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PART V CLIMATE CHANGE IMPACT AND MOUNTAIN HYDROLOGY 261

18 The Influence of Glacier Retreat on Water Yield from High Mountain Areas: Comparison of Alps
and Central Asia 263
Wilfried Hagg and Ludwig Braun

19 Snowmelt Under Different Temperature Increase Scenarios in the Swiss Alps 277
Franziska Keller and Stéphane Goyette
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Introduction: Climate and Hydrology
in Mountain Areas

Undoubtedly, the mountain regions of our world are
the main hydrological and climatological triggers or
pertubators of the water cycle as well as of complex
meteorological patterns including phenomena such as
the production or inhibition of rainfall. In terms of
their role as water towers, mountain regions form an
important supply of snow and/or rain-fed water to the
lowlands. In terms of climate, mountain systems develop
a considerably complex system of their own, influenced
by the often characteristically narrow, deeply incised
valleys. It is rare though, to find comprehensive work
that combines both the hydrological and climatological
aspects of mountain catchments. The purpose of this
book is therefore to bring together a very diverse group
of scientists from all over the world to present their
multidisciplinary research in contrasting mountain envi-
ronments. This effort was developed by Carmen de Jong
in cooperation with Roberto Ranzi and David Collins
during the International Year of the Mountains 2002
and is based on cross-disciplinary mountain sessions at
EGS/EGU meetings, a diverse team of supportive meet-
ing participants and invited scientists. The ultimate goal
was, firstly, to provide a platform for discussion amongst
highly motivated and trendsetting mountain groups from
different origins and secondly, to combine two hitherto
separately treated subject matters – that of hydrology and
climatology in mountain areas. Although hydrology and
climatology appertain to two separate disciplines, it is
important to acknowledge the fact that in nature they
are inseparable and that enough crosscutting areas exist
that cannot ignore their mutuality. It is not always easy
to bring together the different disciplines, but as long as
scientists are cooperating strongly in the way observed
in this group of authors, such endeavours are possible.

This book covers a wide range of mountain chains
including the Alps, Black Forest, Himalayas, Tien Shan,
Giant mountains, Norwegian mountains, Laurentian
highlands, Appalachian mountains, Rockies, Andes, and

Cascade mountains (see Figure 1). From the distribution
of study areas covered, it is obvious that several African
mountain ranges and other mountains of the southern
hemisphere are missing in this volume. It is hoped to
incorporate these in future editions.

The graph below (Figure 2) illustrates the correlation
between study-area size and elevation. There is a clear
lack of studies carried out in the higher altitudes and only
six study sites have an average catchment elevation
above 4000 m. Amongst these, all except one have
catchment areas below 100 km2. In future, it may be
favourable to concentrate research on larger catchments
at higher altitudes.

The book is divided essentially into five parts:
(1) snow and ice melt, (2) soil water and permafrost,
(3) evapotranspiration and water balance, (4) coupling
meteorology and hydrology, and (5) climate change
impact and mountain hydrology.

Roger Barry introduces the book with a review on
alpine climate change and cryospheric responses. In the
first section, Rijan Kayastha and his co-authors deal
with methods for calculating snow and ice melt in the
Himalayas and Pratap Singh and Lars Bengtsson assess
methods for interpolation and extrapolation of snow-
covered areas using air temperatures in the same region.
In contrast, Javier Corripio and Ross Purves introduce a
particularly intriguing study on snow and ice penitentes in
the central Andes. Uli Strasser then shows how sub-grid
parameterization and a forest canopy model can serve
to improve snowmelt runoff modelling in the humid,
French Alps.

In the second section, Christain Hauck and his co-
authors present a coupled geophysical and meteorological
approach for monitoring permafrost in the Swiss Alps,
while Daniel Bayard and Manfred Stähli monitor the
effects of frozen soil on groundwater recharge in the
same mountain ranges. A study on the water balance in
surface soil is presented by Marilena Menziani and her
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co-authors with a combined analytical and measure-
ment approach for an alpine valley in Italy, whereas
Stefano Barontini and his co-authors describe saturated
hydraulic conductivity and water retention relationships
for mountain soils in the same mountain chain.

Gerald Eder introduces the third section with a
relatively new approach of water balance modelling using
fuzzy parameterization in the Austrian Alps. There is a
jump then to Cascade mountains in Washington, USA,
where Timothy Link and his co-authors monitor the water
relations in an intensively instrumentized old growth
douglas fir stand. This is followed by another field-based
study by Carmen de Jong and her co-authors, where
measurements of condensation and evapotranspiration
are compared for the Giant Mountains in Poland and
the Swiss Alps. Jörg Löffler and Ole Rößler describe
an integrated approach for measuring and modelling
the hydrology and ecology of mountain basins in
Central Norway.

The fourth section is introduced by an overview
from Baldassare Bacchi and Vigilio Villi on runoff and
floods in the Alps, emphasizing precipitation and runoff
formation in addition to flood frequency analysis. In this
section, Charles Lin and his co-authors use an interesting
coupled meteorological and hydrological modelling
approach based on geomorphological principals for
flood simulation in the mountainous Sageunay basin
in eastern Canada. Stefan Uhlenbrook and Doerthe
Tetzlaff assess convective precipitation using operational
weather radar as a tool for flood modelling in the Black
Forest, Germany. Geomorphological zoning as a tool for
improving the coupling of hydrology and meteorology is
proposed by Carmen de Jong and her co-authors for the
Austrian and Swiss Alps.

In the final section, Wilfried Hagg and Ludwig Braun
analyse the influence of glacier retreat on water yield
in the high mountain basins of the Alps and Tien Shan.
Staying in the Swiss Alps, Franziska Keller and Stephane
Goyette model snowmelt under different climate change

scenarios. Finally, Osman Yildiz and Ana Barros model
water and energy budgets in the Appalachian mountains
under climate variability and hydrological extremes.

In summary, it can be said that the studies integrate
an interesting combination of field-based and modelling
approaches, with several studies concentrating on the
coupling of hydrology and meteorology. The large variety
of approaches necessary for well-to-low-instrumented
catchments are highlighted and with this comes a general
appeal for more long-term monitoring programmes and
field-based studies to validate model results. Since
mountain regions are remote and difficult environments,
a good field-based approach cannot be taken for granted.
Thus, the sophistication of field and remote-sensing
techniques should keep in pace with the development
of modelling concepts, in particular for mountain ranges
in developing countries and in arid environments.

Although this comprehensive book has seen a long
way from its conception to its production, it is important
to state that all chapters were sent to two international
reviewers that, with few exceptions, were not authors
of the book. We are very grateful to the many hours
invested by these voluntary reviewers. It can be imagined
that this was not always easy since the subject area is not
that widespread.

Our particular thanks go to Martina Knop and
Heike Kemmerling of the Geography Department of the
University of Bonn for their invaluable administrative
support as well as to Martin Gref for his cartographic
help and to the family of Carmen de Jong for supporting
the long extra hours involved with the reviewing and
editing this book. Stefan Taschner of the Department of
Civil Engineering at the University of Brescia and Keily
Larkins from Wiley are acknowledged for their help in
the editorial process.

Carmen de Jong
Roberto Ranzi
David Collins
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Alpine Climate Change and Cryospheric
Responses: An Introduction

ROGER G. BARRY
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1.1 INTRODUCTION

As an introduction to the following chapters dealing
with changes in snow and ice conditions in high
mountain regions, and their hydrological consequences,
a brief overview of recent changes in alpine
climates and associated cryospheric responses is
presented.

Direct observations and proxy records indicate that
historical and recent changes in climate in many mountain
regions of the world are at least comparable with, and
locally may be greater than, those observed in the adjacent
lowlands, Pfister (1985). Actual and potential responses
in cryospheric variable include a rise in the snowline, a
shorter duration of snow cover, glacier recession, break
out of ice-dammed lakes, warming of perennially frozen
ground, and thawing of ground ice.

The changes – including the loss of ice core records of
climate history as tropical glaciers and ice caps warm and
melt water destroys the ice stratigraphy – are of scientific
importance. There are also critical socioeconomic
implications. These include direct effects of the changes
on water resources and hydropower generation, on slope
stability, and on hazards relating to avalanches and
glacier lakes. Indirect effects include economic and
social costs for winter tourism based on skiing and
associated sports; and impacts on agricultural, industrial,
and consumptive use of water that is strongly influenced
by the annual cycle associated with snow and ice
melt runoff.

1.2 EVIDENCE FOR CHANGES IN CLIMATE IN
MOUNTAIN REGIONS

Global mean annual temperature has risen by just
over 0.6◦C over the last century, with accelerated
warming in the last 10 to 15 years. The evidence for
changes in climate in mountain areas is both direct
and indirect. Observational records are available from
the late nineteenth century at a number of mountain
observatories, mostly in Europe (Barry 1992). They
indicate that mean temperatures have risen by amounts
generally comparable with those observed in the lowlands
during the twentieth century; however, there are some
differences in the pattern of seasonal and diurnal changes.
In a survey of available high-elevation data, Diaz and
Bradley (1997) present changes in zonally averaged
temperatures for 1951–1989 between 30◦ and 70◦N,
versus elevation. Mean maximum temperatures increased
slightly between 500 and 1500 m, with minor changes
at higher elevations, while minimum temperatures rose
by about 0.2◦C/decade at elevations from 500 m to
above 2500 m. In the Rocky mountains, Pepin (2000)
documents altitudinal differences in the changes in the
Colorado Front Range since 1952, with overall cooling
at 3750 m but warming between 2500 and 3100 m.
This results in complex changes in lapse rate. In the
tropical Andes, mean annual temperature trends have
been determined for 268 stations between 1◦N and
23◦S, for 1939–1998 (Vuille and Bradley 2000). They
find an overall warming of about 0.1◦C/decade, but
the rate tripled to +0.32–0.34◦C/decade over the last
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25 years. The warming varies with altitude, but there
is generally reduced warming with elevation. This is
especially apparent on the western (Pacific) slopes of
the Andes.

Brown et al. (1992) demonstrated that lapse rates
between the high plains (1200–1500 m) and three stations
at 3200 m in the Colorado Rocky mountains had weak-
ened in the daytime, but strengthened at night. Globally,
the decrease in diurnal temperature range is attributed
to increased cloud cover, locally augmented by changes
in precipitation and soil moisture (Dai et al. 1999). An
analysis of lapse rates in the Pennines of northern Eng-
land indicates that atmospheric temperature and moisture
level, cloudiness/solar radiation, and wind speed deter-
mine lapse rates (Pepin et al. 1999). Thus, changes in
lapse rate are complex and may result solely or partly
from changes in the frequency of cyclonic/anticyclonic
circulation regimes. A shallower/steeper lapse rate may
be expected under warmer, moister atmospheric condi-
tions/increased solar radiation. The amplitude of diurnal
change in lapse rate intensifies under anticyclonic condi-
tions and slack pressure gradients.

In some mountain regions, monitoring of ground
temperatures has begun recently. In the northern Tien
Shan, permafrost ground temperatures have risen by
0.2–0.3◦C over the last 25 years (Gorbunov et al. 2000).
The depth of seasonal freezing has not changed
significantly in the low mountains, but there has been
a decrease in the depth between 1400 and 2700 m,
while above 3000 m the depth of seasonal freezing is
increasing. In the Swiss Alps, Haeberli (1994) estimated
permafrost warming by about 1◦C between 1880 and
1950, then stabilizing, before accelerated warming in the
late 1980s to at least 1992. However, a 10-year bore-
hole record (Vonder Mühll et al. 1998) indicates that
warming until 1994 was largely compensated by rapid
cooling between 1994 and 1996.

Proxy evidence of climatic change is available from
changes in glacier size dated by lichenometry and carbon-
14, from tree-ring series, and from ice cores, inter
alia. Numerous accounts from various mountain regions
exemplify these results (Luckman 1997; Luckman and
Villalba 2001; Solomina 1999; Kaser 1999). These
sources become even more important in mountain regions
that lack direct records, or where these are of short
duration, as in the Andes and other tropical regions (Barry
and Seimon 2000). Diaz and Graham (1996) reported a
rise of 100–150 m in the altitude of the freezing level
in the atmosphere over the inner tropics (10◦N–10◦S)
between 1970 and 1986; this is correlated with a warming
in the sea surface over the eastern tropical Pacific. The
characteristics of glacier energy balances in the central

Andean region is addressed by Corripio and Purves
(Chapter 3).

1.3 CRYOSPHERIC RESPONSES

The effects of global warming on the cryosphere in
mountain areas are most visibly manifested in the
shrinkage of mountain glaciers and in reduced snow cover
duration. However, the responses are by no means linear.
For example, warmer winters imply higher atmospheric
moisture content and more snowfall is associated with
an overall increase in precipitation. Records of glacier
length and mass balance during the second half of the
twentieth century show reductions in continental climatic
regimes, but increases in maritime regimes, such as
Norway, southern Alaska and coastal areas of the Pacific
Northwest in Canada, and the United States. In the
Tropics, the rise in freezing level noted above, as well as
changes in atmospheric humidity and perhaps cloudiness,
in some cases, has given rise to progressive reduction
in mountain glaciers and ice caps over the last century.
Particularly, dramatic changes are evident in East Africa
where there has been a 75% reduction in ice area on
Mount Kilimanjaro since 1912 (Hastenrath and Greischar
1997). The ice cover on East African summits will be
lost within 20 years or so, unless there is a dramatic shift
in climatic conditions.

In an example of subtle changes in snow cover, Böhm
(1986) reported a reduction in May–September snow
cover at Sonnblick (3106 m), Austria, from 82 days
during 1910–1925 to 53 days in 1955–1970. The mean
summer temperature was about 0.5◦C higher in the
second interval. However, the associated change in
snow cover duration estimated from average gradients
of snow cover duration and temperature lapse rate
would only be about 10–11 days (Barry 1990). Such
nonlinear responses may arise through local albedo-
temperature feedback effects, but this still requires
thorough investigation. Keller and Goyette (Chapter 19)
provide scenarios of snowmelt in the Swiss Alps under
climatic changes.

Large responses are expected in the annual hydrologic
regime of rivers where a significant proportion of the
runoff is from melt of snow cover and from wastage of
ice in heavily glacierized basins. Runoff models under
global warming scenarios project a higher and earlier
peak of spring runoff from snowmelt and reduced flow
in summer (Rango and Martinec 1998). For the upper
Rhône, for example, Collins (1987) found discharge
correlated with mean summer temperature; a 1◦C cooling
between 1941–1950 and 1968–1977 led to a 26%
decrease in mean summer discharge. Warming trends will
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have the opposite effect, but a dominant component of
runoff change in heavily glacierized basins is attributable
to the reduction in ice area. Chen and Ohmura (1990)
calculated an 11% decrease in runoff from a basin of
the upper Rhône drainage with 66% ice cover between
1922–1929 and 1968–1972, compared with only 6%
decrease in one with about 17% ice cover between
1910–1919 and 1968–1972. In the latter case, the Rhône
at Porte du Scex, runoff changes responded also to
changes in climate but a decrease in basin precipitation
was offset by the effect of warmer summers increasing
the ice melt. The introductory chapter and Chapter 18
address this topic using more recent and extensive data.

1.4 SOCIOECONOMIC CONSEQUENCES

Socioeconomic effects of changes in mountain snow
and ice characteristics will be both direct and indirect.
Direct effects associated with a shorter snow season
and shallower snow cover will include the reduction
or loss of winter sports facilities, or the necessity for
enhanced reliance on snowmaking capabilities, with
attendant losses of income and adaptation costs. For
the Austrian Alps, losses will be exacerbated at lower
elevations. Secondary effects resulting from this change
may include the loss of related service activities and
income at mountain resorts. Summer tourism may also
be affected as scenic mountain glaciers shrink and waste
away. Maintaining tourist access to the terminus of the
Upper Grindelwald glacier, in retreat since the mid-
1980s, for example, has necessitated the construction of
a wooden stairway.

The changes in snowmelt runoff and its timing
will have direct impacts on hydropower generation
and impose requirements for alternative power sources.
Power outages and loss of revenue by utility
companies may be expected, depending upon the relative
contribution of hydropower to total electricity generation.
In adjacent lowland areas where spring runoff is a major
source of water for irrigation and for stocking reservoirs,
there may be even greater economic consequences.
Changes in snow pack will also affect soil moisture
levels in spring and summer, with implications for soil
biota, fire risk, and the productivity of mountain pastures
and forests (Price and Barry 1997).
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