Handbook of Elemental Speciation II – Species in the Environment, Food, Medicine and Occupational Health

Editor-in-Chief

Rita Cornelis

Ghent University, Belgium

Associate Editors

Joe Caruso

University of Cincinnati, USA

Helen Crews

Central Science Laboratory, UK

Klaus Heumann

Johannes Gutenberg-University Mainz, Germany

Handbook of Elemental Speciation II – Species in the Environment, Food, Medicine and Occupational Health

Handbook of Elemental Speciation II – Species in the Environment, Food, Medicine and Occupational Health

Editor-in-Chief

Rita Cornelis

Ghent University, Belgium

Associate Editors

Joe Caruso

University of Cincinnati, USA

Helen Crews

Central Science Laboratory, UK

Klaus Heumann

Johannes Gutenberg-University Mainz, Germany

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England

Telephone (+44) 1243 779777

E-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England, or e-mailed to permrea@wilev.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Handbook of elemental speciation II: species in the environment, food, medicine & occupational health / editor-in-chief Rita Cornelis. . . [et al.].

p. cm.

Includes bibliographical references and index. ISBN-13 978-0-470-85598-0 (cloth: alk. paper)

ISBN-10 0-470-85598-3 (cloth: alk. paper)

1. Speciation (Chemistry) 2. Analytical toxicology. I. Cornelis, Rita.

RA1221.H365 2005

543'.1 - dc22

2004028293

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-85598-0 (HB) ISBN-10 0-470-85598-3 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

List of Contributors	vii	2.6.2 Speciation of Chromium in	
Preface	ix	Occupational Exposure and Clinical Aspects 2.7 Speciation of Cobalt	136 158
Acknowledgments	xi	2.8 Speciation of Copper	174
Technical Abbreviations and Acronyms	xiii	Environment	174
1 Introduction	1	Aspects	187 200
2 Element by Element Review	5	2.9.1 Speciation of Iron in the	200
2.1 Introduction	5	Environment	200
2.2 Speciation of Aluminum	7	2.9.2 Iron Speciation in	210
2.2.1 Speciation of Aluminum in		Biomedicine	218 239
the Environment	7	2.10 Speciation of Lead	239
2.2.2 Speciation of Aluminum in		of Lead	239
Food: Sources, Including		2.10.2 Speciation of Lead in Food	239
Potable Water	20	and Wine	247
2.2.3 Speciation of Aluminum in		2.10.3 Speciation of Lead in	247
Clinical Aspects (Health &		•	
Disease)	27	Occupational Exposure and Clinical Health Aspects	252
2.2.4 Speciation of Aluminum in		2.11 Speciation of Manganese	277
Occupational Health	40	2.12 Speciation of Mercury:	211
2.3 Speciation of Antimony	47	Environment, Food, Clinical, and	
2.4 Speciation of Arsenic	69	Occupational Health	281
2.4.1 Arsenic and Arsenic		2.13 Speciation of Molybdenum	305
Species in Environment		2.14 Speciation of Nickel	310
and Human Nutrition	69	2.15 Speciation of Platinum, Palladium,	
2.4.2 Arsenic Speciation in		Gold and Rhodium	327
Human Tissues	86	2.15.1 Importance of Platinum	
2.5 Speciation of Cadmium	94	Group Elements and Gold	
2.5.1 Speciation of Cadmium in		Speciation in the	
the Environment and Food	94	Environment and Medicine	327
2.5.2 Speciation of Cadmium in		2.15.2 Speciation of Platinum	
Health and Disease	107	Group Elements and Gold	
2.6 Speciation of Chromium	120	in Occupational Exposure	338
2.6.1 Speciation of Chromium in		2.16 Speciation of Selenium	346
Environment and Food	120	2.17 Speciation of Silicon	366

vi Contents

	2.18 Speciation of Sulfur	378	Environment: New Concepts and	
	2.19 Speciation of Thallium	408	Outlook	651
	2.20 Speciation of Tin	422	3.2 Modeling in Nutrition. The	
	2.21 Speciation of Vanadium	464	Metabolism of Selenium, Copper,	
	2.22 Speciation of Zinc	488	Zinc and Calcium Using Stable	
	2.23 Speciation of Actinides	509	Isotopes in Humans	690
	2.24 Speciation of Halogen Compounds	564	3.3 Modeling of Trace Element	
	2.25 Volatile Metal Compounds of		Species in Health and Disease	713
	Biogenic Origin	598	3.3.1 Pharmacokinetic Approach	
	2.26 Metal Complexes of Humic		and Mathematical	
	Substances	621	Modeling	715
	2.27 Selected Examples of Important		3.3.2 Modeling of Biological	
	Metal-Protein Species	638	Ligand Binding	728
3	Modeling of Elemental Species	651	4 Speciation and the Emerging Legislation	737
	3.1 Thermodynamic Modeling of			
	Trace Element Partitioning in the		Index	745

List of Contributors

J. C. Altamirano

Forensic Chemistry Center, Cincinnati, Ohio, USA

J. F. Artiola

The University of Arizona, Tucson, Arizona, USA

W. Bal

Polish Academy of Sciences, Warsaw, Poland

H.-K. Biesalski

University of Hohenheim, Stuttgart, Germany

J. P. Buchet

Université catholique de Louvain, Brussels, Belgium

W. Buscher

University of Münster, Münster, Germany

J. Byczkowski

JZB Consulting, Fairborn, Ohio, USA

R. Cornelis

Ghent University, Ghent, Belgium

H. M. Crews

Central Science Laboratory, Sand Hutton, UK

J. R. Dainty

Institute of Food Research, Norwich, UK

K. De Cremer

Ghent University, Ghent, Belgium

J. Feldmann

University of Aberdeen, Old Aberdeen, UK

D. Flaßbeck

University of Duisburg-Essen, Essen, Germany

T. E. Fox

Institute of Food Research, Norwich, UK

G. Geipel

Institute of Radiochemistry, Dresden, Germany

D. Gibičar

Jožef Stefan Institute, Ljubljana, Slovenia

K. Günther

Institute for Chemistry and Dynamics of the Geosphere, Juelich, Germany

K. G. Heumann

Johannes Gutenberg-University Mainz, Mainz, Germany

S. J. Hill

University of Plymouth, Plymouth, UK

A. V. Hirner

University of Duisburg-Essen, Essen, Germany

P. Hoet

Université catholique de Louvain, Brussels, Belgium

P. Hoffmann

Darmstadt Technical University, Darmstadt, Germany

M. Horvat

Jožef Stefan Institute, Ljubljana, Slovenia

N. Jakubowski

Institute of Spectrochemistry and Applied Spectroscopy (ISAS), Dortmund, Germany

K. Kasprzak

National Cancer Institute at Frederick, Frederick, Maryland, USA

B. Kastenholz

Institute for Chemistry and Dynamics of the Geosphere, Juelich, Germany

M. Kersten

Johannes Gutenberg-University, Mainz, Germany

D. Klockow

International Association of Environmental Analytical Chemistry, Allschwil, Switzerland

D. A. Kulik

Paul Scherrer Institute, Villigen-PSI, Switzerland

W. D. Lehmann

German Cancer Research Center, Heidelberg, Germany

D. Lison

Université catholique de Louvain, Brussels, Belgium

S. Mann

AnalytikSupport, Niederkassel, Germany

D. Metze

North Rhine Westphalia State Environment Agency, Essen, Germany

N. Mihalopoulos

University of Crete, Heraklion, Greece

R. Milačič

Jožef Stefan Institute, Ljubljana, Slovenia

G. M. Morrison

Chalmers University of Technology, Göteborg, Sweden

D. Nohr

University of Hohenheim, Stuttgart, Germany

O. Nygren

National Institute for Working Life, Umeå, Sweden

N. Proust

THALES Research and Technology France, Orsay, France

T. Prohaska

University of Natural Resources and Applied Life Sciences, Vienna, Austria

S. Rauch

Chalmers University of Technology, Göteborg, Sweden

V. Riihimäki

Finnish Institute of Occupational Health, Helsinki, Finland

E. Rosenberg

Vienna University of Technology, Vienna, Austria

D. Schaumlöffel

Centre National de la Recherche Scientifique, Pau, France

M. Sperling

University of Münster, Münster, Germany

G. Stingeder

University of Natural Resources and Applied Life Sciences, Vienna, Austria

D. M. Templeton

University of Toronto, Toronto, Canada

P. C. Uden

University of Massachusetts, Amherst, Massachusetts, USA

N. Ulrich

University of Hannover, Hannover, Germany

S. Valkonen

Finnish Institute of Occupational Health, Helsinki, Finland

V. Verougstraete

Université catholique de Louvain, Brussels, Belgium

T. Walczyk

Swiss Federal Institute of Technology, Zurich, Switzerland

R. G. Wuilloud

University of Cincinnati, Cincinnati, Ohio, USA

Preface

Speciation has evolved over the past two (or is it three?) decades into an important sub-discipline of analytical chemistry having considerable impact on environmental monitoring and the life sciences. In its embryonic phase, elemental speciation was an academic curiosity, "a rebel without a cause", straddling the boundary between the two large and well-developed areas of inorganic and organic analytical chemistry. Gradually, it became apparent that elemental speciation bridged the gap between both fields as it borrowed and combined the major methodologies and techniques, notably chromatography in its various modes and sensitive spectroscopic detection methods that coalesced into hyphenated techniques. It is now clear that the incremental development of speciation analysis was not born as a trivial academic pursuit but as the solution to major problems in environmental chemical measurement. I mention just a few examples: challenges due to massive worldwide emission of organolead compounds in the atmosphere through the extensive use of tetra-alkyl lead compounds in automobile fuel; several mercury pollution incidents connected with the indiscriminate use and disposal of methylmercury compounds, without recognising its extreme toxicity; severe disruptions of the marine environment with effects on aquaculture, connected with the use of organotin compounds, for example, as anti-fouling agents in the marine environment and agricultural applications.

Currently, elemental speciation is well respected and has established itself as a real bridge, the paranymph between organic and inorganic analytical chemistry, utilising the best of both fields for its development, specific methodology and fundamental paradigms.

Despite many potential application areas, speciation analysis, at least until recently, seemed rather slow in finding practical exploitation. This is

not surprising. There is a definite induction period needed for any new development before it finds its place in technology and society. We cannot force the pace. Despite scientific achievements, ultimately the applications need to be triggered by societal needs, pushed from practice rather than pulled from science.

A handbook such as this one is a welcome compendium of information that would otherwise be scattered throughout the scientific literature. It can serve as a reference book for those interested in the subject in academe, government and industry and those involved with important questions related to the differences in behaviour between atoms and molecules.

The first volume of the Handbook of Elemental Speciation with the subtitle "Techniques and Methodology" appeared in mid-2003. It deals with the experimental basis and contains chapters on the collection and storage of samples and their problems, on the various methods used in sample preparation and sample preseparation for analysis, the full range of different separation and detection techniques that together provide the necessary sensitivity and selectivity for trace and ultra-trace analysis with a number of hyphenated techniques from solution, the important topic of calibration and quality assurance/quality control. The work also provides a detailed description of the actual status of direct speciation methods in solid samples on the basis of, on one side, different beam methods of analysis based on electrons and X-rays and, on the other side, with solid or solution applications using new possibilities offered by synchrotron X-ray methods through the exploitation of the fine structure of the Xray absorption edge. The first volume is concluded with an overview of rapid screening methods and risk assessment/regulatory issues concerned with x Preface

speciation. It provides the necessary background material and a thorough description of the practice of elemental speciation.

If the first volume deals with the analytical chemistry of *elemental speciation*, according to the IUPAC definition, and, as such, is a basic scientific discipline, this accompanying second volume deals largely with *speciation* and *chemical species* as defined by the IUPAC. The material belongs to applied science and, as far as its routine application of scientific concepts is concerned, can even be considered as technology.

What follows in this volume of the Handbook of Elemental Speciation, as a welcome and practical complement to Volume I, is a thorough survey of chemical speciation of the different elements, treated systematically, more or less from alpha to omega, within sequence: the compounds of aluminium, antimony, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, platinum (and the other noble metals), selenium, silicon, sulphur, thallium, tin vanadium and finally, zinc. This systematic survey of the different relevant elements for speciation is followed by a review of groups of elemental species, the actinide elements, halogens as present in the atmosphere, the volatile metals and, finally, a chapter on proteins and one on the metals' behaviour in humic/fulvic acids and their implications for elemental bio-availability in the soil/water environment. For all these topics, the analytical chemistry aspects are completed with data on the physical and chemical properties, environmental, toxicological, health and legislative aspects of the species of interest, in short everything important for the issues in hand. The text concludes with chapters on various modelling aspects connected with speciation issues.

It is obvious that for a complex topic such as this one, the preferable way to deal with the rather disparate contents is through assembling the experience of a number of different expert authors, as no single person would master in sufficient detail all the topics to be developed. As in the previously published volume, the editors selected experts carefully, to provide overall a high-quality work.

Is this volume going to be the end of the series and the collaboration among the four editors? I sincerely hope not! The present and previous volume, as comprehensive as they are, still leave numerous gaps in the field. The two volumes are heavily centred on the environmental and health sciences, evidently the most important areas of application up to now. However, it is clear that as the subdiscipline develops, a myriad of new analytical challenges will arise in other areas. We can only hope that the present two volumes will become the start of further complements in a continuing series of handbooks. Speciation analysis in materials science and especially in the microscopic and nano-size spatial domains, the pursuit of speciation analysis and its exploitation in speciation in solid samples, the growing applications and the challenges of elemental speciation of metal-containing proteins in the bio-sciences (metalloproteomics) and the global issues connected with elemental speciation in bio-geochemistry will be further areas of expansion for this important methodology.

Freddy Adams

Antwerp, Belgium, October 2004

Acknowledgments

The editors express their sincere appreciation and gratitude to all the contributors for writing outstanding chapters. The idea for this Handbook came from Katya Vines, who was then Managing Editor at Wiley. Jenny Cossham became Managing Editor at the start of the actual writing. The editors thank her for her support and friendly cooperation throughout the project.

Rita Cornelis Helen Crews Joe Caruso Klaus Heumann

Technical Abbreviations and Acronyms

Abbreviations		AROI	acceptable range of oral intake
AAS	atomic absorption spectrometry	ASV	anode stripping voltammetry
ACD	allergic contact dermatitis	ATCUN	amino terminal Cu(II) and
ACGIH	American Conference of		Ni(II)-binding
	Governmental Industrial	ATN	acute tubular necrosis
	Hygienists	ATP	adenosine triphosphate
ACSL	Advanced Continuous	ATR	attenuated total reflectance
TICOL	Simulation Language	ATR-FTIR	attenuated total reflection
ACSV	adsorptive cathodic stripping		Fourier transform infrared
1100	voltammetry	ATSDR	Agency for Toxic Substances
ACW	artificial cement water	ATIC	and Disease Registry
ADI	acceptable daily intake	AUC	area under the curve
ADME	absorption distribution	AWQC	ambient water quality criteria
	metabolism and excretion	BBM	brush border membrane
ADP	adenosine diphosphate	BCM-ESR	blood circulation
AE	acrodermatitis enteropathica		monitoring-electron spin
AED	atomic emission detection	D.CD.	resonance
AEM	analytical electron microscopy	BCR	Community Bureau of
AFS	atomic fluorescence		Reference (Commission of
	spectrometry	DDE.	the European Communities)
ALA	aminolevulinic acid	BDE	bromodiphenyl ether
ALA-D	delta aminolevulinic acid	BLM	biotic ligand model
	dehydratase activity	BMD	bench mark dose
ALA-U	delta aminolevulinic acid	BRHS	British Regional Heart Study
	(urine)	BSE	back scattered electrons
ALS	amyothrophic lateral sclerosis	BW	body weight
AMP	adenosine monophosphate	CA	cellulose acetate
AMS	accelerator mass spectrometry	CAC	Codex Alimentarius
AOAC	Association of Official		Commission
	Agricultural Chemists	CAPD	continuous ambulatory
AOS	activated oxygen species		peritoneal dialysis
APCI	atmospheric pressure chemical	CCA	chromium(VI)
	ionisation		trioxide – copper
APDC	ammonium pyrrolidine		oxide – arsenic trioxide
	dithiocarbamate	CCD	charge coupled device
API-MS	atmospheric pressure	CCFAC	Codex Committee for Food
	ionization-mass spectrometry		Additives and Contaminants
APP	amyloid precursor protein	CCP	capacitively coupled plasma
APXS	alpha proton X-ray	CCS	copper chaperone for
	spectrometry		superoxide dismutase

CE	71 1 4 1 1	DMDC	22.1
CE	capillary electrophoresis	DMPS	2,3-dimercapto-1-propane
CFC	chlorinated and fluorinated	DMC	sulfonate
CCC	carbon	DMS	dimethyl sulfide
CGC	capillary gas chromatography	DMSA	dimercaptosuccinic acid
CHD	coronary heart disease	DMSD	dimethyl silanediol
CI	chemical ionisation	DMSe	dimethyl selenide
CIEF	capillary isoelectric focusing	DMSeP	dimethylselenonium propionate
CIMS	chemical ionization mass	DMSO	dimethyl sulfoxide
	spectrometry	DMSP	dimethylsulfoniopropionate divalent metal transporter
CJD	Creutzfeldt-Jacob disease	DMT	
CMT	cylcopentadienyl manganese	DNA DOC	deoxyribonucleic acid dissolved organic carbon
	tricarbonyl	DOM	dissolved organic matter
CNS	central nervous system	DPASV	differential pulse anodic
CONSAAM	Conversational Simulation	DIASV	=
	Analysis and Modeling	DDC	stripping voltammetry
COX	cytochrome oxidase	DPC	diphenyl carbazide
CP	caeruloplasmin	DPCSV	differential pulse cathodic
CPVC	chlorinated PVC	DDC	stripping voltammetry
CRM	certified reference material	DRC	dynamic reaction cell
CSF	cerebrospinal fluid	DTPA	diethylenetriamine-pentaacetic acid
CSV	cathodic stripping voltammetry	DTPA-TEA	
CV	cold vapor	DITA-ILA	diethylenetriamine-pentaacetic acid-triethanolamine
Cys	cysteine	DTT	dithiothreitol
CZE	capillary zone electrophoresis	DTT	
DAD	diode array detector	DV	Daily Value
D-DDC	diethylammonium diethyl	ECD	electron capture detector
	dithiocarbamate	EDS	energy dispersive spectrometry
DAO	diamine oxidase	EDTA	ethylenedinitrilotetraacetic acid
DBT	dibutyltin		or ethylenediaminetetraacetic acid
DCI	desorption chemical ionisation	EDVA	
DCP	direct-current plasma	EDXA	energy-dispersive X-ray
DDT	dichlorodiphenyltrichloroethane	DDI 0	analysis
DEAE	diethylaminoethyl	EELS	electron energy loss
DEGS-PS	diethylene glycol succinate	EEG A	spectroscopy
DFG	German Research Community	EFSA	European Food Safety
DFO	desferroxiamine		Authority
DGE	The German Society for	EHMA	ethylhexylmercaptoacetate
DGL	Nutrition	EIA	enzyme immunoassay
DI	deiodinases	EI-MS	electron impact mass
DIHEN	direct injection high efficiency	EL ICA	spectrometry
	nebulizer	ELISA	enzyme linked immunosorbent assay
DIN	direct injection nebulizer	ELNES	energy loss near-edge structure
DIT	diiodothyrosine	ELSD	evaporative light-scattering
DL-AAS	diode laser atomic absorption		detection
	spectrometry	EMPA	electron micro probe analysis
DMA	dimethylarsinic acid	ENDOR	electron nuclear double
DMDSe	dimethyl diselenide		resonance

EP EPA	erythrocyte porphyrin Environmental Protection	GC-AED	gas chromatography-atomic emission detection
	Agency	GC-ECD	gas chromatography - electron
EPR	electron paramagnetic	00.10	capture detection
EPXRS	resonance electron-probe X-ray	GC-MS	gas chromatography mass spectrometry
	spectrometry	GEM	Gibbs energy minimisation
EQA	external quality assurance	GF	graphite furnace
ES	electrospray	GFAAS	graphite furnace atomic
ESADDI	estimated safe and adequate	OIT II IS	absorption spectrometry
	daily dietary intakes	gHb	glycated hemoglobin
ESCA	electron spectroscopy for	GI	gastrointestinal
	chemical analysis	GIME	gel-integrated microelectrode
ESEEM	electron spin echo envelope	GIVIE	
	modulation	CLC	array
ESI MS-MS	electrospray ionisation tandem	GLC	gas-liquid chromatography
	mass spectrometry	GMAW	gas metal arc welding
ESI	electrospray ionisation	GMP	guanosine monophosphate
ESI-MS	electrospray ionization mass	GPC	gel permeation chromatography
	spectrometry	GPEC	gradient polymer elution chromatography
ESR	electron spin resonance electrothermal atomic	GPX	glutathione peroxidase
ET-AAS		GSGD	gas sampling glow discharge
E4CH	absorption spectrometry	GSH	glutathione (reduced form)
EtSH	ethyl mercaptan	GT	gammaglutamyl-transpeptidase
EXAFS	extended X-ray absorption fine	GTAW	gas tungsten arc welding
E/ZD	structure spectroscopy	GTF	glucose tolerance factor
EZP	exchangeable zinc pool fulvic acid	HA	humic acids
FA		HbA	hemoglobin A
FAAS	flame atomic absorption spectrometry	HbF	fetal hemoglobin
FCAW	flux-cored arc welding	HDEHP	bis(2-ethyl-hexyl)-hydrogen-
FDA	Food and Drug Administration		phosphate
FEP	fluoroethylene polymer	HDL	high density lipoprotein
FIA	flow-injection analysis	HEDP	1-hydroxyethane-1,1-
FIA	fluorescence immunoassay		diphosphonic
FPD	flame photometric detector		acid
FPLC	fast protein liquid	HEPA	high efficiency particulate air
	chromatography	HFBA	heptafluorobutanoic acid
FR	flame retardants	HFO	hydrous ferric oxide
FT-IR	Fourier-transform infrared	HG	hydride generation
	radiation	HG-AAS	hydride generation-atomic
FVC	forced vital capacity		absorption spectrometry
GABA	gamma-aminobutyric acid	HG-AFS	hydride generation – atomic
GC	gas chromatography		fluorescence spectrometry
GC-AAS	gas chromatography-atomic	HG-GC	hydride generation gas
	absorption spectrometry		chromatography
	· ·		• •

HG-ICP AES	hydride	IMO	International Maritime
	generation – inductively coupled plasma – atomic	INAA	Organisations instrumental neutron activation
	emission spectrometry		analysis
HHPN	hydraulic high pressure	IOMA	isooctyl mercaptoacetate
	nebulizer	IPM	interior points method
HKF	Helgeson-Kirkham-Flowers	IQC	internal quality control
HLA	human lymphocyte antigens	IRMA	immunoradiometric assay
HMM	high molecular mass	IUPAC	International Union of Pure
HPLC	high performance liquid	TE CE A	and Applied Chemistry
	chromatography	JECFA	Joint Expert Committee on
HPLC-ICP	high performance liquid	**	Food Additives
	chromatography-inductively	K_{sp}	solubility constant
	coupled plasma	K-XRF	K-shell X-ray fluorescence
HRIDMS	high resolution isotope dilution	LA	laser ablation
	mass spectrometry	LA-ICP-MS	laser ablation inductively
HRSEM	high resolution scanning		coupled plasma mass
	electron microscopy	I.C.	spectrometry
HS	humic substances	LC	liquid chromatography
IAP	ion activity product	LC-MS	liquid chromatography-mass
IARC	International Agency for	LDII	spectrometry
ninc	Research on Cancer	LDH	lactate dehydrogenase
IBMK	isobutyl methyl ketone	LDL	low density lipoprotein
IC	ion chromatography	LDR	linear dynamic range
ICNCM	International Committee on	LFER	linear free-energy relationships
ICINCIVI	Nickel Carcinogesis in Man	LI TOF	laser-induced time of flight
ICP	inductively coupled plasma	LIA	luminescence immunoassay
ICP-AES	inductively coupled	LIBD	laser-induced breakdown
ICF-AES	plasma-atomic emission	LIDC	detection
	•	LIBS	laser-induced breakdown
ICP-MS	spectrometry	LIPAS	spectroscopy laser-induced photo acoustic
ICP-IVIS	inductively coupled	LIFAS	spectroscopy
ICD OEC	plasma-mass spectrometry	LMA	law of mass action
ICP-OES	inductively coupled plasma	LMM	low molecular mass
	optical emission	LOAEL	lowest-observed-adverse-effect
I CIT	spectroscopy		level
ICT	idiopathic copper toxicosis	LOD	limit of detection
IDLH	immediately dangerous to life	LPAS	laser-induced photoacoustic
IDMG	or health		spectroscopy
IDMS	isotope dilution mass	LP/RP-ICP-MS	low pressure/reduced
	spectrometry		pressure-ICP-MS
IEF	isoelectric focusing	LT	low temperature
IEUBK	integrated exposure uptake	LT-GC	low temperature – gas
TT 6.6	biokinetic	LVDE	chromatography
IFCC	International Federation of	L-XRF	L-shell X-ray fluorescence
	Clinical Chemistry	MAC	maximum allowable
IgE	immunoglobulin E		concentration

MALDI	matrix assisted laser desorption	NAA	neutron activation analysis
141771149	ionization	NAC	N-acetyl cysteine
MALDI-MS	matrix assisted laser desorption	NaDDTC	sodium diethyldithiocarbamate
	ionization mass spectrometry	NAG	<i>N</i> -acetyl- β -D-glucosaminidase
MBT	monobutyltin	NASA	National Aeronautic and Space
MCH	mean corpuscular hemoglobin		Administration
MCHC	mean corpuscular hemoglobin	NCOMP	noncompartmental programs
	concentration	NCV	nerve conduction velocity
MCLG	maximum contamination level	NEM	non-electrostatic model
	goal	NEQAS	national external quality
MEKC	micellar electrokinetic		assurance system
	chromatography	NHANES	national health and nutrition
MEPC	Marine Environment Protection		examination surveys
	Committee	NIES	National Institute of
MeSH	methyl mercaptan		Environmental Studies
Met	methionine	NIOSH	National Institute for
MIBK	methyl isobutyl ketone		Occupational Safety and
MIC	minimal inhibitory		Health
	concentrations	NIR	near infra-red
MIG	metal inert gas	NIST	National Institute of Standards
MIP	microwave-induced plasma		and Technology
MIP-AED	microwave-induced	NMR	nuclear magnetic resonance
	plasma-atomic emission	NN	1-nitroso-2-naphthol
	detector	NOEL	no-observed-effect level
MIP-AES	microwave-induced plasma	NOM	natural organic matter
	atomic emission	NPDES	national pollution discharge
	spectrometry		regulations
MIT	monoiodothyrosine	NTA	nitrilotriacetic acid
ML	one ligand complexes	NTBI	nontransferrin-bound Fe
ML_2	two-ligand complexes	OEL	occupational exposure limit
μLC	liquid chromatography of	OMCTS	octamethylcyclotetrasiloxane
•	micro-scale	ORNL	Oak Ridge National Laboratory
MLs	maximum limits	OSHA	Occupational Safety and
MMA	manual metal arc		Health Administration
MMA	monomethylarsonic acid	OTC	organotin compounds
MMM	medium molecular mass	PAA	proton activation analysis
MMT	methylcyclopentadienyl	PAD	pulse amperometric detection
111111	manganese tricarbonyl	PAGE	polyacrylamide gel
MNK	Menkes protein (P-type		electrophoresis
MINIX	ATPase)	PAR	4-(2-pyridylazo)resorcin
MnSOD	manganese superoxide	PBDE	polybrominated diphenyl ethers
MIISOD	dismutase	PBPK	physiologically based
MDI	maximum residue limit	I DI K	pharmacokinetic
MRL MS		PC	polycarbonate
	mass spectrometry methanesulfonic acid	PCA	principal component analysis
MSA	methanesulfinic acid		
MSIA		PCB	polychlorinated biphenyl
MT	metallothionein	PDMS	polydimethylsiloxanes

PEC	predicted environmental concentration	SAE-SPE	strong anion exchange solid phase extraction
PEL	permissible exposure limit	SAT	salinities and temperatures
PES	polyethersulfon	SAW	<u>*</u>
P-FPD	pulsed flame photometric		submerged arc welding
1-1110	detector	SAX	strong anion exchange
PGC		SBI	silicone breast implant
ruc	packed-column gas	SBSE	stir bar sorptive extraction
DCE	chromatography	SCF	Scientific Committee for Food
PGE	platinum group element(s)	SCOEL	Scientific Committee on Oc-
PIXE	proton induced X-ray emission		cupational Exposure Limits
PKC	protein kinase C	SDDC	sodium dimethyl
PNC-PAGE	preparative native continuous		dithiocarbamate
	polyacrylamide gel	SDS	sodium dodecyl sulfate
DMEC	electrophoresis	SDS-PAGE	sodium dodecyl sulfate
PNEC	predicted no effect		polyacrylamide gel
DNG	concentration		electrophoresis
PNS	peripheral nervous systems	SE	secondary electrons
PP	polypropylene	SEC	size exclusion chromatography
PrP	prion protein	SEM	scanning electron microscopy
PSA	potentiometric stripping	SeP	selenoprotein-P
	analysis	SFC	supercritical fluid
pTDI	predicted tolerable daily intake	SI C	chromatography
PTFE	polytetrafluoroethylene	SFE	supercritical fluid extraction
PTI-IDMS	Positive thermal ionisation	SFMS	sector field mass spectrometer
	isotope dilution mass		speciated isotope dilution mass
	spectrometry	SIDMS	
PTWI	provisional tolerable weekly	CIDC	spectrometry
	intake	SIDS	sudden infant death syndrome
PVC	polyvinylchloride	SIMS	secondary ion mass
PVDF	poly(vinylidene fluoride)	CIT	spectrometry
QMS	quadrupole mass spectrometry	SIT	specific ion interaction theory
RA	relative area	SMAW	shielded metal arc welding
RBC	red blood cell	SOD	superoxide dismutase
RBP	retinol-binding protein	SOP	standard operation procedure
RC	regenerated cellulose	SPARC	secreted protein acidic rich in
RDF	radial distribution function	ape.	cysteine
RDI	recommended daily intakes	SPE	solid phase extraction
REACH	registration evaluation and	SPME	solid-phase microextraction
	authorization of chemicals	SSAS	solid solution-aqueous solution
RfC	reference concentration	SVD	singular value decomposition
RI	refractive index	TARL	tolerable average residue level
RIA	radioimmunological assays	TBG	thyroid hormone binding
RoHS	restriction of the use of certain		globulin
	hazardous substances	TBP	tributylphosphate
ROS	reactive oxygen species	TBT	tributyltin
SAAM	simulation analysis and	TBTO	bis tri-n-butyloxide
	modeling	TCyT	tricyclohexyltin
	5		

TDI	tolerable daily intake	UIBC	unsaturated iron-binding
TEL	tetraethyl lead		capacity
TEM	transmission electron microscopy	UNEP	United Nations Environmental Programme
TEP	total exchangeable pool	USEPA	US Environmental Protection
TFA	trifluoroacetic acid		Agency
TGN	trans-golgi network	UV-VIS	ultraviolet-visible
THF	tetrahydrofurane	VC	vital capacity
TIBC	total iron binding capacity	VLDL	very low density lipoprotein
TIG	tungsten inert gas	VLMM	very low molecular mass
TIMS	thermal ionisation mass	VMC	volatile metal compounds
	spectrometry	VMS	volatile methylsiloxanes
TLC	thin layer chromatography	VOC	volatile organic compounds
TLV	threshold limit value	VSC	volatile sulfur compound
TLV-TWA	threshold limit	WEEE	waste from electrical and
	value-time-weighted average		electronic equipment
TML	tetramethyl lead	WFD	water framework directive
TMSOL	trimethyl silanol	WHO	World Health Organization
TOC	total organic carbon	WIPP	waste isolation pilot plant
TOF-MS	time of flight-mass	WND	Wilson disease protein
	spectrometry	WQC	water quality criteria
TOF-SIMS	time-of-flight secondary ion	WWTP	wastewater treatment plant
TPhT	mass spectrometry triphenyltin	XAFS	X-ray absorption fine structure spectroscopy
TPTZ	tripyridyl-triazine	XANES	X-ray absorption near edge
TR	thioredoxin reductase	7 II II II I	structure
TRLFS	time-resolved laser-induced	XAS	X-ray absorption spectroscopy
TREFS	fluorescence spectroscopy	XPS	X-ray photoelectron
TRW	Technical Review Workgroup	711 5	spectroscopy
TTA	α -thenoyltrifluoroacetone	XRD	X-Ray Diffraction
TWA	time weighted average	XRF	X-ray fluorescence
TXRF	total reflection X-ray	XRFS	X-Ray fluorescence
	fluorescence		spectroscopy
UHT	ultra high temperature	ZnPP	zinc protoporphyrin

CHAPTER 1

Introduction

Wolfgang Buscher

Institut für Anorganische und Analytische Chemie, University of Münster, Münster, Germany

Michael Sperling

Institut für Anorganische und Analytische Chemie, University of Münster, Münster, Germany

Elemental Speciation has become a challenging part of analytical chemistry. The short-, medium-, and long-term perspectives are far-reaching, and it may be interesting to dwell upon the ways the scientific community will continue its progress. It is to be expected that a renewed legal framework will come into effect, in which essentiality and toxicity of the elemental species, instead of total trace element concentration, becomes the key issue.

During the past 20 to 30 years, elemental speciation has grown into a full-fledged analytical discipline. The technological and methodological achievements in recent years have considerably increased the possibilities of analytical chemistry. Today, it is possible to determine numerous element species accurately at concentration levels that were inconceivable some 10 years ago.

The first volume of this Handbook gave a comprehensive overview of the analytical possibilities and the general technical and methodological aspects of speciation analysis [1].

The present – second – volume will cover the species by element or group of compounds (actinides, halogens, volatile metals, proteins, and humic acids) describing the state of the art for the sections environment, food, clinical, and occupational health and hygiene. Special chapters on the possibilities of modeling will introduce the reader to the modern way of predicting chemical situations through theoretical calculations, made possible by the availability of modern high-performance computers.

Newcomers in the field will appreciate the total overview that this Handbook provides. Experienced analysts will value the comprehensive detailing of the most current developments in the different sectors of elemental speciation.

The current situation in Speciation Analysis is complex. On the one hand, there is a group of elemental species that has been thoroughly investigated and described (e.g. methylmercury, organotin compounds, and organoarsenicals). On the other hand, there are those compounds for which only preliminary scientific knowledge has

2 Introduction

been gained (e.g. elements bound to proteins, to humic acids, etc.).

For the first group, the technological progress in instrumental analysis has reached a level of performance that enables analysts to determine elemental species accurately at picogram levels and below. In principle, these procedures already allow comprehensive survey measurements. Unfortunately, the number of laboratories with the necessary skills and analytical instrumentation is still much too limited for routine control activities.

Although in research laboratories there exist reliable analytical instrumentation and validated standard operation procedures (SOPs), almost every analytical approach turns out to be only applicable to a few elemental species, in a narrow range of matrices. While it would not be too difficult for instrument manufacturers to transfer such know-how into routinely usable analytical instruments, such instrumentation would lack in general applicability and would therefore only appeal to a limited market segment. As long as laws, regulations, and directives do not force industrial and governmental controlling bodies to systematically analyze elemental species, the size of the market will remain too small to guarantee a reasonable return on investment for routineinstrument development.

The support for scientific research through universities and research institutions must increasingly be justified on the basis of the relevance decided by external funding bodies. Many traditional fields of application such as environmental sciences do not offer a promising outlook in this respect. As a consequence, analytical research groups face a substantial reduction of support because of the reallocation of funds to more "fashionable" sciences such as molecular biology or nanotechnology. To adjust to this situation, analytical scientists need to use their creativity in finding ways to participate by creating their niche in, for example, nanotechnology, cancer research, or proteomics. This requires an open mind in terms of new opportunities, evaluating strengths and weaknesses of existing techniques and methodologies and a departure from technique-oriented toward problem-oriented research. Analytical chemistry provides basic information about the status of humans and their environment and about the characteristics of materials, its cycling, and interactions. There is little doubt that the role of speciation analysis is crucial in answering questions about the bioavailability, biological activity, toxicity, or nutritional value and metabolism of trace elements. The important role of speciation analysis is evident from the more than 500 publications every year on the subject and from the gradual introduction of chemical species, rather than total amounts, in rules and regulations. These developments were possible only because different scientific disciplines have crossed their respective borderlines.

Analytical chemistry

More and more sensitive analytical techniques have reached a detection power limited only by mere contamination problems. At the same time, the risk of contamination has been drastically reduced by on-line coupling of separation and detection into a closed system. There remain, however, limitations imposed by the presence of contaminants in the reagents and the release of impurities by the packing material and many utensils through contact with the sample. Nevertheless, the quality of the information obtained through these techniques has been enhanced drastically by the increased sensitivity gained through hyphenation [2]. Modern mass spectrometric techniques allow to collect information on the atomic as well as the molecular species [3, 4]. Fast separation techniques such as Flow Injection [5], Fast Protein Liquid Chromatography (FPLC) [6], Capillary Electrophoresis [7], and Multicapillary Gas Chromatography [8] reduce the analysis time and therefore the possibilities for species transformation during analysis. Sample preparation has also been made instrumental, benefiting from automation and feedback control (e.g. microwave extraction with temperature and pressure control [9]). Solvent-less extraction [10] and other soft enzymatic extraction methods try to keep fragile species intact. Some X-ray spectroscopic and microbeam techniques are available for direct elemental speciation analysis in the solid state, thus bypassing sample REFERENCES 3

preparation [11]. Additionally, increasing Quality Management has caused the comparability and traceability of analytical measurements to get possible even for trace and ultra-trace analyses. Manufacturers of certified reference materials (CRMs) have started to market CRMs for speciation analysis [12, 13]. Research groups have established the state of the art in speciation analysis and discussed shortcomings and artifacts during intercomparison studies and workshops. Species-specific isotope dilution analysis has been proven to be a very versatile tool for studying species transformation even during the analysis and enables accurate determination even under dynamic conditions [14, 15].

Toxicology

The toxicologists have developed increasingly reliable investigation and calculation models to determine the toxicity of chemical species. These data form the basis for comprehensive characterization and description of chemical species to be used in legislation.

Chemometrics

Analytical chemistry, toxicology, and other disciplines can be improved significantly by using chemometrical methods. The continuing development in data processing techniques allows the use of highly complex algorithms suited to improve the quality and quantity of information extractable from huge sets of data. Accordingly, this discipline offers valuable support tools.

Medicine, biology, and food science

The assessment of the effect of elemental species in medicine, biology, and food science depends heavily on the quality of the analytical and toxicological input. The most recent developments in this connection are coming from the field of proteomics and metallomics, dealing with the determination of trace metals in biomolecules. These new scientific fields will hopefully provide a more fundamental understanding of the essential role of trace metals in life processes and enhance our knowledge of their physiological effect on different organisms. Although this research field

has only recently emerged, the very first results are already exciting.

It is obvious from this list of disciplines and their interactions that only interdisciplinary, targeted approaches will be able to generate the momentum for further development in elemental speciation analysis. This supposes well-coordinated research aimed at answering complex and important questions. It will be interesting to see whether initiatives such as the European Virtual Institute for Speciation Analysis (http://www.speciation.net) can provide an efficient platform for such activities [16].

1 REFERENCES

- Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), Handbook of Elemental Speciation: Techniques and Methodology, John Wiley & Sons, Chichester, 2003.
- Szpunar, J. and Łobiński, R., Hyphenated techniques in speciation analysis, in RSC Chromatography Monographs, Smith, R. M. (Ed.), Royal Society of Chemistry, Cambridge, MA, 2003.
- 3. Vanhaecke, F. and Köllensperger, G., Detection by ICP-MS spectrometry, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 5.3, pp. 281–312.
- Wind, M. and Lehmann, W. D., J. Anal. At. Spectrom., 19, 20 (2004).
- Tyson, J. F., Flow injection atomic spectrometry for speciation, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 5.2, pp. 261–280.
- Ferrarello, C. N., Fernández de la Campa, M. R. and Sanz-Medel, A., Anal. Bioanal. Chem., 373, 412 (2002).
- 7. Michalke, B., Capillary electrophoresis in speciation analysis, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 4.3, pp. 201–223.
- 8. Feldhaus, R., Buscher, W., Kleine-Benne, E. and Quevauviller, Ph., *Trends Anal. Chem.*, **21**, 356 (2002).
- 9. Bouyssiere, B., Szpunar, J., Potin-Gautier, M. and Lobinski, R., Sample preparation techniques for elemental speciation studies, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 3.2, pp. 95–118.
- Szpunar, J. and Łobiński, R., Sample preparation techniques for elemental speciation studies, in *Elemental Speciation: New Approaches for Trace element Analysis*, Vol. XXXIII, Comprehensive Analytical Chemistry, Caruso,

4 Introduction

J. A., Sutton, K. L. and Ackley K. L. (Eds.), Elsevier, Chapter 2, pp. 7-40 (2000).

- Ortner, H. M., Characterization of individual aerosol particles with special reference to speciation techniques, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 6.1, pp. 505–525.
- Quevauviller, Ph., Reference materials, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K., John Wiley & Sons, Chichester, 2003, Chapter 7.2, pp. 563–590.
- Cornelis, R., Crews, H., Donard, O. F. X., Ebdon, L. and Quevauviller, Ph., Fresenius' J. Anal. Chem., 370, 120 (2001).

- Heumann, K. G., Calibration in elemental speciation analysis, in *Handbook of Elemental Speciation: Techniques and Methodology*, Cornelis, R., Crews, H., Caruso, J. and Heumann, K. (Eds.), John Wiley & Sons, Chichester, 2003, Chapter 7.1, pp. 547–562.
- 15. Huo, D. W., Kingston, H. M. and Larget, B., Application of isotope dilution in elemental speciation: speciated isotope dilution mass spectrometry (SIDMS), in *Elemental Speciation: New Approaches for Trace element Analysis*, Vol. XXXIII, *Comprehensive Analytical Chemistry*, Caruso, J. A., Sutton, K. L. and Ackley, K. L. (Eds.), Elsevier, 2000, Chapter 10, pp. 277–314.
- Cornelis, R., Buscher, W., Sperling, M., Donard, O. X. F., Proust, N., Rosenberg, E. and Milačič, R., Accred. Qual. Assur., 9, 268 (2004).

CHAPTER 2

Element by Element Review

2.1 Introduction

Rita Cornelis

Laboratory for Analytical Chemistry, Ghent University, Ghent, Belgium

Volume 2 of the Handbook of Elemental Speciation endeavors to compile the state of the art in elemental speciation for a large number of chemical elements. The reader will clearly see why it is important to measure chemical species rather than total element concentrations, especially in relation to environment and living organisms, in health or disease.

Roughly 90 elements are present on earth in an as yet unknown number of chemical species.

Our interest went to those species that occur in low concentrations in environmental matrices and in living systems. Left out are the abundant elements, carbon, hydrogen, oxygen, nitrogen and phosphor, and calcium, lithium, sodium, potassium, magnesium, chlorine and fluorine and those elements for which the elemental species have not yet been substantially investigated and little or no speciation knowledge is available. It is expected that our knowledge in chemical species will expand greatly during the coming decades, in line with the increasing analytical competence. The analytical methodology is the subject of Volume 1

of this Handbook [1]. This second volume covers in detail the various species of 21 elements, of the actinides, and of four groups of compounds (halogens, volatile metal compounds of biogenic origin, metal complexes of humic substances and metal complexes of proteins). Chapters on modeling of trace element species in the environment, food, health and disease illustrate the power of modern chemometric techniques in describing the behavior of elemental species in complicated systems.

The chapters intend to provide basic knowledge about the chemical species of each element or group of compounds. The general structure of each chapter aims at following a logical progression, starting with the elemental species as they occur naturally in the environment, in many cases upset by dumping practices and further worsened by input of synthetic species and their derivatives of purely anthropogenic origin. (The organotin compounds are undoubtedly one of the worst examples.) The next step deals with the chemical form under which they end up in the life cycle, including the food chain. The study is complete

when it is known which elemental species are being inhaled or ingested by man, how they are incorporated, excreted and, last but not least, how they have either been beneficial to the health of the subjects or, on the contrary, posed a health risk.

The rudimentary depth of fundamental knowledge in this relatively young discipline made it impossible to impose a strict organization of the chapters. Each contribution has been written by specialists in the field, who have aimed at being as informative as possible. The individual style of each author plays, however, a decisive role in the way the existing knowledge is presented. It is

inevitable that every author be conditioned by his or her personal focus and academic background in either analytical chemistry, medical sciences, occupational medicine or environmental sciences.

We hope that the knowledge contained in the two volumes of this Handbook will provide a stimulus for further research in this young and exciting scientific domain.

1 REFERENCES

 Cornelis, R., Crews, H., Caruso, J. and Heumann, K., Handbook of Elemental Speciation. Techniques and Methodology, John Wiley & Sons, Chichester, (2003).

2.2 Speciation of Aluminum

2.2.1 Speciation of Aluminum in the Environment

Radmila Milačič

Jožef Stefan Institute, Ljubljana, Slovenia

1	Introduction	7		5.2 Analytical techniques for speciation	
2	The Aqueous Chemistry of Aluminum	8		of Al in environmental water	
3	The Distribution of Aluminum in			samples and soil	
	Environmental Solutions	8		solutions	10
4	The Toxicity of Aluminum	10		5.3 Analytical techniques for speciation	
5	Speciation of Aluminum in Environmental			of Al in plants	15
	Samples	10	6	Conclusions	17
	5.1 Computer modeling	10		References	18

1 INTRODUCTION

Aluminum (Al) is the most abundant metal in the lithosphere. It is bound predominantly in sparingly soluble oxides (bauxite) and complex alumosilicates, comprising 8% of the Earth's crust. Its chemistry depends strongly on pH. In contrast, because Al is very insoluble in the neutral pH range, its abundance in the oceans is much less, the Al concentration being below 1 µg dm⁻³. Nevertheless, its solubility is significantly increased under acidic (pH < 6.0) or alkaline (pH > 8.0) conditions and/or in the presence of inorganic and organic complexing ligands. Acid rain may substantially mobilize and release Al into soil solution, and into underground and surface waters. This effect is observed especially in poorly buffered soils [1, 2]. Al solubility in soil also increases as a response to elevated nitrification that causes an increase in acidity and consequently mobilizes Al into soil solution [3]. The released mononuclear ionic Al species may undergo polymerization or may be complexed by available inorganic or organic ligands [4]. Al³⁺ is a very reactive species. It reacts 10⁷ times faster than Cr³⁺. In the environment and in biological systems, Al exists only in Al³⁺ oxidation state. Al is too reactive to be found free in nature. It is widely used in the industry, representing an additional burden to the environment. Al₂(SO₄)₃ is added to drinking water as a coagulant to clarify turbid drinking waters. Alums, double sulfate salts of Al³⁺ and Na⁺, K⁺ or NH₄⁺ such as KAl(SO₄)₂·12H₂O are used in the paper industry for tanning (to replace Cr³⁺ salts) and dyeing. Alums are also added to foods, and Al(OH)₃ can be found in pharmaceutical products, such as antacids [5]. With the increased release of Al to the environment, its toxic effects on humans, animals and plants have been observed.

2 THE AQUEOUS CHEMISTRY OF ALUMINUM

Al is a small, highly charged ion. The effective ionic radius of Al3+ is 0.054 nm. Because of its charge, in aqueous solutions at low pH values, Al³⁺ is coordinated by six water molecules in an octahedral configuration. In solutions more acidic than pH 5.0, Al(H₂O)₆³⁺ exists (abbreviated as Al^{3+}). In less acidic solution, $Al(H_2O)_6^{3+}$ undergoes hydrolysis to yield Al(H₂O)₅(OH)²⁺ (abbreviated as Al(OH)²⁺) and Al(H₂O)₄(OH)₂⁺ (abbreviated as Al(OH)₂⁺) species. In the neutral pH range, Al is mainly precipitated as Al(OH)₃. In basic solutions, the precipitate redissolves, resulting in formation of tetrahedral Al(OH)₄-. The equilibria among mononuclear Al species in aqueous solutions may be expressed by the following reactions with corresponding equilibrium constants [5]:

$$Al(H_2O)_6^{3+} + H_2O \rightleftharpoons Al(H_2O)_5(OH)^{2+} + H_3O^+$$

$$K_1a = 10^{-5.5} \qquad (2.2.1.1)$$

$$Al(H_2O)_5(OH)^{2+} + H_2O \rightleftharpoons Al(H_2O)_4(OH)_2^+ + H_3O^+$$

$$K_2a = 10^{-5.6} \qquad (2.2.1.2)$$

Significant amounts of soluble Al(OH)₃ are not formed in solution, but deprotonation from two more Al(H₂O)₄(OH)₂⁺ bound waters yields the soluble tetrahydroxy aluminum species.

$$Al(H_2O)_4(OH)_2^+ + 2H_2O \rightleftharpoons Al(H_2O)_2(OH)_4^- + 2H_3O^+$$

 $K_4a = 10^{-12.1}$ (2.2.1.3)

Martin [5] reported the distribution of soluble mononuclear Al species in aqueous solutions at various pH values, calculated on the basis of thermodynamic equilibrium constants at 25 °C and an ionic strength of 0.16. Al³⁺ is the prevailing species below pH 5.0. In the pH range between 5.0 and 6.2, there is a mixture of Al³⁺, Al(OH)²⁺, Al(OH)₂⁺ and colloidal Al(OH)₃ species. At a pH higher than 6.2, the dominant species is Al(OH)₄⁻.

When the pH of an acidic aqueous solution increases, the charge density of Al, due to hydrolysis,

decreases and Al begins to polymerize [4]. Polynuclear Al species represent important metastable dissolved constituents that may remain in solution for many years. The smallest polynuclear Al complex in solution is the Al dimer, which is linked by a dihydroxide bridge (Al₂(OH)₂(H₂O)₈)⁴⁺. This Al dimer is not a stable species. The ring structure of six aluminum hydroxide octahedra (Al₆(OH)₁₂)⁶⁺, the double-ring $(Al_{10}(OH)_{22}^{8+})$ and the triple-ring (Al₁₃(OH)₃₀⁹⁺) structures are more stable Al polymers [4]. The most widely used method for direct observation of polynuclear Al species is nuclear magnetic resonance (NMR) spectroscopy. Various polynuclear Al complexes with the general formula $[Al_2(OH)_3]_n^{3+}$ and other polynuclear structures of Al have been proposed in the literature [6]. The extent of polymerization and the distribution of polymers depend on the degree of oversaturation, pH, temperature and age of the solution. Elevated concentrations of polynuclear species are found only in highly saturated solutions that are not in contact with adsorbing surfaces. Higher temperatures and aging of solutions favor the polymerization process. It was demonstrated that Al also tends to hydrolyze at clay surfaces, resulting in polymer formation in soil solution and aquatic systems. Coalescing of polymers increases the molecular mass, leading to precipitation of Al from solution as amorphous Al(OH)₃. If suspended particulate matter is present in natural water samples, it will readily adsorb polynuclear Al species [6].

3 THE DISTRIBUTION OF ALUMINUM IN ENVIRONMENTAL SOLUTIONS

In environmental solutions, F^- , SO_4^{2-} and organic ligands compete with OH^- for formation of Al complexes. Al^{3+} forms stronger complexes with F^- than SO_4^{2-} . In acidic solutions, containing more fluoride than Al, almost all Al^{3+} exists in the form of fluoride complexes. Unless there are very high concentrations of sulfate present, fluoride is the most important inorganic ligand that complexes Al in acidic environmental solutions. However, under alkaline conditions, F^- or SO_4^{2-} are displaced by the OH^- ion [7]. There is evidence of interactions between