptual and detailed mathematical

fashion. The conversational tone of the book is meant to render its reading akin to

attending a lecture given by someone who is profoundly excited by the subject matter.

ix
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x PREFACE

It is hoped that this tone will increase the likelihood that the book will serve as a

genuine study guide for students as they navigate through a first course in this subject.

The first five chapters of the book are specifically targeted at junior-level under-

graduates who are taking a first course in atmospheric dynamics. Chapter 1 provides

a review of relevant mathematical tools while Chapter 2 considers the fundamental

and apparent forces at work on a rotating Earth. Chapter 3 examines the fundamen-

tal conservation laws of mass, momentum, and energy producing, along the way,

the continuity equation, the equations of motion, and the energy equation. Once

developed, the equations of motion are simplified in Chapter 4 through a variety

of approximations thus lending insight into basic flow characteristics of the mid-

latitude atmosphere. The relationship between circulation, vorticity, and divergence

in fluids is examined in Chapter 5 where the quasi-geostrophic system of equations

is also introduced.

The last four chapters are targeted toward those students who might subsequently

take a course in synoptic–dynamic meteorology in which a significant laboratory

component would be a necessary complement. The diagnosis of vertical motions is

undertaken in Chapter 6. The meso-synoptic dynamics of the frontal zones that char-

acterize mid-latitude cyclones are considered in Chapter 7 where the examination of

frontogenesis and its relationship to transverse vertical circulations is presented in

both the quasi- and semi-geostrophic frameworks. Chapter 8 explores the dynamics

of the life cycle of mid-latitude cyclones, thus providing a particularly relevant focus

for synthesis of the prior chapters. Finally, Chapter 9 provides an introduction to

the use of potential vorticity diagnostics for examining the life cycle of mid-latitude

cyclones. Much of the material comprising the text comes from years of lecture notes

from three distinct courses in the Department of Atmospheric and Oceanic Sciences

at the University of Wisconsin–Madison. Both components of the text would be

suitably challenging to first-year graduate students with little prior background in

meteorology or atmospheric dynamics.

Throughout the text, the emphasis is on conceptual understanding, the develop-

ment of which for any given topic always precedes the application of mathematical

formalism. I recognize that a level of intimacy with the mathematics is necessary

but I am certain that it is not sufficient to produce a penetrating understanding

of mid-latitude dynamics. Such understanding is, instead, the offspring of a mar-

riage between a conceptual, intuitive sense of the physics of the phenomenon and

the corresponding mathematical description of it. At the end of each chapter sev-

eral problems, characterized by varying degrees of difficulty, are included to assist

the student in reinforcing knowledge of the subject matter and in developing solid

problem-solving skills. Solutions to selected problems are included at the end of the

chapters as well. Complete solutions to all problems are included in a separate Solu-

tion Manual available from the publisher. Also included at the end of each chapter is

an annotated bibliography designed to point the interested student toward seminal

or other sources. A more complete, though by no means exhaustive, bibliography

can be found at the end of the book.
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1
Introduction and Review
of Mathematical Tools

Objectives

The Earth’s atmosphere is majestic in its beauty, awesome in its power, and com-

plex in its behavior. From the smallest drops of dew or the tiniest snowflakes to the

enormous circulation systems known as mid-latitude cyclones, all atmospheric phe-

nomena are governed by physical laws. These laws can be written in the language of

mathematics and, indeed, must be explored in that vernacular in order to develop a

penetrating understanding of the behavior of the atmosphere. However, it is equally

vital that a physical understanding accompany the mathematical formalism in this

comprehensive development of insight. In principle, if one had a complete under-

standing of the behavior of seven basic variables describing the current state of the

atmosphere (these will be called basic state variables in this book), namely u, v , and

w (the components of the 3-D wind), T (the temperature), P (the pressure), φ (the

geopotential), and q (the humidity), then one could describe the future state of the

atmosphere by considering the equations that govern the evolution of each variable.

It is not, however, immediately apparent what form these equations might take. In

this book we will develop those equations in order to develop an understanding of

the basic dynamics that govern the behavior of the atmosphere at middle latitudes

on Earth.

In this chapter we lay the foundation for that development by reviewing a number

of basic conceptual and mathematical tools that will prove invaluable in this task.

We begin by assessing the troubling but useful notion that the air surrounding us

can be considered a continuous fluid. We then proceed to a review of useful math-

ematical tools including vector calculus, the Taylor series expansion of a function,

centered difference approximations, and the relationship between the Lagrangian and

Eulerian derivatives. We then examine the notion of estimating using scale analysis

and conclude the chapter by considering the basic kinematics of fluid flows.

Mid-Latitude Atmospheric Dynamics Jonathan E. Martin
C© 2006 John Wiley & Sons, Ltd.
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2 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

1.1 Fluids and the Nature of Fluid Dynamics

Our experience with the natural world makes clear that physical objects manifest

themselves in a variety of forms. Most of these physical objects (and every one of

them with which we will concern ourselves in this book) have mass. The mass of an

object can be thought of as a measure of its substance. The Earth’s atmosphere is one

such object. It certainly has mass1 but differs from, say, a rock in that it is not solid. In

fact, the Earth’s atmosphere is an example of a general category of substances known

as fluids. A fluid can be colloquially defined as any substance that takes the shape of its

container. Aside from the air around us, another fluid with which we are all familiar

is water. A given mass of liquid water clearly adopts the shape of any container into

which it is poured. The given mass of liquid water just mentioned, like the air around

us, is actually composed of discrete molecules. In our subsequent discussions of the

behavior of the atmospheric fluid, however, we need not concern ourselves with the

details of the molecular structure of the air. We can instead treat the atmosphere as a

continuous fluid entity, or continuum. Though the assumption of a continuous fluid

seems to fly in the face of what we recognize as the underlying, discrete molecular

reality, it is nonetheless an insightful concept. For instance, it is much more tenable

to consider the flow of air we refer to as the wind to be a manifestation of the motion

of such a continuous fluid. Any ‘point’ or ‘parcel’ to which we refer will be properly

considered as a very small volume element that contains large numbers of molecules.

The various basic state variables mentioned above will be assumed to have unique

values at each such ‘point’ in the continuum and we will confidently assume that the

variables and their derivatives are continuous functions of physical space and time.

This means, of course, that the fundamental physical laws governing the motions

of the atmospheric fluid can be expressed in terms of a set of partial differential

equations in which the basic state variables are the dependent variables and space

and time are the independent variables. In order to construct these equations, we

will rely on some mathematical tools that you may have seen before. The following

section will offer a review of a number of the more important ones.

1.2 Review of Useful Mathematical Tools

We have already considered, in a conceptual sense only, the rather unique nature of

fluids. A variety of mathematical tools must be brought to bear in order to construct

rigorous descriptions of the behavior of these fascinating fluids. In the following

section we will review a number of these tools in some detail. The reader familiar

with any of these topics may skip the treatments offered here and run no risk of

confusion later. We will begin our review by considering elements of vector analysis.

1 The Earth’s atmosphere has a mass of 5.265 × 1018 kg!
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1.2 REVIEW OF USEFUL MATHEMATICAL TOOLS 3

Figure 1.1 The 3-D representation of a vector, �A. The components of �A are shown along the coordinate

axes

1.2.1 Elements of vector calculus

Many physical quantities with which we are concerned in our experience of the

universe are described entirely in terms of magnitude. Examples of these types of

quantities, known as scalars, are area, volume, money, and snowfall total. There are

other physical quantities such as velocity, the force of gravity, and slopes to topography

which are characterized by both magnitude and direction. Such quantities are known

as vectors and, as you might guess, any description of the fluid atmosphere necessarily

contains reference to both scalars and vectors. Thus, it is important that we familiarize

ourselves with the mathematical descriptions of these quantities, a formalism known

as vector analysis.2

Employing a Cartesian coordinate system in which the three directions (x , y, and

z) are mutually orthogonal (i.e. perpendicular to one another), an arbitrary vector,
�A, has components in the x , y, and z directions labeled Ax , Ay , and Az , respectively.

These components themselves are scalars since they describe the magnitude of vectors

whose directions are given by the coordinate axes (as shown in Figure 1.1). If we

denote the direction vectors in the x , y, and z directions as î , ĵ , and k̂, respectively

(where the ˆ symbol indicates the fact that they are vectors with magnitude 1 in the

respective directions – so-called unit vectors), then

�A = Ax î + Ay ĵ + Azk̂ (1.1a)

is the component form of the vector, �A. In a similar manner, the component form

of an arbitrary vector �B is given by

�B = Bx î + By ĵ + Bzk̂. (1.1b)

2 Vector analysis is generally considered to have been invented by the Irish mathematician Sir William
Rowan Hamilton in 1843. Despite its enormous value in the physical sciences, vector analysis was met with
skepticism in the nineteenth century. In fact, Lord Kelvin wrote, in the 1890s, that vectors were ‘an unmixed
evil to those who have touched them in any way . . vectors . . have never been of the slightest use to any creature’.
Remember, no matter how great a thinker one may be, one cannot always be right!
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4 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

Figure 1.2 (a) Vectors �A and �B acting upon a point O. (b) Illustration of the tail-to-head method for

adding vectors �A and �B. (c) Illustration of the parallelogram method for adding vectors �A and �B

The vectors �A and �B are equal if Ax = Bx , Ay = By , and Az = Bz . Furthermore,

the magnitude of a vector �A is given by∣∣∣ �A
∣∣∣ = (

A2
x + A2

y + A2
z

)1/2
(1.2)

which is simply the 3-D Pythagorean theorem and can be visually verified with the

aid of Figure 1.1.

Vectors can be added to and subtracted from one another both by graphical

methods as well as by components. Graphical addition is illustrated with the aid of

Figure 1.2. Imagine that the force vectors �A and �B are acting at point O as shown

in Figure 1.2(a). The total force acting at O is equal to the sum of �A and �B . Graph-

ical construction of the vector sum �A + �B can be accomplished either by using the

tail-to-head method or the parallelogram method. The tail-to-head method involves

drawing �B at the head of �A and then connecting the tail of �A to the head of the re-

drawn �B (Figure 1.2b). Alternatively, upon constructing a parallelogram with sides
�A and �B , the diagonal of the parallelogram between �A and �B represents the vector

sum, �A + �B (Figure 1.2c).

If we know the component forms of both �A and �B , then their sum is given by

�A + �B = (Ax + Bx )î + (Ay + By) ĵ + (Az + Bz)k̂. (1.3a)

Thus, the sum of �A and �B is found by simply adding like components together. It is

clear from considering the component form of vector addition that addition of vectors

is commutative ( �A + �B = �B + �A) and associative (( �A + �B) + �C = �A + ( �B + �C )).

Subtraction is simply the opposite of addition so �B can be subtracted from �A by

simply adding − �B to �A. Graphical subtraction of �B from �A is illustrated in Figure 1.3.

Notice that �A − �B = �A + (− �B) results in a vector directed from the head of �B to the

head of �A (the lighter dashed arrow in Figure 1.3). Component subtraction involves

Figure 1.3 Graphical subtraction of vector �B from vector �A
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1.2 REVIEW OF USEFUL MATHEMATICAL TOOLS 5

Figure 1.4 (a) Vectors �A and �B with an angle α between them. (b) Illustration of the relationship

between vectors �A and �B (gray arrows) and their cross-product, �A × �B (bold arrow). Note that �A × �B
is perpendicular to both �A and �B

subtracting like components and is given by

�A − �B = (Ax − Bx )î + (Ay − By) ĵ + (Az − Bz)k̂. (1.3b)

Vector quantities may also be multiplied in a variety of ways. The simplest vector

multiplication involves the product of a vector, �A, and a scalar, F . The resulting

expression for F �A is given by

F �A = F Ax î + F Ay ĵ + F Azk̂, (1.4)

a vector with direction identical to the original vector, �A, but with a magnitude F

times larger than the original magnitude.

It is also possible to multiply two vectors together. In fact, there are two different

vector multiplication operations. One such method renders a scalar as the product

of the vector multiplication and is thus known as the scalar (or dot) product. The

dot product of the vectors �A and �B shown in Figure 1.4(a) is given by

�A · �B = |A| |B | cos α (1.5)

where α is the angle between �A and �B . Clearly this product is a scalar. Using this

formula, we can determine a less mystical form of the dot product of �A and �B . Given

that �A = Ax î + Ay ĵ + Azk̂ and �B = Bx î + By ĵ + Bzk̂, the dot product is given by

�A · �B = (Ax î + Ay ĵ + Azk̂) · (Bx î + By ĵ + Bzk̂) (1.6)

which expands to the following nine terms:

�A · �B = Ax Bx (î · î) + Ax By(î · ĵ ) + Ax Bz(î · k̂)

+Ay Bx ( ĵ · î) + Ay By( ĵ · ĵ ) + Ay Bz( ĵ · k̂)

+Az Bx (k̂ · î) + Az By(k̂ · ĵ ) + Az Bz(k̂ · k̂).

Now, according to (1.5), î · î = ĵ · ĵ = k̂ · k̂ =1 since the angle between like unit

vectors is 0◦. However, the dot products of all other combinations of the unit vectors

are zero since the unit vectors are mutually orthogonal. Thus, only three terms survive

out of the nine-term expansion of �A · �B to yield

�A · �B = Ax Bx + Ay By + Az Bz. (1.7)
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Given this result, it is easy to show that the dot product is commutative ( �A · �B =
�B · �A) and distributive ( �A · ( �B + �C ) = �A · �B + �A · �C ).

Two vectors can also be multiplied together to produce another vector. This vector

multiplication operation is known as the vector (or cross-)product and is signified

�A × �B .

The magnitude of the resultant vector is given by

|A| |B | sin α (1.8)

where α is the angle between the vectors. Note that since the resultant of the cross-

product is a vector, there is also a direction to be discerned. The resultant vector is in

a plane that is perpendicular to the plane that contains �A and �B (Figure 1.4b). The

direction in that plane can be determined by using the right hand rule. Upon curling

the fingers of one’s right hand in the direction from �A to �B , the thumb points in

the direction of the resultant vector, �A × �B , as shown in Figure 1.4(b). Because the

resultant direction depends upon the order of multiplication, the cross-product has

different properties than the dot product. It is not commutative ( �A × �B �= �B × �A;

instead �A × �B = − �B × �A) and it is not associative ( �A × ( �B × �C ) �= ( �A × �B) × �C )

but it is distributive ( �A × ( �B + �C ) = �A × �B + �A × �C ).

Given the vectors �A and �B in their component forms, the cross-product can be

calculated by first setting up a 3 × 3 determinant using the unit vectors as the first

row, the components of �A as the second row, and the components of �B as the third

row:

�A × �B =
∣∣∣∣∣∣

î ĵ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (1.9a)

Evaluating this determinant involves evaluating three 2 × 2 determinants, each one

corresponding to a unit vector î , ĵ , or k̂. For the î component of the resultant

vector, only the components of �A and �B in the ĵ and k̂ columns are considered.

Multiplying the components along the diagonal (upper left to lower right) first, and

then subtracting from that result the product of the terms along the anti-diagonal

(lower left to upper right) yields the î component of the vector �A × �B , which equals

(Ay Bz − Az By)î . The same operation done for the k̂ component yields (Ax By −
Ay Bx )k̂. For the ĵ component, the first and third columns are used to form the

2 × 2 determinant and since the columns are non-consecutive, the result must

be multiplied by –1 to yield −(Ax Bz − Az Bx ) ĵ . Adding these three components

together yields

�A × �B = (Ay Bz − Az By)î + (Az Bx − Ax Bz) ĵ + (Ax By − Ay Bx )k̂. (1.9b)

Vectors, just like scalar functions, can be differentiated as long as the rules of vector

addition and multiplication are obeyed. One simple example is Newton’s second law
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(which we will see again soon) that states that an object’s momentum will not change

unless a force is applied to the object. In mathematical terms,

�F = d

dt
(m �V) (1.10)

where m is the object’s mass and �V is its velocity. Using the chain rule of differentiation

on the right hand side of (1.10) renders

�F = m
d �V
dt

+ �V dm

dt
or �F = m �A + �V dm

dt
(1.11)

where �A is the object’s acceleration. Exploitation of the second term of this expansion

is what made Einstein famous!

Let us consider a more general example. Consider a velocity vector defined as
�V = uî + v ĵ + wk̂. In such a case, the acceleration will be given by

d �V
dt

= du

dt
î + u

dî

dt
+ dv

dt
ĵ + v

d ĵ

dt
+ dw

dt
k̂ + w

dk̂

dt
. (1.12)

The terms involving derivatives of the unit vectors may seem like mathematical

baggage but they will be extremely important in our subsequent studies. Physically,

such terms will be non-zero only when the coordinate axes used to reference motion

are not fixed in space. Our reference frame on a rotating Earth is clearly not fixed and

so we will eventually have to make some accommodation for the acceleration of our

rotating reference frame. Thus, all six terms in the above expansion will be relevant

in our examination of the mid-latitude atmosphere.

The last stop on the review of vector calculus is perhaps the most important one

and will examine a tool that is extremely useful in fluid dynamics. We will often

need to describe both the magnitude and direction of the derivative of a scalar field.

In order to do so we employ a mathematical operator known as the del operator,

defined as

∇ = ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂. (1.13)

If we apply this partial differential del operator to a scalar function or field, the

result is a vector that is known as the gradient of that scalar. Consider the 2-D

plan view of an isolated hill in an otherwise flat landscape. If the elevation at each

point in the landscape is represented on a 2-D projection, a set of elevation con-

tours results as shown in Figure 1.5. Such contours are lines of equal height above

sea level, Z. Given such information, we can determine the gradient of elevation,

∇ Z, as

∇ Z = ∂ Z

∂x
î + ∂ Z

∂y
ĵ .

Note that the gradient vector, ∇ Z, points up the hill from low values of elevation

to high values. At the top of the hill, the derivatives of Z in both the x and y
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Figure 1.5 The 2-D plan view of an isolated hill in a flat landscape. Solid lines are contours of elevation

(Z ) at 50m intervals. Note that the gradient of Z points from low to high values of the scalar Z

directions are zero so there is no gradient vector there. Thus the gradient, ∇ Z,

not only measures magnitude of the elevation difference but assigns that magnitude

a direction as well. Any scalar quantity, �, is transformed into a vector quantity, ∇�,

by the del operator. In subsequent chapters in this book we will concern ourselves

with the gradients of a number of scalar variables, among them temperature and

pressure.

The del operator may also be applied to vector quantities. The dot product of ∇
with the vector �A is written as

∇ · �A =
(

∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂

)
· (Ax î + Ay ĵ + Azk̂)

∇ · �A =
(

∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z

)
(1.14)

which is a scalar quantity known as the divergence of �A. Positive divergence physically

describes the tendency for a vector field to be directed away from a point whereas

negative divergence (also known as convergence) describes the tendency for a vector

field to be directed toward a point. Regions of convergence and divergence in the

atmospheric fluid are extremely important in determining its behavior.

The cross-product of ∇ with the vector �A is given by

∇ × �A =
(

∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂

)
× (Ax î + Ay ĵ + Azk̂). (1.15a)
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The resulting vector can be calculated using the determinant form we have seen

previously,

∇ × �A =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣ (1.15b)

where the second row of the 3 × 3 determinant is filled by the components of ∇ and

the third row is filled by the components of �A. This vector is known as the curl of �A.

The curl of the velocity vector, �V , will be used to define a quantity called vorticity

which is a measure of the rotation of a fluid.

Quite often in a study of the dynamics of the atmosphere, we will encounter

second-order partial differential equations. Some of these equations will contain

a mathematical operator (which will operate on scalar quantities) known as the

Laplacian operator. The Laplacian is the divergence of the gradient and so takes the

form

Laplacian = ∇ · (∇F ) = ∇2 F =
(

∂2 F

∂x2
+ ∂2 F

∂y2
+ ∂2 F

∂z2

)
. (1.16)

It is also possible to combine the vector �A with the del operator to form a new

operator that takes the form

�A · ∇ = Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

and is known as the scalar invariant operator. This operator, which can be used with

both vector and scalar quantities, is important because it is used to describe a process

known as advection, a ubiquitous topic in the study of fluids.

1.2.2 The Taylor series expansion

It is sometimes convenient to estimate the value of a continuous function, f (x),

about the point x = 0 with a power series of the form

f (x) =
∞∑

n=0

anxn = a0 + a1x + a2x2 + · · · + anxn. (1.17)

The fact that this can actually be done might appear to be an assumption so we

must identify conditions for which this assumption is true. These conditions are

that (1) the polynomial expression (1.17) passes through the point (0, f (0)) and

(2) its first n derivatives match the first n derivatives of f (x) at x = 0. Implicit in

this second condition is the fact that f (x) is differentiable at x = 0. In order for

these conditions to be met, the coefficients a0, a1,. . . , an must be chosen properly.

Substituting x = 0 into (1.17) we find that f (0) = a0. Taking the first derivative of
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(1.17) with respect to x and substituting x = 0 into the resulting expression we get

f ′(0) = a1. Taking the second derivative of (1.17) with respect to x and substituting

x = 0 into the result leaves f ′′(0) = 2a2, or f ′′(0)/2 = a2. If we continue to take

higher order derivatives of (1.17) and evaluate each of them at x = 0 we find that, in

order that the n derivatives of (1.17) match the n derivatives of f (x), the coefficients,

an, of the polynomial expression (1.17) must take the general form

an = f n(0)

n!
.

Thus, the value of the function f (x) at x = 0 can be expressed as

f (x) = f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + · · · + f n(0)

n!
xn. (1.18)

Now, if we want to determine the value of f (x) near the point x = x0, the above

expression can be generalized into what is known as the Taylor series expansion of

f (x) about x = x0, given by

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2!
(x − x0)2 + · · · + f n(x0)

n!
(x − x0)n.

(1.19)

Since the dependent variables that describe the behavior of the atmosphere are all

continuous variables, use of the Taylor series to approximate the values of those

variables will prove to be a nifty little trick that we will exploit in our subsequent

analyses. Most often we consider Taylor series expansions in which the quantity

(x − x0) is very small in order that all terms of order 2 and higher in (1.19), the

so-called higher order terms, can be effectively neglected. In such cases, we will

approximate the given functions as

f (x) ≈ f (x0) + f ′(x0)(x − x0).

1.2.3 Centered difference approximations to derivatives

Though the atmosphere is a continuous fluid and its observed state at any time

could theoretically be represented by a continuous function, the reality is that actual

observations of the atmosphere are only available at discrete points in space and

time. Given that much of the subsequent development in this book will arise from

consideration of the spatial and temporal variation of observable quantities, we must

consider a method of approximating derivative quantities from discrete data. One

such method is known as centered differencing3 and it follows directly from the

prior discussion of the Taylor series expansion.

3 Centered differencing is a subset of a broader category of such approximations known as finite differenc-
ing.
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Figure 1.6 Points x1 and x2 defined with respect to a central point x0

Consider the two points x1 and x2 in the near vicinity of a central point, x0, as

illustrated in Figure 1.6. We can apply (1.19) at both points to yield

f (x1) = f (x0 − �x) = f (x0) + f ′(x0)(−�x) + f ′′(x0)

2!
(−�x)2 + · · ·

+ f n(x0)

n!
(−�x)n (1.20a)

and

f (x2) = f (x0 + �x) = f (x0) + f ′(x0)(�x) + f ′′(x0)

2!
(�x)2 + · · ·

+ f n(x0)

n!
(�x)n. (1.20b)

Subtracting (1.20a) from (1.20b) produces

f (x0 + �x) − f (x0 − �x) = 2 f ′(x0)(�x) + 2 f ′′′(x0)
(�x)3

6
+ · · ·. (1.21)

Isolating the expression for f ′(x0) on one side then leaves

f ′(x0) = f (x0 + �x) − f (x0 − �x)

2�x
− f ′′′(x0)

(�x)2

6
− · · ·

which, upon neglecting terms of second order and higher in �x , can be approximated

as

f ′(x0) ≈ f (x0 + �x) − f (x0 − �x)

2�x
. (1.22)

The foregoing expression represents the centered difference approximation to f ′(x)

at x0 accurate to second order (i.e. the neglected terms are at least quadratic in �x).

Adding (1.20a) to (1.20b) gives a similarly approximated expression for the second

derivative as

f ′′(x0) ≈ f (x0 + �x) − 2 f (x0) + f (x0 − �x)

�x2
. (1.23)

Such expressions will prove quite useful in evaluating a number of relationships we

will encounter later.
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1.2.4 Temporal changes of a continuous variable

The fluid atmosphere is an ever evolving medium and so the fundamental vari-

ables discussed in Section 1.1 are ceaselessly subject to temporal changes. But what

does it really mean to say ‘The temperature has changed in the last hour’? In the

broadest sense this statement could have two meanings. It could mean that the

temperature of an individual air parcel, moving past the thermometer on my back

porch, is changing as it migrates through space. In this case, we would be con-

sidering the change in temperature experienced while moving with a parcel of air.

However, the statement could also mean that the temperature of the air parcels

currently in contact with my thermometer is lower than that of air parcels that

used to reside there but have since been replaced by the importation of these colder

ones. In this case we would be considering the changes in temperature as mea-

sured at a fixed geographic point. These two notions of temporal change are clearly

not the same, but one might wonder if and how they are physically and mathe-

matically related. We will consider a not so uncommon example to illustrate this

relationship.

Imagine a winter day in Madison, Wisconsin characterized by biting northwest-

erly winds which are importing cold arctic air southward out of central Canada.

From the fixed geographical point of my back porch, the temperature (or poten-

tial temperature) drops with the passage of time. If, however, I could ride along

with the flow of the air, I would likely find that the temperature does not change

over the passage of time. In other words, a parcel with T = 270◦K passing my

porch at 8 a.m. still has T = 270◦K at 2 p.m. even though it has traveled nearly

to Chicago, Illinois by that time. Therefore, the steady drop in temperature I observe

at my porch is a result of the continuous importation of colder air parcels from Canada.

Phenomenologically, therefore, we can write an expression for this relationship we’ve

developed:

Change with Time Change with Time Rate of Importation

Following an Air = at a Fixed − of Temperature by

Parcel Location Movement of Air.

(1.24)

This relationship can be made mathematically rigorous. Doing so will assist us later in

the development of the equations of motion that govern the mid-latitude atmosphere.

The change following the air parcel is called the Lagrangian rate of change while

the change at a fixed point is called the Eulerian rate of change. We can quantify the

relationship between these two different views of temporal change by considering an

arbitrary scalar (or vector) quantity that we will call Q. If Q is a function of space

and time, then

Q = Q(x, y, z, t)
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and, from the differential calculus, the total differential of Q is

d Q =
(

∂ Q

∂x

)
y,z,t

dx +
(

∂ Q

∂y

)
x,z,t

dy +
(

∂ Q

∂z

)
x,y,t

dz +
(

∂ Q

∂t

)
x,y,z

dt

(1.25)

where the subscripts refer to the independent variables that are held constant

whilst taking the indicated partial derivatives. Upon dividing both sides of (1.25)

by dt, the total differential of t which represents a time increment, the resulting

expression is

d Q

dt
=

(
∂ Q

∂t

)
dt

dt
+

(
∂ Q

∂x

)
dx

dt
+

(
∂ Q

∂y

)
dy

dt
+

(
∂ Q

∂z

)
dz

dt
(1.26)

where the subscripts on the partial derivatives have been dropped for convenience.

The rates of change of x , y, or z with respect to time are simply the component

velocities in the x , y, or z directions. We will refer to these velocities as u, v , and w and

define them as u = dx/dt, v = dy/dt, and w = dz/dt, respectively. Substituting

these expressions into (1.26) yields

d Q

dt
=

(
∂ Q

∂t

)
+ u

(
∂ Q

∂x

)
+ v

(
∂ Q

∂y

)
+ w

(
∂ Q

∂z

)
(1.27)

which can be rewritten in vector notation as

d Q

dt
=

(
∂ Q

∂t

)
+ �V · ∇ Q (1.28)

where �V = uî + v ĵ + wk̂ is the 3-D vector wind. The three terms in (1.27) involving

the component winds and derivatives of Q physically represent the horizontal and

vertical transport of Q by the flow. Thus, we see that d Q/dt corresponds to the

Lagrangian rate of change noted in (1.24). The Eulerian rate of change is represented

by ∂ Q/∂t. The rate of importation by the flow (recall it was subtracted from the

Eulerian change on the RHS of (1.24)) is represented by − �V · ∇ Q (minus the dot

product of the velocity vector and the gradient of Q). In subsequent discussions in

this book, − �V · ∇ Q will be referred to as advection ofQ. Next we show that the

mathematical expression − �V · ∇Q actually describes the rate of importation of Q

by the flow.

Consider the isotherms (lines of constant temperature) and wind vector shown

in Figure 1.7. The gradient of temperature (∇T) is a vector that always points from

lowest temperatures to highest temperatures as indicated. The wind vector, clearly

drawn in Figure 1.7 so as to transport warmer air toward point A, is directed opposite

to ∇T . Recall that the dot product is given by �V · ∇T = | �V ||∇T | cos α where α is

the angle between the vectors �V and ∇T . Given that the angle between �V and ∇T

is 180◦ in Figure 1.7, the dot product �V · ∇T returns a negative value. Therefore,

the sign of �V · ∇T does not accurately reflect the reality of the physical situation de-

picted in Figure 1.7 – that is, that importation of warmer air is occurring at point A.



0470864648c01 JWBK072/Martin February 24, 2006 9:35 Char Count= 0

14 INTRODUCTION AND REVIEW OF MATHEMATICAL TOOLS

Figure 1.7 Isotherms (dashed lines) and wind vector �V (filled arrow) surrounding point A. The thin

black arrow is the horizontal temperature gradient vector

Thus, we define temperature advection, a measure of the rate (and sign) of im-

portation of temperature to point A, as − �V · ∇T . The physical situation depicted in

Figure 1.7, therefore, is said to be characterized by positive temperature (or warm air)

advection.

To round out this discussion, we now return to the example that motivated the

mathematical development: measuring the temperature change on my back porch.

Rearranging (1.28) and substituting T (temperature) for Q we get(
∂T

∂t

)
= dT

dt
− �V · ∇T

which shows that the Eulerian (fixed location) change is equal to the sum of the

Lagrangian (parcel following) change and advection. In the prior example we imag-

ined a temperature drop at my back porch. We also surmised that the temperature

of individual air parcels did not undergo any change as the day wore on. Thus, the

advective change at the porch must be negative – there must be negative temperature

advection, or cold air advection (i.e. − �V · ∇T < 0), occurring in Madison on this

day. Clearly, the situation of northwesterly winds importing cold air southward out

of Canada fits the bill.

1.3 Estimating with Scale Analysis

In many fluid dynamical problems, it is convenient and insightful to estimate which

physical terms are likely to contribute most to a particular process under study. For

instance, in assessing the threat to coastal property in Hawaii in the face of a major

tsunami, it is not likely that the ambient wind speed will figure into the problem in

any significant way. In the development of the equations of motion in subsequent

chapters, a variety of physical processes will be confronted, each of which has some

bearing on the behavior of the fluid atmosphere. At many junctures, however, we will

attempt to simplify those equations by estimating the magnitude of the mathematical

terms that comprise them. A formal process known as scale analysis is employed in
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such an exercise. Here we illustrate, with a very simple example, the power of scale

analysis as an analytical tool.

Imagine you are charged with filling an Olympic-sized swimming pool with water.

Your boss wants to know how long it will take to get the job done and asks you for

an estimate of the completion time. In order to make a reasonable approximation,

you need to know a number of physical characteristics of the problem. You certainly

need to know the volume of the pool and the flow rate you can expect from the hose

you will use to fill the pool. You might want to know if there are cracks in the pool

walls through which seepage might occur. Though it is surely physically relevant,

you probably guess that you needn’t concern yourself with the evaporation rate of

water from the surface of the filling pool.

All four of the above-mentioned physical characteristics can be measured with

varying degrees of accuracy. The volume is likely to be a fairly accurate measurement

as is the flow rate from the hose. Seepage rate and evaporation rates, however, are

likely to be quite difficult to measure accurately. Imagine we do, in fact, make some

measurements of each of these characteristics, assigning an estimated (but charac-

teristic) rate to each of the last three. The flow rate is found to be approximately

100 m3 h−1, the evaporation rate 0.001 m3 h−1, the seepage rate 0.000 01 m3 h−1. It is

clear upon comparison of the three that the flow rate is the most important process

(it is five to seven orders of magnitude larger than the others). Therefore, we could

say that, subject to some small amount of error, the time needed to fill the pool is

equal to

tfill ≈ Volume of the Pool

Flow Rate
.

We will achieve a similar simplification of the equations of motion by similarly

estimating the scale of various terms that appear in those equations.

1.4 Basic Kinematics of Fluids

As can be readily discerned from inspection of any satellite animation of clouds or

water vapor, the wind field varies in the x and y directions. Therefore, there are x and

y derivatives of the horizontal wind components, u and v . In fact, there are only four

such derivatives: ∂u/∂x and ∂u/∂y along with ∂v/∂x and ∂v/∂y. Let us consider

all possible sums of these four derivatives with the stipulation that each sum must

include a derivative of u with respect to one direction and a derivative of v with

respect to the other. Under this condition there are only four independent, linear

combinations of x and y derivatives of the horizontal wind, namely ∂u/∂x ± ∂v/∂y

and ∂v/∂x ± ∂u/∂y. We will now consider what these derivative combinations

describe about the fluid flow and we will do it by considering Taylor series expansions

of the functions u(x ,y) and v(x ,y). Since u and v are continuous functions of x and y
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space, the expansion of each about some arbitrary point in space (say (x ,y) = (0, 0))

becomes

u(x, y) = u0 +
(

∂u

∂x

)
0

x +
(

∂u

∂y

)
0

y +
(

∂2u

∂x2

)
0

x2

2

+
(

∂2u

∂y2

)
0

y2

2
+ Higher Order Terms (1.29a)

v(x, y) = v0 +
(

∂v

∂x

)
0

x +
(

∂v

∂y

)
0

y +
(

∂2v

∂x2

)
0

x2

2

+
(

∂2v

∂y2

)
0

y2

2
+ Higher Order Terms. (1.29b)

If we neglect the terms of order 2 and greater (the so-called higher order terms),

which is eminently defensible because they are generally very small, we have

u − u0 =
(

∂u

∂x

)
0

x +
(

∂u

∂y

)
0

y (1.30a)

v − v0 =
(

∂v

∂x

)
0

x +
(

∂v

∂y

)
0

y (1.30b)

where we have written u(x, y) and v(x, y) more conveniently as u and v , respectively.

Returning to our four independent linear combinations of x and y derivatives

of the wind field, we next assign names to each combination. We will let ∂u/∂x +
∂v/∂y = D where D is the divergence. We will let ∂u/∂x − ∂v/∂y = F1 where

F1 is the stretching deformation. We will let ∂v/∂x + ∂u/∂y = F2 where F2 is

the shearing deformation. Finally, we will let ∂v/∂x − ∂u/∂y = ζ where ζ is the

vorticity. Given these definitions, we can rewrite (1.30a) and (1.30b) in terms of

these quantities as

u − u0 = 1

2
(D + F1)x − 1

2
(ζ − F2)y = 1

2
(Dx + F1x − ζ y + F2 y) (1.31a)

v − v0 = 1

2
(ζ + F2)x + 1

2
(D − F1)y = 1

2
(ζ x + F2x + Dy − F1 y). (1.31b)

By assuming that u0 and v0 (the u and v velocities at our arbitrary origin point) are

both zero we can quite readily use the expressions (1.31a) and (1.31b) to investigate

what each of the four derivative fields looks like physically. We will consider each

quantity in isolation even though, in nature, they all can occur simultaneously in a

given observed flow.


