PHYSICAL ORGANOMETALLIC CHEMISTRY VOLUME 3

Unusual Structures and Physical Properties in Organometallic Chemistry

Edited by MARCEL GIELEN Free University of Brussels, Belgium

RUDOLPH WILLEM

Free University of Brussels, Belgium

BERND WRACKMEYER

Universität Bayreuth, Germany

JOHN WILEY & SONS, LTD

Unusual Structures and Physical Properties in Organometallic Chemistry

Physical Organometallic Chemistry

Editorial Board

Marcel Gielen, Free University of Brussels, Belgium Rudolph Willem, Free University of Brussels, Belgium Bernd Wrackmeyer, Universität Bayreuth, Germany

Books previously published in this Series

Volume 1 Advanced Applications of NMR to Organometallic Chemistry Edited by
Marcel Gielen, Free University of Brussels, Belgium
Rudolph Willem, Free University of Brussels, Belgium
Bernd Wrackmeyer, Universität Bayreuth, Germany
ISBN 0 471 95938 3
Volume 2 Solid State Organometallic Chemistry: Methods and Applications Edited by

Marcel Gielen, Free University of Brussels, Belgium Rudolph Willem, Free University of Brussels, Belgium Bernd Wrackmeyer, Universität Bayreuth, Germany ISBN 0 471 97920 1

PHYSICAL ORGANOMETALLIC CHEMISTRY VOLUME 3

Unusual Structures and Physical Properties in Organometallic Chemistry

Edited by MARCEL GIELEN Free University of Brussels, Belgium

RUDOLPH WILLEM

Free University of Brussels, Belgium

BERND WRACKMEYER

Universität Bayreuth, Germany

JOHN WILEY & SONS, LTD

Copyright © 2002 John Wiley & Sons, Ltd, The Atrium West Sussex PO19 1UD, England

Phone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.co.uk or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd., 90 Tottenham Court Road, London W1P 0LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons, Ltd., The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ, England, or emailed to permreq@ wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia, Ltd., 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd., 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada, Ltd., 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49635-9

Typeset in 10/12pt Times by Kolam Information Services Pvt. Ltd, Pondicherry, India. Printed and bound in Great Britain by Biddles Ltd, Guildford, Surrey. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Co	ontrib	outors	
Se	ries P	reface	
Pr	eface		
1	Stru	icture a	nd Electrochemistry of Transition Metal Carbonyl
	Clus	sters wit	th Interstitial or Semi-Interstitial Atoms:
	Con	trast be	tween Nitrides or Phosphides and Carbides
1	Pier	o Zane	llo
1	Intr	oductio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ζ	100	nonucie	ar Clusters
	2.1		$F_{0}(C)(CO) \text{and} F_{0}(C)(CO) ^{2^{-}}$
		2.1.1	$\Gamma_{4}(C)(CO)_{13}$ and $[\Gamma_{4}(C)(CO)_{12}]$
		212	$Fe_{2}(C)(CO) = and [Fe_{2}(C)(CO)]^{2^{-1}}$
		2.1.2	versus $[Fe_r(N)(CO)]^-$ 11
		213	$[Fe_{\epsilon}(C)(CO)_{\epsilon}]^{2-}$ versus $[Fe_{\epsilon}(N)(CO)_{\epsilon}]^{3-}$ 13
	2.2	Home	$[1 \circ (0)(0) \circ (0)_{16}]$ volume $[1 \circ (0)(1)(0) \circ (0)_{15}]$ $1 = 1 = 15$
		2.2.1	$Ru_5(C)(CO)_{15}$ versus $[Ru_5(N)(CO)_{14}]^-$
		2.2.2	$[Ru_{8}(P)(CO)_{2}]^{-} \qquad \qquad$
		2.2.3	$[Ru_{10}(C)(CO)_{22}]^{2^{-}}$
		2.2.4	Further Structural Data
	2.3	Home	onuclear Osmium Clusters
		2.3.1	$[Os_5(C)(CO)_{14}]^{2-}$ and $Os_5(C)(CO)_{15}$
		2.3.2	$[Os_6(P)(CO)_{18}]^-$
		2.3.3	$[Os_{10}(C)(CO)_{24}]^{2-}$
		2.3.4	Further Structural Data
	2.4	Home	onuclear Cobalt Clusters
		2.4.1	$[Co_6(C)(CO)_{15}]^{2-}$ versus $[Co_6(N)(CO)_{15}]^{-}$
			and $[Co_6(P)(CO)_{16}]^-$; $[Co_6(C)_2(CO)_{18}]$
		2.4.2	$[Co_7(N)(CO)_{15}]^{2-}$
		2.4.3	$[Co_8(C)(CO)_{18}]^{2-}$
		2.4.4	$[Co_9(P)(CO)_{21}]^{2-}$ and $[Co_{10}(P)(CO)_{22}]^{3-}$
		2.4.5	$[(Co_{13}(C)_2(CO)_{24}]^{4-} \text{ versus } [Co_{13}(N)_2(CO)_{24}]^{3-} \dots 24$

		2.4.6	Further Structural Data
	2.5	Home	onuclear Rhodium Clusters
		2.5.1	$[Rh_6(C)(CO)_{15}]^{2-}$ versus $[Rh_6(N)(CO)_{15}]^{-}$
		2.5.2	$[Rh_7(N)(CO)_{15}]^{2-}$
		2.5.3	$[Rh_{12}(C)_2(CO)_{24}]^{2-}$
		2.5.4	Further Structural Data
	2.6	Home	onuclear Nickel Clusters
		2.6.1	$[Ni_{9}(C)(CO)_{17}]^{2-}$
		2.6.2	$[Ni_{32}(C)_{\epsilon}(CO)_{2\epsilon}]^{6-}$
		2.6.3	$[Ni_{38}(C)_{c}(CO)_{c2}]^{6-}$
		2.6.4	Further Structural Data
	2.7	Home	onuclear Rhenium Clusters
		271	$[\text{Re}_7(\text{C})(\text{CO})_{24}]^{3-}$ and $[\text{Re}_8(\text{C})(\text{CO})_{24}]^{2-}$ 35
		272	Further Structural Data
3	Hete	eronucl	ear Clusters 36
5	3 1	Heter	onuclear Iron Clusters 36
	5.1	3 1 1	Heteronuclear Iron-Molybdenum Clusters 36
		312	Heteronuclear Iron–Ruthenium Clusters 36
		313	Heteronuclear Iron-Rhodium Clusters 36
		5.1.5	3131 [Fe-Rb(N)(CO) 1^{2-} and
			$[F_{e}, P_{b}, (N)(CO)]^{-}$
			3 1 3 2 Further Structural Data 36
		314	Heteronuclear Iron_Iridium Clusters
		315	Heteronuclear Iron Nickel clusters
		5.1.5	$3 1 5 1 [Fe_{\beta}Ni_{\beta}(N) (CO)]^{2-}$
		316	Heteronuclear Iron Platinum Clusters 30
		3.1.0	Heteronuclear Iron Mercury Clusters 30
		3.1.7	$2 1 7 1 [Ha[Ee_(C)(CO)]]^{2-}$
	22	Untor	$5.1.7.1 \{\mu_4 - \Pi_2[\Gamma_5(C)(CO)_{14}]_2\} $
	5.2	2 2 1	Hataranualaar Buthanium Blatinum Clusters 40
		3.2.1	Heteronuclear Ruthenium Marcury Clusters 40
	22	J.Z.Z	anueleer Oppium Clusters 40
	5.5		Hataranualaar Oamium Maraury Chatara
		5.5.1	$[O_{\alpha}, H_{\alpha}, (C), (CO), 1^{2-}, [O_{\alpha}, H_{\alpha}, (C), (CO), 1^{4-}]$
			$[Os_{18}Hg_3(C)_2(CO)_{42}]$, $[Os_{18}Hg_2(C)_2(CO)_{42}]$
	2.4	TT-4	and $[OS_{18}Hg_2(C)_2(CO)_{42}]$
	3.4	Heter	Ut the second se
		3.4.1	Heteronuclear Cobalt–Nickel Clusters: $[C \ N]$; $(C)(CO) \ l^2 = [C \ N]$; $(C)(CO) \ l^2 = 1$
			$[C_0N_{10}(C)(CO)_{20}]$, $[C_0N_{10}(C)(CO)_{20}]$ and $[C_2N_1(C)(CO)_{20}]^{2-1}$
	25	TT /	$[Co_6Ni_2(C)_2(CO)_{16}]^{-1}$
	3.3	Heter	Unuclear Knodium Ulusters
		3.3.1	Heteronuclear Knodium–Platinum Clusters 44
		3.5.2	Heteronuclear Rhodium–Cobalt Clusters
		3.5.3	Heteronuclear Rhodium–Iridium Clusters 45
		3.5.4	Heteronuclear Rhodium–Silver Clusters 45

	4 Acknowledgements	. 45
	5 References	. 45
•		
2	Unusual Nuclear Magnetic Shielding and Coupling Constants	
	Related to Unusual Boliding Situations Barnd Wrackmayar	
1	Introduction	51
1	11 General	. 51
	1.1 Contract \therefore	. 51
	1.2 Coupling Constants ${}^{n}I(A X)$. 57
2	Hydrides	. 57
-	21 Boron Hydrides	. 58 58
	2.2 Unusual Chemical Shifts δ^{1} H of Hydrocarbons	. 50 59
	2.3 Carbocations	. 60
	2.4 Hydrogen Bonding Involving Nitrogen, Oxygen and	
	Fluorine	. 60
	2.5 Transition Metal Hydrides	. 62
3	Alkali Metal Compounds	. 65
	3.1 Alkalide anions	. 65
	3.2 Organolithium Compounds	. 65
4	¹¹ B and ²⁷ Al NMR Spectroscopy \ldots \ldots \ldots \ldots \ldots	. 66
	4.1 The Structures of Boron Compounds	. 66
	4.2 Complexes with Transition Metal–Boron Bonds	. 72
	4.3 Pentamethylcyclopentadienyl (Cp*) Aluminium	
	Compounds	. 74
5	Group 14 Element Chemistry in the Light of NMR.	. 74
	5.1 Carbon Atoms in Unusual Surroundings	. 74
	5.2 Organosilicon, -germanium, -tin and -lead	
	Compounds: An Almost Perfect Playing Field	
	for NMR Spectroscopy	. 79
6	Nitrogen Compounds. What Can We Learn from Nitrogen NMR?	. 87
	6.1 Some Simple Nitrogen Compounds:	
	$N_2, N_2O, [N_3]^-, [N_5]^+$ and Others	. 89
	6.2 Lithium Amides	. 90
	6.3 Boron–Nitrogen Compounds	. 90
	6.4 Carbon–Nitrogen Compounds	. 92
	6.5 Complexes with Transition Metal–Nitrogen Bonds	. 93
7	Phosphorus, An Element Made for NMR Studies	. 94
8	Oxygen Compounds: ¹⁷ O NMR	. 98
	8.1 Some Simple Oxygen Compounds: Water, Ozone,	
	Sulfur Dioxide and Others	. 98
	8.2 Complexes with Transition Metal–Oxygen Bonds	. 101
9	Selenium and Tellurium Compounds: ¹ /Se and ¹²³ Te	
	NMK	. 101

vii

	Fluorine Compounds: ¹⁹ F, A Nucleus with Excellent	
	NMR Properties	. 104
	10.1 Some Simple Molecules: F_2 , Cl-F, OF ₂ , XeF ₂ , NF ₃ and	
	Others	. 104
	10.2 Transition Metal Fluorides	. 105
11	Chemistry of Xenon: ¹²⁹ Xe NMR.	. 105
12	Organotransition Metal Complexes – A Wide Field of NMR.	. 106
	12.1 Vanadium Complexes: ⁵¹ V NMR	. 107
	$12.2 {}^{95}\text{Mo and} \; {}^{183}\text{W} \text{NMR}$. 107
	12.3 ⁵⁵ Mn and ⁹⁹ Tc NMR	. 109
	12.4 57 Fe, 99 Ru and 187 Os NMR	. 112
	12.5 ⁵⁹ Co and ¹⁰³ Rh NMR. \ldots \ldots \ldots \ldots \ldots	. 114
	12.6 ¹⁹⁵ Pt NMR	. 115
	$12.7 {}^{63/65}$ Cu and ${}^{107/109}$ Ag NMR	. 118
	$12.8 {}^{111/113}$ Cd and 199 Hg NMR	. 119
13	Lanthanides and Actinides	. 121
14	Conclusions.	. 121
15	Acknowledgements	. 122
16	References	. 123
3	Deuterium Spin–Lattice Relaxation and Deuterium Quadrupole	
	Coupling Constants. A Novel Strategy for Characterization of	
	Transition Metal Hydrides and Dihydrogen Complexes	
	in Solution	
	Vladimir I. Bakhmutov	
1	<i>Vladimir I. Bakhmutov</i> Introduction. Hydride Ligands from a Concept of Protons	
1	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum	
1	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour.	. 145
1 2	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition	. 145
1 2	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	. 145 . 147
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition Metal Hydride Complexes Deuterium NMR Approach to Studies of Transition	. 145 . 147
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition Metal Hydride Complexes Deuterium NMR Approach to Studies of Transition Metal Hydride Complexes	. 145 . 147 . 149
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition Metal Hydride Complexes Deuterium NMR Approach to Studies of Transition Metal Hydride Complexes 3.1 Deuterium as a Quadrupole Nucleus	. 145 . 147 . 149 . 149
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	. 145 . 147 . 149 . 149 . 149 . 151
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	. 145 . 147 . 149 . 149 . 151 . 151
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	. 145 . 147 . 149 . 149 . 151 . 151 . 153
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	. 145 . 147 . 149 . 149 . 151 . 151 . 153
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition Metal Hydride Complexes Deuterium NMR Approach to Studies of Transition Metal Hydride Complexes 3.1 Deuterium as a Quadrupole Nucleus 3.2 Methods for DQCC Determination 3.2.1 ² H Solid-State NMR Spectroscopy 3.2.3 ² H Spin–Lattice Relaxation (T ₁) in Solution	. 145 . 147 . 149 . 149 . 151 . 151 . 153 . 153
1 2 3	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour Applications of ¹ H NMR in the Chemistry of Transition Metal Hydride Complexes Deuterium NMR Approach to Studies of Transition Metal Hydride Complexes 3.1 Deuterium as a Quadrupole Nucleus 3.2 Methods for DQCC Determination 3.2.1 ² H Solid-State NMR Spectroscopy 3.2.3 ² H Spin–Lattice Relaxation (T ₁) in Solution Solution 3.3 Deuterium Quadrupole Coupling Constants in	. 145 . 147 . 149 . 149 . 151 . 151 . 153 . 153
1 2 3	Vladimir I. BakhmutovIntroduction. Hydride Ligands from a Concept of ProtonsBuried in Metal Orbitals to Hydrides Showing QuantumMechanical BehaviourApplications of ¹ H NMR in the Chemistry of TransitionMetal Hydride ComplexesDeuterium NMR Approach to Studies of TransitionMetal Hydride Complexes3.1 Deuterium as a Quadrupole Nucleus3.2 Methods for DQCC Determination3.2.1 ² H Solid-State NMR Spectroscopy3.2.2 Molecular Orbital Calculations3.2.3 ² H Spin-Lattice Relaxation (T_1) in SolutionSolution3.3 Deuterium Quadrupole Coupling Constants in Terminal Transition Metal Hydrides: Results and	. 145 . 147 . 149 . 149 . 151 . 151 . 153 . 153
1 2 3	 Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	 . 145 . 147 . 149 . 151 . 153 . 153 . 154
1 2 3	Vladimir I. BakhmutovIntroduction. Hydride Ligands from a Concept of ProtonsBuried in Metal Orbitals to Hydrides Showing QuantumMechanical Behaviour	 . 145 . 147 . 149 . 151 . 153 . 153 . 154 . 161
1 2 3 4 5	Vladimir I. Bakhmutov Introduction. Hydride Ligands from a Concept of Protons Buried in Metal Orbitals to Hydrides Showing Quantum Mechanical Behaviour	 . 145 . 147 . 149 . 151 . 153 . 153 . 154 . 161 . 162

4	NM	R Studi	ies of Lig	and Nuclei in Organometallic				
	Con	pounds	-New I	nformation from Solid-State				
	NM	R Tech	niques					
	Guy	M. Bei	rnard and	l Roderick E. Wasylishen				
1	Intr	oductio	n		•	•	•	165
2	The	oretical	Backgro	ound	•	•	•	166
	2.1	Ligan	d–Metal	Bonding				166
	2.2	The C	Chemical	Shift Tensor				167
		2.2.1	Nuclear	r Magnetic Shielding and Chemical Shift				167
		2.2.2	Ramsey	y's Theory				168
	2.3	Notat	ion					168
	2.4	Ab In	<i>itio</i> Calcu	ulations of Magnetic Shielding Tensors .				169
3	Exp	eriment	tal Techn	iques				170
	3.1	The P	rincipal	Components of a CS Tensor for				
		an Iso	lated Spi	$\operatorname{in}_{2}^{-1}$ Nucleus.				171
	3.2	The D	oipolar C	hemical Shift Method.				171
	3.3	CS Te	ensors fro	om Spectra of MAS Samples				173
	3.4	Sampl	le Size .					174
4	Exp	eriment	al Result	ts				174
	4.1	Metal	Carbide	S				174
		4.1.1	Carbon	CS Tensors for the Alkali-Metal				
			Carbide	es				174
		4.1.2	Carbon	CS Tensors for the Alkaline-Earth				
			Metal C	Carbides				175
		4.1.3	Compa	rison of CS Tensors for Metal Carbides.				176
		4.1.4	Solid-St	tate NMR Studies of Fullerides				176
	4.2	Metal	–Olefin a	and Metal–Acetylene Complexes				177
		4.2.1	Carbon	-13 NMR Studies				178
			4.2.1.1	Platinum–olefin complexes.				180
			4.2.1.2	Carbon chemical shift tensors of some	-		-	
				copper–olefin complexes	_		_	182
			4.2.1.3	Carbon chemical shift tensors for	•	·	•	102
				n ⁴ -coordinated transition-metal-olefin				
				complexes				183
			4214	Carbon chemical shift tensors for some	·	•	•	105
			7,2,1,7	transition-metal_acetylene complexes				184
		422	Solid-St	tate NMR Studies of Internal Dynamics	•	•	•	185
	13	Metal	locenes	tate Will Studies of Internal Dynamics	·	•	·	185
	т.5	4 3 1	Carbon	CS Tenors	•	·	•	186
		т.Э.1	4311	Carbon-13 NMR studies of	•	·	•	100
			-T.J.1.1	evelopentadienvl_metal complexes				188
			1317	Carbon-13 NMR studies of	·	·	·	100
			-1 .J.1.2	n ⁶ -coordinated complexes				101
		122	Other S	Il -coordinated complexes	·	•	·	101
		4.J.2						171

	4.4 Adsorbed Olefins and Acetylenes.						193
	4.4.1 Solid-State NMR Studies of Adsorbed	Olefin	s.				194
	4.4.2 Carbon-13 NMR Studies of Adsorbed	Acetvl	ene				197
	4.4.3 Solid-State NMR Studies of Other Ads	orbed					
	n-Coordinated Organometallics						198
5	Conclusions						198
6	Acknowledgements						198
7	References and Notes						199
5	Metal Atom Motion in Some Iron Organometallics						
	Rolfe H. Herber						
1	Introduction						207
2	Baseline Studies						208
-	2.1 Hydroxymethylferrocene	• •	•	•	•	•	209
	2.1 Decamethylferrocene		•	•	•	•	210
	2.2 Decamethylferrocene and Nonamethylferrocer	 	•	•	•	·	210
	Hevafluorophosphate	num					211
	2.4 Ethypyloctamethylferrocene and		•	•	•	·	211
	Ethynyloctamethylferrocenium Heyafluoropho	snhate	2				214
3	Ethynyloetametrynerioeenium riexanuoropho Experimental	spilar	· ·	•	•	·	214
1	Acknowledgements	• •	•	·	·	•	210
4		• •	·	•	·	·	210
3		• •	·	·	·	•	217
6	Magnetic Communication in Rinuclear Organometall	ia					
U	Complexes Mediated by Carbon-Rich Bridges	IC.					
	Event and Claude Lapinte						
1	Introduction						220
1 2	Concel Nations Describing Magnetic Interactions	•••	·	•	·	•	220
Ζ	in Delyre dicele						222
	III POlyladicals		·	•	·	•	223
	2.1 Antiferro- and Ferromagnetic Exchange Intera	ictions	·	•	•	•	223
	2.2 The Heisenberg–Dirac–van Vieck Hamiltonian	· · ·	·	•	•	•	223
	2.3 Rules for Deriving the Ground State	· · ·	•	•	•	•	225
	2.4 Structural Changes Between Spin States in Dit	opic					
	Diradicals		•	•	•	•	227
	2.5 Experimental Determinations of Magnetic Inte	eractio	ns				
	in Di- or Tritopic Polyradicals			•	•	•	229
	2.5.1 NMR and the Evans Method						230
	2.5.2 Electronic Spin Resonance						231
	2.5.3 Solid-State Magnetic Susceptibility						
	Measurements						233
3	Magnetic Interactions in Cationic Organoiron Di- a	nd					
	Trinuclear Metal-Centered Polyradicals Containing						
	$[(n^2-Diphos)(n^5-C_5Me_5)Fel^+$ End Groups						237
	INT FORT STOLES STOLES	•		1			

	3.1	The '[$(\eta^2 - \text{Diphos})(\eta^5 - C_5 Me_5)Fe]^{+\prime}$ Radical		
		Catio	n Fragment		237
		3.1.1	The $[(\eta^5 - \text{Diphos})(\eta^5 - C_5 M e_5)Fe]^+$ Fragment		
			in Mononuclear Complexes		237
		3.1.2	The $[(\eta^5 - \text{Diphos})(\eta^5 - C_5 Me_5)Fe]^+$ Fragment(s)		
			in Polynuclear Complexes		239
	3.2	Magn	etic Interactions in Polynuclear Mono-, Di- and		
		Trirac			240
		3.2.1	Magnetic Interactions in Polynuclear		
			Monoradicals		240
		3.2.2	Magnetic Interactions in Polynuclear		
			Diradicals		241
		3.2.3	Magnetic Interactions in Polynuclear	•	
		0.2.0	Triradicals		248
	33	Intran	nolecular Magnetic Exchange Between	•	210
	0.0	Metal	-Centered Spins in the Organoiron		
		Polyn	uclear Diradicals		250
1	Stru	r oryn ctural 1	Implications of the Magnetic Exchange in	•	230
4	Dolu	topic (Dragnometallic Polyradicals Easturing		
	Corl	iopie e	ch Bridges		251
			arban(C) Pridged Organomatellia Matel Contered	•	231
	4.1	Dired	ioola		252
		1 1 1	Itals	•	232
		4.1.1	Structure of the spin isomers in C_{2n} -bridged		252
		412	Dending and Supersystems in C. Dridged	•	232
		4.1.2	Bonding and Superexchange in C_{2n} -Bridged		250
		412		•	230
		4.1.3	Magnitude of the S/I Gap in C_{2n} -Bridged		262
		4 4 4	Organometallic Diradicals	•	262
		4.1.4	Some Results Regarding the C_{2n} -Bridged		•
			Organometallic Ditopic Triradicals	•	264
		4.1.5	Redox Chemistry of the C_{2n} -Bridged		
			Organometallic Diradicals	•	266
	4.2	End-C	On Polyene-Diyl-Bridged Organometallic		
		Metal	-Centered Diradicals	•	270
		4.2.1	Structure of the Spin Isomers in $(RC=CR')_n$ -		
			Bridged Organometallic Ditopic Polyradicals	•	270
		4.2.2	Bonding and Superexchange in $(RC=CR')_n$ -		
			Bridged Organometallic Diradicals		272
		4.2.3	Considerations on the Spin Transition in		
			$(RC=CR')_n$ -Bridged Organometallic Diradicals		276
		4.2.4	Redox Chemistry of the $d^5-d^5(RC=CR')_n$ -		
			Bridged Organometallic Diradicals		276
	4.3	Organ	nometallic Diradicals Bridged by Carbon-Rich		
		Space	rs Featuring (Hetero)Aryl Units		277

		4.3.1	Simple Aryl-Bridged Ditopic Polyradicals	•			278
		4.3.2	Ditopic Polyradicals Incorporating the				
			1,4-Diethynylphenyl Units	•	•	•	279
		4.3.3	Diradicals Incorporating the				• • • •
			2,5-Diethynylthienyl Unit	•	•	•	280
		4.3.4	Diradicals Incorporating the				• • • •
		105	1,3-Diethynylphenyl Unit	•	•	•	281
		4.3.5	Bonding and Toplogy-Dependant Superexchange				• • •
			Interaction in Diethynyl-(Hetero)aryl Diradicals	•	•	•	282
		4.3.6	Triradicals Featuring a 1,3,5-Phenylene Unit .	•	•	•	285
	4.4	Spin-I	Exchange-Induced Structural Changes of the				• • •
_	~	Bridgi	ing Ligand	•	•	•	287
5	Con	clusion	S	·	•	•	289
6	Ack	nowled	gements	·	•	•	291
7	Refe	erences		·	•	•	291
_		-					
7	Mol	ecular (Cluster Complexes with Facial Arene Ligands				
	Hub	ert Wa	depohl				• • •
1	Intr	oductio	n	·	·	·	297
2	Syn	theses		·	•	•	299
3	Mol	ecular	Structure and Dynamic Behaviour	•	•	•	304
4	Elec	tronic	Structure	•	•	•	312
5	Rea	ctivity		•	•	•	314
6	Con	clusion	S	•	•	•	316
7	Refe	erences	and Notes	•	•	•	316
8	Cob	altafulv	renes and Cobaltapentalenes: Highly Polar				
	Met	allacyc	lic II-Systems with Unusual Properties				
	Hub	ert Wa	depohl				
1	Intr	oductic	pn				321
2	Cob	altaful	vene Complexes				323
3	Cob	altaper	talene Complexes				328
4	Con	clusion	IS				332
5	Ack	nowled	gements				335
6	Ref	erences				•	335
9	Nov	el High	ly Nucleophilic Vlidic Ligands for the Preparation				
-	of I	nusuall	ly Stable Metal Complexes				
	Nor	hert Kı	hn Martin Göhner Gernot Frenking and Yu Chen				
1	Intr	oductic					337
$\frac{1}{2}$	Imi	noimide	azolines	•	•	•	338
-	2.1	Synth	esis and Structure	•	•	•	338
	$\frac{2.1}{2.1}$	Bond	ing in 2-Iminoimidazolines	•	·	•	330
	2.2 2 2	Matel	ation and Silvlation	·	•	·	3.73
	$\angle.3$	wicial		•	·	·	545

	2.4 Bonding in 2-Imidoimidazolines	343
	2.5 The Structure of $[Li_{12}O_2Cl_2(ImN)_8]$.	345
	2.6 Iminoimidazoline Phosphanes	346
	2.7 Bonding in Iminoimidazoline Phosphanes	348
	2.8 Aluminium and Titanium Iminoimidazolides	351
	2.9 Bonding in Titanium Iminoimidazolides	352
	2.10 Alkylation and Acylation	352
	2.11 Coordination of 2-Iminoimidazolines at	
	Metal Centers.	358
3	Methyleneimidazolines.	362
	3.1 Synthesis and Structure.	362
	3.2 Bonding in 2-Methyleneimidazolines and	
	Related Compounds	365
	3.3 Reactions with Main Group Element Electrophiles	369
	3.4 Bonding in Iodine Complexes	372
	3.5 Transition Metal Complexes	373
	3.6 C-Substituted 2-Methyleneimidazolines	376
	3.7 Bonding in Im-CS ₂ and Im-CS ₂ ²⁻	379
4	Conclusions.	380
5	Acknowledgements	384
6	References and Notes	384
10	Supramolecular Interactions in Structures of Organic	
	Antimony and Bismuth Compounds	
	Gabor Balázs and Hans Joachim Breunig	
1	Introduction	387
2	Diorganolelement Halides and Related Ionic	
	Compounds	389
3	Organoelement Dihalides	393
4	Organometallic Compounds with Sb–Sb or Bi–Bi Bonds	401
5	Organometallic Chalcogen and Nitrogen Derivatives of	
	Sb or Bi	404
6	References	408
Ind	lex	411

Contributors

Vladimir I. Bakhmutov, Department of Chemistry, PO Box 30012, College Station, TX 77842–3012, USA

Gabor Balázs, Institut für Anorganische und Physikalische Chemie der Universität Bremen, Fb 2, D-28334 Bremen, Germany

Guy M. Bernard, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Hans Joachim Breunig, Institut für Anorganische und Physikalische Chemie der Universität Bremen, Fb 2, D-28334 Bremen, Germany

Yu Chen, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

Gernot Frenking, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

Martin Göhner, Institut für Anorganische Chemie der Universität Tübingen, Tübingen, Germany

Rolfe H. Herber, Racah Institute of Physics, The Hebrew University of Jerusalem, 99904 Jerusalem, Israel

Norbert Kuhn, Institut für Anorganische Chemie der Universität Tübingen, Tübingen, Germany

Claude Lapinte, Institut de Chemie de Rennes, UMR CNRS 6509 Organometalliques et Catalyse, Université de Rennes I, Campus de Beaulieu, 35042 Rennes, Cedex France

Frédéric Paul, Institut de Chemie de Rennes, UMR CNRS 6509 Organometalliques et Catalyse, Université de Rennes I, Campus de Beaulieu, 35042 Rennes, Cedex France

Hubert Wadepohl, Anorganisch-Chemisches Institut der Ruprecht-Karls-Universität, Im Neuenheimer Feld 270, D-69120 Heidelberg. Germany

Roderick E. Wasylishen, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Bernd Wrackmeyer, Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany

Piero Zanello, Dipartimento di Chimica dell'Università di Siena, Via Aldo Moro, 53100 Siena, Italy

Series Preface

Physical organic chemistry, the study of the basic physical principles of organic reactions, is not a new field: in 1940, Hammett had already written a book with this title. This area has developed during the last 20 years mainly because of the explosive growth of sophisticated analytical instrumentation and computational techniques, going from the simple Hückel molecular orbital theory to *ab initio* calculations of increasing accuracy enabled by the advent of fast supercomputers.

An analogous genesis characterized physical organometallic chemistry. Understanding the basis of chemical reactivity and the detailed pathways of reactions of organometallic compounds is now one of the major goals of physical organometallic chemists. Correlation of structure with reactivity, increasing in sophistication, contributes powerfully to the understanding of electronic transmission, as well as of steric and conformational properties, including solvent effects. Homogeneous catalysis has reached a development stage making it a wide, complex topic deserving special consideration. Chiral induction is also becoming increasingly important, considering the economic importance of asymmetric syntheses in the design of pharmaceuticals: organometallic compounds play a key role in this area; understanding this role is the key to further progress.

Accordingly, the major developments of physical organometallic chemistry are not only relevant to *ab initio* calculations of metal-based organic compounds or new spectroscopic tools like multidimensional high-resolution NMR. They also involve new ingenious technologies to study reaction mechanisms, group-theoretical approaches to investigate the fluxionality of organometallic molecules, photochemical reactions on organometallic substrates, and, last but not least, experimental highlights like unstable organometallic compounds in matrices, piezochemistry, and sonochemistry.

The main goal of this series 'Physical Organometallic Chemistry' is to offer to post-graduates and researchers leading contributions written by well-known scientists reviewing the state-of-the-art of hot topics animating this wide research area, in order to develop new insights and to promote novel interest and investigations.

Preface

The term 'unusual' is often misused in chemistry with the purpose of (over?)emphasizing structural or property originality of novel chemical compounds. Organometallic chemistry does not escape from this trend, but paradoxically, suffers also from the insufficient scientific exploitation of really unusual techniques, tools, properties or parameters to investigate really unusual chemical features or structures. This can be traced to a vast extent to a quite traditional, albeit respectable, strategy of conducting research in organometallic chemistry consisting basically of a classical scheme involving sequentially synthesis, purification, basic characterization, structure determination by X-ray diffraction, and, if any, chemical applications in synthesis or catalysis. Apart maybe from X-ray diffraction, the characterization tools remain often at routine level, e.g. in proton and carbon-13 NMR or IR spectroscopy, elemental analysis and mass spectrometry, with the identity of chemical structures in crystalline and solution states being taken too often for granted. In this way other properties – electronic, magnetic, fluxional-are sometimes overlooked or insufficiently addressed. Starting from this standpoint, the idea came up to conceive a book offering a selection of unusual properties, tools or structures that could serve as a source of new challenges in broader fields of organometallic chemistry than those in which they have been presently created, implemented or applied.

This present book is intended for a vast majority of scientists working in various areas of organometallic chemistry. This statement looks trivial at first glance, but is less so when considering the ever-increasing speed of development of novel physical methods and the diversity of their real or potential applications to organometallic chemistry, even though, as stated above, they are not widespread. Actually, it becomes more and more difficult to keep track in exploiting the full potential of these methods, especially when unusual structures or physical properties are concerned. Hence, the principal idea of this book is to offer in this particular context a Capita Selecta of unconventional and thought-provoking topics in organometallic chemistry, presented by experts in each field at state-of-the-art level. As intended in this book, this approach leads either to reviews covering a specific uncommon class of organometallic compounds or to overviews which relate uncommon physical properties with various classes of organometallic compounds. Thus, extended cross-linking of useful information is provided, even for people working in rather different areas of organometallic chemistry. Clearly, it is not possible to

cover the theme of such a book in an exhaustive manner. However, the Capita Selecta offered are representative of this original approach and serve as examples which should stimulate the reader to consider one or other physical method or structural pattern for his own special interests. He/she should also find unusual structural features for systems, apparently not related to his own field, which however possess familiar physical data. In this way, this book should help the reader to understand relevant physical data in a more general way. The text is streamlined into two main axes, namely unusual properties reflecting structures and bonding situations, on the one hand, and uncommon structural features or structure-reactivity relationships, on the other hand. The first axis consists of six chapters: the electrochemistry-structure relationship in transition metal carbonyl clusters with interstitial atoms, with special emphasis on the contrast between carbides and nitrides; unusual nuclear shielding and coupling constants in organometallic compounds, with contrast between data of unusual bonding situations and data from the basic simple chemical molecules involved; deuterium relaxation times and quadrupolar coupling constants in metal hydrides and metal-dihydrogen complexes in solution; novel aspects of solid-state NMR spectroscopy of organometallic compounds; Mössbauer spectroscopy addressing metal atom motions in iron organometallics; magnetic communication and spin equilibria of organometallic complexes, and spin transitions in binuclear organometallic complexes. The second axis consists of four contributions: molecular clusters with facial arene ligands; cobaltafulvenes and cobaltapentalenes, as highly polar metallic π -systems with unusual properties; highly nucleophilic ylidic ligands for the preparation of unusually stable metal complexes; supramolecular interactions in solid organoantimony and -bismuth chemistry.

In this way, it is hoped to provide of a broad overview of unusual techniques, research tools, structures and properties that can stimulate novel research axes in areas of organometallic chemistry where they have never previously been addressed.

1 Structure and Electrochemistry of Transition Metal Carbonyl Clusters with Interstitial or Semi-Interstitial Atoms: Contrast between Nitrides or Phosphides and Carbides

PIERO ZANELLO

Dipartimento di Chimica dell'Università di Siena, Via Aldo Moro, 53100 Siena, Italy

Transition-metal carbonyl clusters containing *interstitial* or *semi-interstitial* atoms have been the subject of many studies, particularly in view of the fact that the insertion of interstitial atoms inside the metal cage of the clusters often increases the number of valence electrons (hence affecting to some extent the reactivity), leaving essentially unaltered the molecular geometry with respect to the original species. Their preparative [1,2], structural [1,2], spectroscopic (NMR) [3] and theoretical [4] aspects have been elucidated and their possible use as catalysts has been proposed [5]. In addition, their electrochemical behaviour has been mostly reviewed in a series of articles devoted to a systematic examination of the electrochemical behaviour of homo- [6] and hetero-metal [7] carbonyl clusters.

In this present paper, we should like to focus more specifically on the different, and in some cases contrasting, electrochemical behaviour of *homoleptic* transition-metal carbonyl clusters containing interstitial or exposed *N*, *P* atoms with respect to the *C*-containing analogues. Since these nitride or phosphide carbonyl clusters can be considered as a link between *organometallic* and *coordination* compounds, it is hoped that a detailed comparison of their redox aptitude can help theoreticians in understanding more and more the extent to which the nature of such interstitial heteroatoms might affect the electron mobility inside such compounds.

We will examine here only those complexes for which the X-ray structures have been solved—discussions of the structural details are given in the relevant literature references, or mostly in References [5] and [6]. Even if in many cases there are not sufficient electrochemical data to allow comparisons to be made

between *nitride/phosphide*-containing metal clusters and their *carbide* analogues, we think it is useful to give literature references to the X-ray structures of all of the complexes known so far.

The molecular structures and electrochemical responses presented here are adapted from the original figures quoted in the text. Unless otherwise specified, all the electrode potentials are referred to the saturated-calomel electrode.

1 INTRODUCTION

Although *carbide*-containing transition-metal carbonyl clusters have been known for a long time [1,2], delays were experienced before electrochemists began to deal with them, so that their redox chemistry was adequately, although roughly explored by chemical routes. In fact, the use of chemical reagents does not allow the redox properties of a molecule to be finely tuned. For instance, Chini's group in Milan pioneeringly investigated not only the synthetic and structural aspects of metal clusters, but also their redox chemistry. Thus, one can find in the literature the structural characterization of a few redox couples of metal carbonyl clusters obtained 'blindly' by using chemical reagents. In this connection, Figures 1–3 show the molecular

Figure 1 Molecular structure of the tetraanion $[Co_3Ni_9(C)(CO)_{20}]^{3-1}$

Figure 2 Molecular structure of the trianion $[Rh_{12}(C)_2(CO)_{23}]^{4-}$

Figure 3 Molecular structure of the tetraanion $[Co_{13}(C)_2(CO)_{24}]^{4-}$

structures of one member of each of the couples, $[Co_3Ni_9(C)(CO)_{20}]^{3-/2-}$ [8,9], $[Rh_{12}(C)_2(CO)_{23}]^{4-/3-}$ [10,11], and $[Co_{13}(C)_2(CO)_{24}]^{4-/3-}$ [12,13].

In all of these cases, the redox congeners are isostructural with each other and only minor variations in the metal–metal, metal–carbon_(carbonyl), and metal–carbon_(carbide) bonding distances occur upon addition/removal of one electron. As previously mentioned, the use of chemical reagents does not allow the multiple redox states of a molecule to be adequately determined. For instance, $[Co_3Ni_9(C)(CO)_{20}]^{3-}$ not only undergoes the chemically reversible one-electron removal process, $[Co_3Ni_9(C)(CO)_{20}]^{3-/2-}$ ($E^{0'} = -0.30$ V), but it is also able to add two electrons in a single step ($E^{0'} = -1.71$ V), affording the pentaanion $[Co_3Ni_9(C)(CO)_{20}]^{5-}$, which, however, is a transient species ($t_{1/2} \approx 1$ s) (Figure 4) [14].

Analogously, the chemical picture concerned with the redox change $[Rh_{12}(C)_2(CO)_{23}]^{4-/3-}$ appears to be correct as far as the full stability within the family is concerned. Indeed, as Figure 5 illustrates [5], the redox ability is more extended in that $[Rh_{12}(C)_2(CO)_{23}]^{4-}$ not only undergoes reversibly the cited one-electron oxidation $(E^{0'} = -0.46 \text{ V})$, but also exhibits a second irreversible one-electron removal $(E_p = -0.16 \text{ V})$, as well as a single two-electron reduction to the corresponding hexaanion $[Rh_{12}(C)_2(CO)_{23}]^{6-}$ $(E^{0'} = -1.62 \text{ V})$, which, however, is relatively short-lived $(t_{1/2} \approx 1 \text{ s})$.

Figure 4 Cyclic voltammogram recorded at a platinum electrode for a Me_2CO solution containing $[Co_3Ni_9(C)(CO)_{20}]^{3-}$ (scan rate, 0.2 V s⁻¹)

Figure 5 Cyclic voltammetric response exhibited by $[Rh_{12}(C)_2(CO)_{23}]^{4-}$ in MeCN solution, with a platinum working electrode (scan rate, 0.2 V s^{-1})

Even more instructive is the case of the redox family of $[Co_{13}(C)_2(CO)_{24}]^{4-}$. As Figure 6 proves, the tetraanion not only undergoes reversible the cited one-electron oxidation to the trianion $[Co_{13}(C)_2(CO)_{24}]^{3-}$ ($E^{0'} = -0.54$ V), but it also exhibits the chemically reversible sequential access to the corresponding penta- ($E^{0'} = -1.06$ V) and hexa- ($E^{0'} = -1.68$ V) anions, $[Co_{13}(C)_2(CO)_{24}]^{5-/6-}$, respectively [5].

Furthermore, the usefulness of electrochemical studies in the present field is not limited to the discovery of multiple, stable or unstable, redox states of clusters, but also to the eventual conversion of a molecule to a somewhat related species by simple redox processes [15].

For instance, the dianion $[Ru_6(C)(CO)_{16}]^{2-}$, the octahedral geometry of which is shown in Figure 7(a) [16] undergoes an irreversible two-electron oxidation ($E_p = +0.48$ V, vs Ag/AgCl) to the neutral more carbonylated congener Ru₆(C)(CO)₁₇, which in turn undergoes an irreversible reduction ($E_p = -0.47$ V) (Figure 7(b)) [17].

As confirmation, $\operatorname{Ru}_6(C)(CO)_{17}$, the octahedral geometry of which is shown in Figure 8(a) [18], exhibits a quite complementary voltammetric response (Figure 8(b)), thus pointing out that, upon two-electron addition, it converts again to the decarbonylated dianion $[\operatorname{Ru}_6(C)(CO)_{16}]^{2-}$ [17].

By way of comparison, the isostructural and isoelectronic non-carbide dianion $[\operatorname{Ru}_6(\operatorname{CO})_{18}]^{2-}$ (Figure 9) [19] also exhibits in dichloromethane solution a two-electron oxidation coupled to fast chemical complicated behaviour, although this it occurs at a notably lower potential value ($E_p = -0.36$ V, vs Ag/AgCl) [20].

Finally, as an alternative to the thermally induced phosphine substitution, which affords a series of not easily separable products, the anodic oxidation of

Figure 6 Cyclic voltammetric response exhibited by $[Co_{13}(C)_2(CO)_{24}]^{4-}$ in MeCN solution, with a platinum working electrode (scan rate, 0.2 V s^{-1})

Figure 7 (a) Molecular structure of $[Ru_6(C)(CO)_{16}]^{2-}$, and (b) its cyclic voltammetric profile in CH_2Cl_2 solution

 $[Ru_6(C)(CO)_{16}]^{2-}$ in the presence of phosphines selectively leads to the monosubstituted neutral species $Ru_6(C)(CO)_{16}(PR_3)$ [17]. In this connection, Figure 10 shows the molecular structure of $Ru_6(C)(CO)_{16}(PPh_2Et)$ [21].

2 HOMONUCLEAR CLUSTERS

2.1 HOMONUCLEAR IRON CLUSTERS

2.1.1 $Fe_4(C)(CO)_{13}$ and $[Fe_4(C)(CO)_{12}]^{2-}$ versus $[Fe_4(N)(CO)_{12}]^{-}$

As Figure 11 illustrates, the three 62-cluster-valence-electron (CVE) complexes $[Fe_4(C)(CO)_{12}]^2$, $Fe_4(C)(CO)_{13}$ and $[Fe_4(N)(CO)_{12}]^-$ possess a butterfly geometry [22–24].

It has been briefly reported that the dianion $[Fe_4(C)(CO)_{12}]^{2-}$ undergoes, in nonaqueous solvents, four oxidation steps, with only the first two of these having features of transient chemical reversibility [25]. This means that the

Figure 8 (a) Molecular structure of $Ru_6(C)(CO)_{17}$, and (b) its cyclic voltammetric profile in CH_2Cl_2 solution

Figure 9 Molecular structure of $[Ru_6(CO)_{18}]^{2-}$

Figure 10 Molecular structure of $Ru_6(C)(CO)_{16}(PPh_2Et)$

corresponding 61/60-CVE congeners $[Fe_4(C)(CO)_{12}]^{-,0}$ are only partially stable and tend to decompose. As a matter of fact, oxidation under CO atmosphere affords $Fe_4(C)(CO)_{13}$ [26].

Quite opposite is the redox ability of the monoanion $[Fe_4(N)(CO)_{12}]^-$. As Figure 12 shows, this undergoes in acetonitrile solution two sequential one-electron reductions at $E^{0'} = -1.23$ V and -1.58 V, respectively, with both having features of chemical reversibility [27].

Indeed, over the long time-scales of macroelectrolysis only the 63-CVE dianion $[Fe_4(N)(CO)_{12}]^2$ remains quite stable. Furthermore, in the presence of triphenylphosphine, the electrochemical reduction triggers the electrocatalytic substitution of one carbonyl ligand, affording $[Fe_4(N)(CO)_{11}(PPh_3)]^-$ [27]. The electrochemical pathway quite parallels the thermal one, which also allowed the obtainment and consequent structural characterization of $[Fe_4(N)(CO)_{11}(PMe_2Ph)]^-$ [28]. The molecular structures of these substituted complexes are shown in Figure 13. In both cases, the phosphine ligand replaces one carbonyl on the wingtip, i.e. the less coordinated iron vertex of the Fe₄ butterfly.