Investment Mathematics _____

Andrew T. Adams PhD, AIA School of Management, University of Edinburgh

Philip M. Booth FIA, FSS

Sir John Cass Business School, City of London and the Institute of Economic Affairs, London

David C. Bowie PhD, FFA Hymans Robertson, Glasgow

Della S. Freeth PhD, FSS Health Care Development Unit, City University, London

Investment Mathematics	
mivestment iviationaties	

Wiley Finance Series

Capital Asset Investment: Strategy, Tactics and Tools

Anthony Herbst

Measuring Market Risk

Kevin Dowd

An Introduction to Market Risk Measurement

Kevin Dowd

Behavioural Finance

James Montier

Asset Management: Equities Demystified

Shanta Acharya

An Introduction to Capital Markets: Products, Strategies Participants

Andrew Chisholm

Hedge Funds: Myths and Limits François-Serge Lhabitant

The Manager's Concise Guide to Risk

Jihad S. Nader

Securities Operations: A Guide to Trade and Position Management

Michael Simmons

Modelling, Measuring and Hedging Operational Risk

Marcelo Cruz

Monte Carlo Methods in Finance

Peter Jäckel

Building and Using Dynamic Interest Rate Models

Ken Kortanek and Vladimir Medvedev

Structured Equity Derivatives: The Definitive Guide to Exotic Options and Structured Notes Harry Kat

Advanced Modelling in Finance Using Excel and VBA

Mary Jackson and Mike Staunton

Operational Risk: Measurement and Modelling

Jack King

Advance Credit Risk Analysis: Financial Approaches and Mathematical Models to Assess, Price and Manage Credit Risk

Didier Cossin and Hugues Pirotte

Dictionary of Financial Engineering

John F. Marshall

Pricing Financial Derivatives: The Finite Difference Method

Domingo A. Tavella and Curt Randall

Interest Rate Modelling

Jessica James and Nick Webber

Handbook of Hybrid Instruments: Convertible Bonds, Preferred Shares, Lyons, ELKS, DECS and Other Mandatory Convertible Notes

Izzy Nelken (ed.)

Options on Foreign Exchange, Revised Edition

David F. DeRosa

Volatility and Correlation in the Pricing of Equity, FX and Interest-Rate Options

Riccardo Rebonato

Risk Management and Analysis vol. 1: Measuring and Modelling Financial Risk Carol Alexander (ed.)

Risk Management and Analysis vol. 2: New Markets and Products

Carol Alexander (ed.)

Interest-Rate Option Models: Understanding, Analysing and Using Models for Exotic Interest-Rate Options (second edition)

Riccardo Rebonato

Investment Mathematics _____

Andrew T. Adams PhD, AIA School of Management, University of Edinburgh

Philip M. Booth FIA, FSS

Sir John Cass Business School, City of London and the Institute of Economic Affairs, London

David C. Bowie PhD, FFA Hymans Robertson, Glasgow

Della S. Freeth PhD, FSS Health Care Development Unit, City University, London

Copyright © 2003 John Wiley & Sons Ltd.

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+ 44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreg@wiley.co.uk, or faxed to (+ 44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-99882-6

Typeset in 10/12pt Times by Mathematical Composition Setters Ltd, Salisbury, Wiltshire Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents _____

Preface			xii	
Ack	knowledg	gements	XV	
Par	1			
1	Compo	und Interest	3	
	1.1	Introduction	3	
	1.2	Accumulated values	3	
	1.3	Effective and nominal rates of interest	5	
	1.4	The accumulated value of an annuity-certain		
	1.5	Present values	8	
	1.6	The present value of an annuity-certain	10	
	1.7	Investment project analysis	15	
	1.8	Net present value	15	
	1.9	Internal rate of return	16	
	1.10	Discounted payback period	17	
	1.11	Analysis of decision criteria	19	
	1.12	Sensitivity analysis	19	
	Annex	1	20	
	Annex	1.2 Geometric series	21	
2	Fixed-i	interest Bonds	25	
	2.1	Introduction	25	
	2.2	Types of bond	25	
	2.3	Accrued interest	26	
	2.4	Present value of payments	28	
	2.5	Interest yield	28	
	2.6	Simple yield to maturity	29	
	2.7	Gross redemption yield	29	
	2.8	Net redemption yield	32	
	2.9	Holding period return	33	
	2.10	Volatility	33	

vi	Contents

36 36 37 38
36 37 38
37 38
36 37 38
38
20
39
39
39
39
40
41
42
43
43
43
46
47
49
51
53
57
59
59
59
60
62
63
63
67
68
73
73
73
75
75
79
80
82
84
84
86
86

ϵ	Contents	vi
_	Soments	YI

Con	itents		vi
		5.10.2 Problems with the simple approach to estimating	
		inflation expectations	88
		5.10.3 Solving the problem of internal consistency: break-even	0.0
		inflation rates	88
		5.10.4 Solving the problem of differing durations 5.10.5 Forward and spot inflation expectations	90 90
		5.10.5 Forward and spot inflation expectations	90
6	_	n Currency Investments	93
	6.1	Introduction	93
	6.2	Exchange rates	93
	6.3 6.4	Exchanges rates, inflation rates and interest rates	94 95
	6.5	Covered interest arbitrage The operation of grapulators	95
	6.6	The operation of speculators Purchasing power parity theory	98
	6.7	The international Fisher effect	98
	6.8	Interactions between exchange rates, interest rates and inflation	99
	6.9	International bond investment	102
	6.10	International equity investment	104
	6.11	Foreign currency hedging	104
7	Deriva	tive Securities	107
•	7.1	Introduction	107
	7.2	Forward and futures contracts	107
		7.2.1 Pricing of forwards and futures	108
		7.2.2 Forward pricing on a security paying no income	109
		7.2.3 Forward pricing on a security paying a known cash	
		income	110
		7.2.4 Forward pricing on assets requiring storage	112
		7.2.5 Stock index futures	112
		7.2.6 Basis relationships	113
		7.2.7 Bond futures	114
	7.3	Swap contracts	116
		7.3.1 Comparative advantage argument for swaps market	116
		7.3.2 Pricing interest rate swap contracts	117
	7.4	7.3.3 Using swaps in risk management	118 119
	7.4	Option contracts 7.4.1 Payoff diagrams for options	120
		7.4.2 Intrinsic value and time value	121
		7.4.3 Factors affecting option prices	122
	4 II - C.	totictics for Investment	105
ar	t II S	tatistics for Investment	125
8		bing Investment Data	127
	8.1	Introduction	127
	8.2	Data sources	127
	8.3	Sampling and data types	128

viii Contents

	8.4	Data p	presentation	129
		8.4.1	Frequency tables	129
		8.4.2	Cumulative frequency tables	131
		8.4.3	Bar charts	131
		8.4.4	Histograms	132
		8.4.5	Stem and leaf plots	135
		8.4.6	Pie charts	136
		8.4.7	Time series graphs	140
		8.4.8	Cumulative frequency graphs	141
		8.4.9	Scatter diagrams	141
		8.4.10	The misrepresentation of data	143
	8.5	Descrip	ptive statistics	145
		8.5.1	Arithmetic mean	145
		8.5.2	Median	147
		8.5.3	Mode	147
		8.5.4	Link between the mean, median and mode	147
		8.5.5	Weighted average	148
		8.5.6	Geometric mean	149
		8.5.7	Range	149
		8.5.8	Inter-quartile range	150
		8.5.9	Mean deviation (from the mean)	150
		8.5.10		151
		8.5.11	Sample standard deviation	151
		8.5.12	Coefficient of variation	151
9	Model	lling Inve	estment Returns	153
	9.1	Introdu		153
	9.2	Probab	pility	153
		9.2.1	Relative frequency definition of probability	153
		9.2.2	Subjective probability	154
		9.2.3	The addition rule	154
		9.2.4	Mutually exclusive events	154
		9.2.5	Conditional probability	155
		9.2.6	Independent events	155
		9.2.7	Complementary events	156
		9.2.8	Bayes' theorem	156
	9.3	Probab	pility distributions	158
		9.3.1	Cumulative distribution function (c.d.f.)	159
		9.3.2	The mean and variance of probability distributions	160
		9.3.3	Expected values of probability distributions	160
		9.3.4	Properties of the expected value	161
		9.3.5	The general linear transformation	162
		9.3.6	Variance	162
		9.3.7	Covariance	163
		9.3.8	Moments of random variables	163
		9.3.9	Probability density function (p.d.f.)	163

	9.4	The binomial distribution	165
	9.5	The normal distribution	166
		9.5.1 The standard normal distribution	167
	9.6	The normal approximation to the binomial	169
		9.6.1 Binomial proportions	171
	9.7	The lognormal distribution	171
	9.8	The concept of probability applied to investment returns	172
	9.9	Some useful probability results	173
	9.10	Accumulation of investments using a stochastic approach: one	
		time period	175
	9.11	Accumulation of single investments with independent rates of return	177
	9.12	The accumulation of annual investments with independent rates	
		of return	179
	Annex	9.1 Properties of the expected value	185
	Annex		186
		7.2 233F13333 33 333 3333	
0	Estima	ting Parameters and Hypothesis Testing	187
	10.1	Introduction	187
	10.2	Unbiased estimators	187
	10.3	Confidence interval for the mean	188
	10.4	Levels of confidence	19
	10.5	Small samples	191
	10.6	Confidence interval for a proportion	193
	10.7	Classical hypothesis testing	194
	10.8	Type I and Type II errors	190
	10.9	Power	190
	10.10	Operating characteristic	19
	10.11	Hypothesis test for a proportion	198
	10.12	Some problems with classical hypothesis testing	199
	10.13	An alternative to classical hypothesis testing: the use of <i>p</i> -values	200
	10.14	Statistical and practical significance	201
	Annex	· · · · · · · · · · · · · · · · · · ·	202
		Total Standard Critical Critical Campion Industry	
	N /	de la Tradica Company de la Determina	203
1	Measu	ing and Testing Comovements in Returns	40.
1	Measur 11.1	Introduction	
1			203
1	11.1	Introduction	203 203
1	11.1 11.2	Introduction Correlation	203 203 203
1	11.1 11.2 11.3	Introduction Correlation Measuring linear association	203 203 203 203
1	11.1 11.2 11.3 11.4	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient	203 203 203 203 203
1	11.1 11.2 11.3 11.4 11.5	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient	203 203 203 203 203 203 203 203 203
1	11.1 11.2 11.3 11.4 11.5 11.6	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient Spearman's rank correlation coefficient	203 203 203 203 203 203 203
1	11.1 11.2 11.3 11.4 11.5 11.6 11.7	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient Spearman's rank correlation coefficient Pearson's versus Spearman's	203 203 203 203 203 203 203 203 208
1	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient Spearman's rank correlation coefficient Pearson's versus Spearman's Non-linear association Outliers	203 203 203 203 203 203 203 208 209
1	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient Spearman's rank correlation coefficient Pearson's versus Spearman's Non-linear association Outliers Significance test for r	203 203 203 203 203 203 208 208 210 211
1	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Introduction Correlation Measuring linear association Pearson's product moment correlation coefficient Covariance and the population correlation coefficient Spearman's rank correlation coefficient Pearson's versus Spearman's Non-linear association Outliers	203 203 203 203 203 203 208 208 209 210

Contents

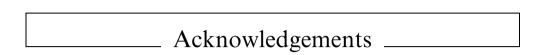
X			Contents
	11.14	The least-squares regression line of x on y	217
		Prediction intervals for the conditional mean	220
	11.16	The coefficient of determination	222
	11.17	Residuals	224
	11.18	Multiple regression	226
		A warning	226
Par	t III A	Applications	227
12	Moder	n Portfolio Theory and Asset Pricing	229
	12.1	Introduction	229
	12.2	Expected return and risk for a portfolio of two investments	229
	12.3	Expected return and risk for a portfolio of many investments	234
	12.4	The efficient frontier	235
	12.5	Indifference curves and the optimum portfolio	236
	12.6	Practical application of the Markowitz model	237
	12.7	The Market Model	237
	12.8	Estimation of expected returns and risks	240
	12.9	Portfolio selection models incorporating liabilities	240
	12.10	Modern portfolio theory and international diversification	243
	12.11	The Capital Asset Pricing Model	245
		International CAPM	254
		Arbitrage Pricing Theory	257
		Downside measures of risk	262
		Markowitz semi-variance	264
		Mean semi-variance efficient frontiers	265
	Annex	12.1 Using Excel to calculate efficient frontiers	266
13	Marke	et Indices	271
	13.1	Introduction	271
	13.2	Equity indices	271
	13.3	Bond indices	279
	13.4	Ex-dividend adjustment	280
	13.5	Calculating total return indices within a calendar year	281
	13.6	Net and gross indices	282
	13.7	Commercial real estate indices	283
		13.7.1 US real estate indices	283
14	Portfo	lio Performance Measurement	285
	14.1	Introduction	285
	14.2	Money-weighted rate of return	285
	14.3	Time-weighted rate of return	287
	14.4	Linked internal rate of return	291
	14.5	Notional funds	292
	14.6	Consideration of risk	294
	14.7	Information ratios	298
	14.8	Survivorship bias	299
	14.9	Transitions	301

Contents xi

15	Bond A	Analysis	303		
	15.1	Introduction	303		
	15.2	Volatility	303		
	15.3	Duration	304		
	15.4	The relationship between volatility and duration	305		
	15.5	Factors affecting volatility and duration	308 309		
	15.6	Convexity			
	15.7	Non-government bonds	314		
	15.8	Some applications of the concepts of volatility and duration	315		
	15.9	The theory of immunisation	317		
	15.10	Some practical issues with immunisation and matching	320		
16	Option	Pricing Models	323		
	16.1	Introduction	323		
	16.2	Stock options	323		
	16.3	The riskless hedge	324		
	16.4	Risk neutrality	325		
	16.5	A more general binomial model	329		
	16.6	The value of <i>p</i>	330		
	16.7	Estimating the parameters u , v and n	331		
	16.8	The Black-Scholes model	333		
	16.9	Call options	334		
	16.10	Computational considerations	338		
	16.11	Put options	339		
	16.12	Volatility	342		
	16.13	Estimation of volatility from historical data	342		
	16.14	Implied volatility	343		
		Put/call parity	344		
	16.16	Adjustments for known dividends	347		
	16.17	Put/call parity with known dividends	349		
	16.18	American-style options	350		
	16.19	Option trading strategies	351		
	16.20	A	357		
		Bond options	357		
		Futures options	358		
		Currency options	358		
		Exotic options	359		
	Annex	16.1 The heuristic derivation of the Black–Scholes model	359		
17	Stochastic Investment Models				
	17.1	Introduction	365		
	17.2	Persistence in economic series	367		
	17.3	Autocorrelation	371		
	17.4	The random walk model	374		
	17.5	Autoregressive models	376		
	17.6	ARIMA models	380		
	177	ARCH models	381		

xii		Contents	
17.8	Asset-liability modelling	384	
17.9	The Wilkie model	385	
17.10	A note on calibration	388	
17.11	Interest rate modelling	388	
17.12	Value at risk	391	
Compound	399		
Student's t	408		
Areas in the Right-hand Tail of the Normal Distribution			
Index			

Preface	


This book is intended for practitioners in the investment world, particularly those studying for professional examinations. It is also suitable for students of finance and investment in higher education, either as a main text or as an additional reference book.

The book is divided into three parts. Part I looks at the fundamental analysis of investments from a mathematical viewpoint, relying heavily on compound interest techniques which are developed in the first chapter. There is particular emphasis on the valuation of investments and the calculation of rates of return. Mathematical developments are illustrated with practical examples. The material is presented in such a way that those without formal training in mathematics will be able to follow the text without difficulty.

Part II provides the necessary statistical background for investment specialists. Modern financial economics and developments in the actuarial field have emphasised the importance of probability distributions and have made investors more aware of the concept that expected investment returns are the expected values of random variables. The statistical topics in Part II complete the foundation which allows the reader to tackle topics in Part III. Like Part I, the approach in Part II assumes little formal mathematical training.

Part III deals with a number of specialist topics which are applications of the material covered in Parts I and II. It is expected that readers will only study those chapters of Part III which are relevant to their particular work or course. Topics covered are modern portfolio theory and asset pricing, market indices, portfolio performance measurement, bond analysis, option pricing models, and stochastic investment models.

An important feature of this international text is the way in which chapters are self-contained, and yet follow logically one from another. This will enable readers to choose a reading path appropriate to their own specific needs without a loss of continuity; it also enables the text to be used as a reference manual. *Investment Mathematics* is an accessible text which will provide readers with a sound analytical framework within which the valuation of investments and investment in a wider context may be studied.

We wish to thank Dr Peter England for his generous help.

Part I — Security Analysis _____

The first part of this book develops the foundations of security analysis, drawing heavily upon the concept of compound interest. Consequently, the first chapter is devoted to explaining the basics of compound interest. Chapters 2 and 3 use these techniques in the analysis of fixed-interest bonds, equities and real estate. Chapter 4 deals with the mathematical problems of investment in inflationary conditions and Chapter 5 deals with the analysis of index-linked bonds. Chapter 6 makes use of the material presented in Chapters 4 and 5 to consider the mathematics associated with foreign currency investments. There has been dramatic growth in the market for derivative securities in recent times and the basics of these instruments are outlined in Chapter 7.

1.1 INTRODUCTION

The purpose of this chapter is to provide an introduction to *compound interest* which is the foundation of investment mathematics. In particular, methods are developed for calculating the accumulated value and present value of an investment. Although we concentrate on financial investment in securities in this book, for completeness, the second half of this chapter is devoted to discussion of real investment in projects.

Readers unfamiliar with the concepts of *exponents* and *geometric series*, which occur frequently in compound interest calculations, should first read the Annex to this chapter.

1.2 ACCUMULATED VALUES

Suppose that a woman deposits £100 with a bank which pays a rate of interest of 6% per annum to its depositors and that she leaves any interest earned to accumulate within the account. At the start of the second year she would have £100 × 1.06 = £106 in the account, which would earn 6% interest during the second year. So in the second year the £106 grows at 6% to £106 × 1.06, or alternatively £100(1.06)², which equals £112.36. The important point to grasp here is that interest is itself earning interest. This is the essence of what is known as *compound interest*. If interest were spent rather than left in the account, total interest received at the end of the second year would amount to only £12 rather than £12.36.

By the end of the third year, the £112.36 will grow to £112.36 × 1.06, or alternatively £100(1.06)³, which equals £119.10. Continuing the process further, the £100 grows to £100(1.06)⁴ after four years, £100(1.06)⁵ after 5 years and so on. In the general case, £100 grows to £100(1.06)ⁿ after n years.

We may generalise the above *compounding* process further. Suppose that an amount A(0) is invested at time 0 at a compound interest rate of i per interval, where i is written as a decimal rather than a percentage. Then the accumulated amount A(n) after n intervals of time is given by the formula

$$A(n) = A(0)(1+i)^n (1.1)$$

This may be represented diagrammatically as shown in Figure 1.1. Note that the rate at which interest accrues has not been expressed as a rate *per annum* but as a rate *per interval*. A unit interval of time is not restricted to one year. It could be a half-year, a quarter of a year, an hour or any other interval of time.

Equation (1.1) is valid not only for an integral number of time intervals but also for fractions of time intervals, provided the rate of growth is constant. Consider the amount by which the investment has grown after 1/m of a time interval (where m is an integer). If the sum has grown by a factor 1 + y, we can say that

$$(1+y)^m = 1+i$$

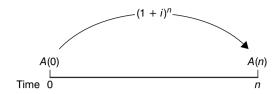


Figure 1.1

or

$$(1+y) = (1+i)^{1/m}$$

Thus, after n time intervals and r periods of 1/m time intervals (r and m integers), the sum A(0) would grow to

$$A(0) \cdot (1+i)^{n+(r/m)}$$

In other words, after any time period t, A(0) would grow to $A(0) \cdot (1+i)^t$.

Example 1.1

What is the accumulated value of £300 invested at 5% per annum for (a) 6 years? (b) $12\frac{1}{2}$ years?

Answer

- (a) $A(6) = £300(1.05)^6 = £402.03$. (b) $A(12.5) = £300(1.05)^{12.5} = £552.06$.

Example 1.2

What is the accumulated value of \$200 invested for $8\frac{1}{4}$ years where the rate of interest is (a) 3% per half-year? (b) 2% per quarter?

Answer

(a) The unit interval of time is a half-year so that n is $8.25 \times 2 = 16.5$

$$A(16.5) = $200(1.03)^{16.5} = $325.72$$

(b) The unit interval of time is a quarter so that n is $8.25 \times 4 = 33$

$$A(33) = \$200(1.02)^{33} = \underline{\$384.45}$$

Example 1.3

What is the accumulated value in 6 years' time of £200 invested now, £400 invested at the end of year 3 and £300 invested at the end of year 5, if the rate of interest is 5% per annum?

Answer

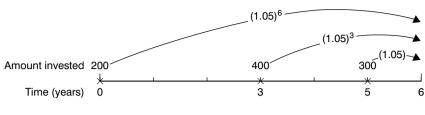


Figure 1.2

In this case there are a number of payments at different points in time. The solution is straightforward when it is realised that the accumulated values of the payments can be considered separately and then simply added together (see Figure 1.2).

£200 is invested for 6 years, £400 for 3 years and £300 for 1 year, so

1.3 EFFECTIVE AND NOMINAL RATES OF INTEREST

Rates of interest only have meaning when they are related to a time interval. Thus, in Examples 1.1 and 1.3 above, the rate of interest was 5% per annum whereas in Example 1.2(a) the rate of interest was 3% per half-year and in Example 1.2(b) the rate of interest was 2% per quarter. Rates of interest expressed in this way give the actual rate of increase over the stated interval of time. They are known as effective rates of interest.

Example 1.4

If the effective annual rate of interest is 7%, what is the effective monthly rate of interest?

Answer

Let the effective monthly rate of interest be j. Then

$$(1+j)^{12} = 1.07$$

 $1+j = 1.00565$
 $j = 0.565\%$

Where the effective rate of interest is expressed in terms of 1/p of a year, it is often converted to an annual rate by simply multiplying by p. Thus, 3% per half-year would be quoted as being "6% per annum, convertible half-yearly". Similarly, 2% per

quarter would be quoted as being "8% per annum, convertible quarterly". Interest rates quoted in this way are known as *nominal* rates of interest. Quoted interest rates on savings products offered by banks are often nominal rates, e.g. convertible half-yearly.

Corresponding to a nominal rate of interest there always exists an effective annual rate of interest. For example, suppose £100 is invested for a year at a rate of interest of 8% per annum, convertible half-yearly (i.e. an effective rate of interest of 4% per half-year). This is not the same as an effective rate of interest of 8% per annum. The amount at the end of the year would be £100(1 + 0.08/2)². If the corresponding annual rate of interest is *i* per annum, the amount at the end of the year may also be written as £100(1 + *i*). We therefore have

or

$$(1+0.08/2)^2 = 1+i$$

 $1.0816 = 1+i$
 $i = 0.0816$ or 8.16%

That is, a rate of interest expressed as 8% per annum convertible half-yearly is the same as an effective rate of interest of 8.16% per annum.

Equation (1.2) above may be generalised. Suppose we are given a rate of interest per annum, convertible p times a year (denoted by the symbol $i^{(p)}$). Then the equivalent rate of interest per annum (denoted by the symbol i) is given by

$$\left(1 + \frac{i^{(p)}}{p}\right)^p = 1 + i \tag{1.3}$$

If p is greater than 1 so that interest is convertible more frequently than once a year, interest itself earns interest within the year, and the effective rate of interest i exceeds the nominal rate of interest, $i^{(p)}$. As p increases so that intervals between additional interest become smaller and smaller, the margin between i and $i^{(p)}$ widens at a decreasing rate, tending to a limit which corresponds to interest being *continuously compounded*. In this case (for which p is infinite), the resultant annual convertible rate of interest is referred to as the *force of interest* and is given the symbol δ . The equivalent rate of interest per annum is given by

$$e^{\delta} = 1 + i$$

where

$$e = \lim_{p \to \infty} \left(1 + \frac{1}{p} \right)^p = 2.718$$

If the force of interest is quoted, then we have:

$$A(t) = A(0)e^{\delta t} \tag{1.4}$$

Example 1.5

If the effective annual rate of interest is 6%, what is (a) the annual rate of interest convertible half-yearly? (b) the force of interest?

Answer

(a) Let the annual rate of interest convertible half-yearly be $i^{(2)}$. Then

$$\left(1 + \frac{i^{(2)}}{2}\right)^2 = 1.06$$

$$1 + \frac{i^{(2)}}{2} = 1.029 \ 56$$

$$\frac{i^{(2)}}{2} = 0.029 \ 56$$

$$i^{(2)} = 5.912\%$$

(b) Let the force of interest be δ . Then

$$e^{\delta} = 1.06$$
$$\delta = \log_e 1.06$$
$$\delta = 0.0583$$
$$\delta = 5.83\%$$

1.4 THE ACCUMULATED VALUE OF AN ANNUITY-CERTAIN

An annuity-certain is a series of payments at fixed intervals of time for a fixed period of time. The payments may be of a constant amount or they may vary.

(1) A series of payments of one per interval payable in arrears for n intervals

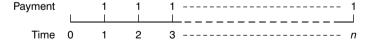


Figure 1.3

The accumulated value of this series of payments is often denoted by the symbol $s_{\overline{n}|}$. Occasionally it is necessary to make clear the ruling rate of interest by placing it to the right, e.g. $s_{\overline{n}}|10\%$.

Suppose that the rate of interest is i per interval, Then

$$s_{\overline{n}|} = (1+i)^{n-1} + (1+i)^{n-2} + \dots + (1+i) + 1$$

or, reversing the order of the terms on the right-hand side,

$$s_{\overline{n}} = 1 + (1+i) + \dots + (1+i)^{n-2} + (1+i)^{n-1}$$

The right-hand side of this equation is the sum of a geometric series with first term equal to 1 and common ratio equal to 1 + i. There are n terms in the series. The sum of this geometric series is

$$\frac{1 \cdot (1 - (1 + i)^n)}{1 - (1 + i)}$$
 using equation (1.22)

We therefore have the result:

$$s_{\overline{n}|} = \frac{(1+i)^n - 1}{i} \tag{1.5}$$

It is not usually necessary to calculate $s_{\overline{n}|}$ as values can be obtained from compound interest tables (see back of this book).

(2) A series of payments of one per interval payable in advance for n intervals

Figure 1.4

The accumulated value of this series of payments is often denoted by the symbol $\ddot{s}_{\overline{n}|}$. Note that this is the same as the series of payments in (1) above except that each payment accumulates for one additional interval. It therefore follows that

$$\ddot{s}_{\overline{n}|} = (1+i)s_{\overline{n}|} \tag{1.6}$$

1.5 PRESENT VALUES

We have considered how to determine the accumulated value of a payment (or a number of payments) at some point in the future. We now consider the reverse problem of determining the amount which must be invested now to provide for a payment (or a number of payments) at some point (or points) in the future. In other words, we wish to determine the present value of amounts received at specified future points in time. As with accumulated values, present values depend on the ruling rate of interest but instead of *accumulating* we are *discounting*.

Suppose that we wish to make a payment of £600 in exactly 7 years from now and that the rate of interest is 9% per annum. How much must be invested at the present time to provide this amount? If the initial amount invested is A(0), then using equation (1.1) derived earlier, we obtain

£600 =
$$A(0)(1.09)^7$$

so that

$$A(0) = \frac{£600}{(1.09)^7}$$
$$= £328.22$$

In general, the amount A(0) which must be invested now to provide A(t) after t intervals of time is given by

$$A(0) = \frac{A(t)}{(1+i)^t} \tag{1.7}$$

where *i* is the rate of interest per interval, and *t* need not be an integer. Alternatively, if δ is the force of interest,

$$A(0) = A(t)e^{-\delta t}$$

A(0) is known as the present value of A(t).

Equation (1.7) may be represented diagrammatically as in Figure 1.5.

1/(1+i) is often given the symbol v and so equation (1.7) would then become

$$A(0) = A(t) \cdot v^t \tag{1.8}$$

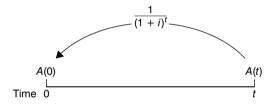


Figure 1.5

Example 1.6

What is the present value of £100 due in exactly 8 years from now if the rate of interest is 7% per annum?

Answer

Here we have

$$t = 8$$
 $A(t) = £100$ $i = 0.07$

So

Present value =
$$\frac{£100}{(1.07)^8}$$
$$= £58.20$$

Note that the present value is less than the amount due in the future.

Example 1.7

Assuming a rate of interest of 4% per half-year, how much must be invested now to provide the following payments?

£200 after 2 years
plus £600 after
$$3\frac{1}{2}$$
 years
plus £500 after 5 years

Answer

The unit interval of time is a half-year in this case.

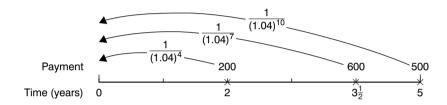


Figure 1.6

The amount which must be invested now is

$$\frac{£200}{(1.04)^4} + \frac{£600}{(1.04)^7} + \frac{£500}{(1.04)^{10}} = £964.69$$

1.6 THE PRESENT VALUE OF AN ANNUITY-CERTAIN

The following types of annuity-certain are particularly important in investment and it is therefore useful to know the general formulae for their present values.

(1) A series of payments of one per interval payable in arrears for n intervals

Figure 1.7

The present value of this series of payments is often denoted by the symbol $a_{\overline{n}|}$. Suppose that the rate of interest is *i* per interval. Then

$$a_{\overline{n}|} = \frac{1}{(1+i)} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^n}$$

The right-hand side of this equation is the sum of a geometric series with first term equal to 1/(1+i) and common ratio equal to 1/(1+i).

The sum of this geometric series is

$$\frac{1}{(1+i)} \left(1 - \frac{1}{(1+i)^n} \right)$$
$$1 - \frac{1}{(1+i)}$$

Multiplying the numerator and denominator by 1 + i, we obtain

$$\frac{1 - \frac{1}{(1+i)^n}}{1+i-1} = \frac{1 - \frac{1}{(1+i)^n}}{i}$$

We therefore have the result:

$$a_{\overline{n}|} = \frac{1 - \frac{1}{(1+i)^n}}{i} \tag{1.9}$$

Values of $a_{\overline{n}|}$ are commonly found in compound interest tables (see back of book).

(2) A series of payments of one per interval payable in advance for n intervals

Figure 1.8

The present value of this series of payments is often denoted by the symbol \ddot{a}_{nl} . This is the same as the series of payments in (1) above except that each payment is discounted for one interval fewer. It therefore follows that

$$\ddot{a}_{\overline{n}} = (1+i)a_{\overline{n}} \tag{1.10}$$

(3) An infinite series of payments made at the end of each interval; the first payment is d_l and each subsequent payment is (1+g) times the previous payment

Figure 1.9

12 Investment Mathematics

Suppose again that the rate of interest is i per interval. Then

Present value =
$$\frac{d_1}{(1+i)} + \frac{d_1(1+g)}{(1+i)^2} + \frac{d_1(1+g)^2}{(1+i)^3} + \cdots$$

The right-hand side of this equation is an infinite geometric series with first term equal to $d_1/(1+i)$ and common ratio equal to (1+g)/(1+i). If i is greater than g, the series is convergent and the sum of the series is

$$\frac{\frac{d_1}{(1+i)}}{1-\frac{(1+g)}{(1+i)}}$$

Multiplying the numerator and denominator by 1 + i we obtain

$$\frac{d_1}{(1+i)-(1+g)}$$

so that the present value equals

$$\frac{d_1}{i-g} \tag{1.11}$$

Note that when there is zero growth, i.e. g = 0, we have an infinite series of payments (known as a *perpetuity*) of d_1 per interval, payable in arrears with present value equal to d_1/i . The same result can be obtained by multiplying equation (1.9) by d_1 and setting $n = \infty$.

(4) An increasing annuity in which the first payment is one after one interval, the second payment is two after two intervals, and so on, with a final payment of n after n intervals

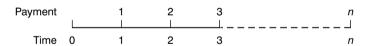


Figure 1.10

The present value of this series of payments is often denoted by the symbol $(Ia)_{\overline{n}|}$. It is convenient to use v for 1/(1+i). Then

$$(Ia)_{\overline{n}} = v + 2v^2 + \dots + nv^n \tag{1.12}$$

$$(1+i)(Ia)_{\overline{n}} = 1 + 2v + 3v^2 + \dots + nv^{n-1}$$
(1.13)

Subtracting equation (1.12) from equation (1.13),

$$i(Ia)_{\overline{n}|} = 1 + \upsilon + \upsilon^2 + \dots + \upsilon^{n-1} - n\upsilon^n$$

$$(Ia)_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|} - n\upsilon^n}{i}$$
(1.14)