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Preface

Biocatalysis is evolving to be a transformational technology as a result of a confluence of
factors, which include (1) large scale and ever increasingly cost-efficient DNA sequencing
technologies; (2) exponential growth in GenBank; (3) powerful directed enzyme evolution
and high-throughput screening technologies; (4) robust expression systems for enzyme
production; (5) deep understanding of the logic of natural product biosynthesis; (6) industrial
successes of metabolic engineering and pathway engineering.

Consequently, many successful stories and a number of reviews have been reported recently
in developing biocatalysis for the pharmaceutical industry, across drug discovery, development,
and manufacturing. The book is dedicated to these advances, and divided into four parts:

¢ Chapters 1-4 serve as an introduction to emerging biocatalysts, modern expression hosts,
state of the art of directed evolution, high-throughput screening, and bioprocess
engineering for industrial applications.

e Chapters 5-8 are directed to emerging enzymes, which include oxynitrilases, aldolases,
ketoreductases, oxidases, nitrile hydratases, and nitrilases, and their recent applications
especially in synthesis of chiral drugs and intermediates.

e Chapters 9 and 10 focus on synthesis of drug metabolites and intermediates catalyzed by
P450s or whole cells.

e Chapters 11-13 are devoted to combinatorial biosynthesis, metabolic engineering, and
autonomous enzymes for the synthesis and development of complex medicinal molecules.

o Chapter 14 discusses the recent impact of biocatalysis in green chemistry and chemical
development.

Our main goal is to come up with a concise but comprehensive, practical but insightful
book covering the topics discussed above. We hope you enjoy reading this book. Any
suggestions and comments are welcome.

Junhua (Alex) Tao

Elevance Renewable Sciences, USA

Email: Junhua_tao@yahoo.com

Guo-Qiang Lin

Guo-Qiang Lin Shanghai Institute of Organic Chemistry, China
Email: lingg@mail.sioc.ac.cn

Andreas Liese

Hamburg University of Technology, Germany
Email: liese@tuhh.de
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Enzymes and Their Synthetic
Applications: An Overview

Junhua (Alex) Tao'! and Jian-He Xu?

!Elevance Renewable Sciences, 175 E. Crossroads Parkway, Bolingbrook, IL 60440, USA
?East China University of Science and Technology (ECUST) 130 Meilong Road, Shanghai,
200237, PR China

1.1 Introduction

Whole-cell biocatalysis has been exploited for thousands of years; for example, in preparing
barley for beer brewing. While the chemical, economic and social advantages of biocatalysis
over traditional chemical approaches were recognized a long time ago, their applications for
the drug industry have been largely underexplored until the recent technological break-
throughs in large-scale DNA sequencing, robust protein expression systems, metabolic
engineering and directed evolution. In this chapter, emphasis will be directed to the
discussion of those isolated enzymes which are uniquely suited for the synthesis of
small-molecule pharmaceutical ingredients.

1.2 Enzyme Families

Based on reactions they catalyze, enzymes can be broadly classified into six major
categories (Table 1.1) [1]. It was estimated that about 60% of biotransformations currently
rely on the use of hydrolases, followed by 20% of oxidoreductases [2]. On the other hand,
some of the C—C bond-forming and oxygenation enzymes catalyze reactions with very high
reaction efficiency and very low waste generation, underlining the potential of emerging
enzymes.

Biocatalysis for the Pharmaceutical Industry edited by Junhua Tao, Guo-Qiang Lin, and Andreas Liese
© 2009 John Wiley & Sons Asia (Pte) Ltd



2 Biocatalysis for the Pharmaceutical Industry

Table 1.1 Enzyme classes

Enzyme class Examples Reaction catalyzed

Hydrolases lipase, protease, esterase hydrolysis reactions in H,O
nitrilase, nitrile hydratase
glycosidase, phosphatase

Oxidoreductases dehydrogenase, oxidase oxidation or reduction
oxygenase, peroxidase

Transferases transaminase, glycosyltransferase transfer of a group from one molecule
transaldolase to another
Lyases decarboxylase, dehydratase, nonhydrolytic bond cleavage

deoxyribose-phosphate aldolase
Isomerases racemase, mutase intramolecular rearrangement

Ligases DNA ligase bond formation requiring triphosphate

1.3 Enzyme Discovery and Optimization

Traditionally, enzymes are discovered through screening of environmental samples and culture
enrichment. As a result of recent technological breakthroughs in large-scale DNA sequencing
and high-throughput screening, both the metagenomic approach and sequence-based discovery
have drastically shortened the cycle of enzyme discovery.

In the metagenomic approach, DNA was directly extracted from uncultured samples
followed by cloning and expression [3]. For example, by combination of directed evolution
with the metagenome approach, an a-amylase mutant with optimal activity at pH4.5
and optimal thermostability at 105°C was discovered for starch liquefaction and EtOH
production [4].

Sequence-based discovery (genome hunting) is increasingly attractive, as the public
sequence bank is growing rapidly. In this approach, known sequences encoding an enzyme
of interest are used to search gene databases to uncover enzymes of homologous sequences.
For example, using this method, a library of deoxyribose-phosphate aldolases (DERAs) were
rapidly constructed and from them a novel DERA was identified to catalyze a sequential aldol
reaction of a nonnative substrate with high throughput and excellent stereoselectivity for the
synthesis of statin side chains [5].

Since most synthetic applications require enzymes catalyzing nonnatural substrates, their
properties often have to be improved. One way to achieve this is to optimize reaction conditions
such as pH, temperature, solvents, additives, etc. [6-9]. Another way is to modulate the
substrates without compromising the synthetic efficiency of the overall reaction [10]. In most
cases for commercial manufacturing, however, the protein sequences have to be altered to
enhance reactivity, stereoselectivity and stability. It was estimated that over 30 commercial
enzymes worldwide have been engineered for industrial applications [11]. Precise prediction
of which amino acids to mutate is difficult to achieve. Since the mid 1990s, directed evolution
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has been demonstrated to be a powerful and robust technology to improve the desired
properties [12,13]. Among them, the error-prone PCR method is probably the most popular
to create random mutants by changing polymerization reaction conditions [14]. Alternatively,
recombination of homologous sequences or DNA-shuffling methods can be used to introduce
mutants with improved properties [15]. The major challenge in directed evolution is not
generation of mutant libraries; rather, it is the availability of high-throughput assays [16]. In
most cases, it requires screening of tens of thousands of mutants, which is usually tedious and
time consuming. As more and more protein structures are available from the protein database,
focused directed evolution or semi-rational protein design is becoming more and more
popular [17]. In this approach, the three-dimensional (3-D) structure of a suboptimal enzyme
is constructed by a computer algorithm from a homologous enzyme with known 3-D structure.
Docking studies are then applied to search potential ‘hot spots’, which are then swapped with
other amino acids by site-saturation mutagenesis. In this way, there are generally less than a few
thousand mutants to be screened, significantly shortening the cycle of enzyme development.
The fact that most beneficial mutations are proved to be near the active site makes this approach
even more attractive [18].

1.4 Enzyme Production

Although some enzymes are still extracted from animal or plant tissue, most of them are now
produced from microorganisms by fermentation. Bacteria and fungi are the most popular hosts
for producing industrial enzymes, due to easy handling and high productivity. They can also be
readily genetically engineered to improve their performance; for example, by incorporating
secretion systems to facilitate enzyme isolation and purification. Some of the most popular
expression hosts are Escherichia coli, Pichia pastoris, Pseudomonas fluorescens, Aspergillus
sp. and Bacillus sp. Mammalian or plant cells are used in special cases [19-21]. By regulation,
the production host should have GRAS status (Generally Regarded as Safe Status).

In a typical enzyme production procedure, cells containing genes encoding desired enzymes
are grown in an Erlenmeyer flask. At large scale, a computer-controlled fermenter or bioreactor
isrequired to maintain an appropriate control of pH, O,, NH;z and CO, to maximize cell density.
The cells are harvested by centrifugation in a batch or continuous fashion. Alternatively, they
can be collected through membrane filtration devices. The cell membranes are then disrupted
by an ultrasonicator or French press at small scale. At a scale of over 5-10 L, a homogenizer is
usually used. After centrifugation to remove cell debris, the crude enzymes remain in the
supernatant and can be concentrated through precipitation by adding either inorganic salts (e.g.
ammonium sulfate) or organic solvents (e.g. acetone). The crude enzymes are then purified by
dialysis or a variety of chromatographic methods. The dry powder is usually obtained after
lyophilization under freeze-drying conditions [22,23].

1.5 Enzymes and Synthetic Applications

Historically, the most popular enzymes used for chemical synthesis are lipases, esterases,
proteases, acylases and amidases, among others. Recently, a number of recombinant bioca-
talysts have been discovered and isolated, significantly expanding the toolbox for biotrans-
formations. In this section, the focus will be on these new enzymes.
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1.5.1 Ketoreductases (EC 1.1.1.2)

Ketoreductases (KREDs) catalyze the conversion of a wide range of ketones and some
aldehydes to chiral alcohols regio- and stereo-selectively in the presence of NADH or NADPH
(Figure 1.1) [24,25]. This powerful transformation has been demonstrated in a number of
industrial transformations using either isolated enzymes or whole cells. The use of isolated
enzymes is often preferred because of a higher volumetric productivity and the absence of side
reactions. A key to its success is the availability of efficient and cost-effective cofactor
regeneration methods by using a formate dehydrogenase to recycle NAD ™ or a glucose
dehydrogenase to recycle NADP* (Figure 1.1) [26,27]. It shall be noted that some alcohol
dehydrogenases are also able to catalyze the oxidation of alcohols to ketones or aldehydes [28].

Reduction and Cofactor Regeneration

O H
)j\ ketoreductase i

NADH NAD™*

CO, +NH, M HCOONH2

formate dehydrogenase

(0]
)j\ ketoreductase )O\H
R4 Rs ; < Ry * Rs
NADPH NADP*

D s

glucose dehydrogenase

gluconate

Product Examples:
OH OH OH O OH O
OR .
R1)*\R2 R1)*\ﬂ/ 2 R1MR2 R1)\)1\@:‘2
¢} Rs Rs
Figure 1.1

1.5.2 Enoate Reductases or Ene Reductases (EC 1.3.1.16)

Enoate reductase (ER) catalyzes NAD(P)H-dependent reduction of carbon—carbon double
bonds of nonactivated enoates, as well as of a,B-unsaturated aldehydes, ketones, nitros, and
nitriles (Figure 1.2). For example, the ER from Clostridium tyrobutyricum shows high
stereospecificity and regioselectivity and broad substrate specificity [29]. Alkanes with up
to two chiral centers can be directly produced by asymmetric reduction of electron-deficient
alkene enzymes from the ‘old yellow enzyme’ family at the expense of NAD(P)H. The cofactor
can be regenerated in vitro using a formate dehydrogenase or glucose dehydrogenase.
Alternatively, a whole-cell system can be used to co-express ERs with redox enzymes for
NAD(P)H recycling [30].
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Ry Ry

ene reductase
X EWG 7—T' EWG EWG = aldehydes,
Rz Ry * T. ketones, nitros, nitriles
Rs NAD(P)H NAD(P)*  Ps

Product Examples:
o}
R1 (6] R1 R1 R
CN 1
RQMH Rz)*\g'“o? Rz)*\ﬁ R— [
Rs Rs Rs R

Figure 1.2

1.5.3 Oxygenases (EC. xxxx)

Oxygenases catalyze direct incorporation of molecular oxygen into substrates to produce
oxygenated molecules [31,32]. They are categorized as either monooxygenases (MOs) or
dioxygenases, depending upon whether one or both atoms of dioxygen are inserted into a
substrate. The metal-dependent MOs, such as P450s, catalyze a wide range of reactions via
metal oxo species (e.g. hydroxylation of alkanes and aromatics; epoxidation of alkenes
(Figure 1.3)), while flavin adenine dinucleotide (FAD)-dependent MOs are found to catalyze
oxidation of heteroatoms (S, N, Se, P) and Baeyer—Villiger reactions via FAD-hydroperoxide
(FAD-OOH) species (Figure 1.4).

Simplified Mechanism (P450s)

o} [ -
N= poaN =2 o No s N BT
N "N NnapPpH N7 | N HO
S S

iron oxo species
N: representing heme
S: representing cysteine residual

Examples:
R P-450s, O R
Rpy—H ———— ——>> Ry »—OH
Rg hydroxylation Rg
P-450s, O, O,
y— —_—>
R epoxidation R/
H H
P-450s, O,
hydroxylation

Figure 1.3
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Simplified Mechanism (FAD-dependent MOs)
H
N N._O
\l//o FAD-MOs, O, Y
N NH
NADPH HO J
>_< H
FAD OOH o 0

Examples: R Re Rt @
)OJ\ FAD-MOs, O, j\ Ro
R{ R Baeyer-Villiger Ri O
Ro
FAD-MOs, O,
R—X R—X=0

X =S8, N, Se, P heteroatom oxidation
Figure 1.4

Dioxygenases usually contain a tightly bound iron atom and catalyze hydroperoxidation of
allylic molecules or carboxylic acids, and dihydroxylation of aromatics (Figure 1.5) [33].

Currently, these oxygenation reactions are usually carried out in whole cells, the outcome of
which is often unpredictable. The discovery of novel oxygenases and efficient hosts for protein
expression remain keys to further expanding the applications of these enzymes in chemical
synthesis and drug metabolism studies [34—37].

/=/ dioxygenases /Z/_OOH

R hydroperoxidation R

\/ﬁ\ dioxygenases \/ﬁ\
R OH o R " OH
OOH

hydroperoxidation

dioxygenases OH
dihydroxylation OH

Figure 1.5

1.5.4 Alcohol Oxidases (EC 1.1.3.X)

Alcohol oxidases (AOs) catalyze oxidation of alcohols to aldehydes or ketones in the presence of
molecular oxygen, with hydrogen peroxide being the usual by-product (Figure 1.6). Some of the
most well-studied AOs are cholesterol oxidases, short-chain aliphatic alcohol oxidases,
aromatic alcohol oxidases, pyranose oxidases, glycolate oxidases, glucose oxidases, galactose
oxidases and nucleoside oxidases [38—40]. Cholesterol oxidases catalyze oxidation of allylic
alcohol in the cholesterol scaffolds [41]. The regeneration of cofactor FAD is relatively easier, as
itis tightly bound. Although these enzymes use oxygen, they can also be deactivated by oxygen
or the hydrogen peroxide by-product. It is to be noted that peroxidases and cholorperoxidases
can also catalyze the oxidation of alcohols using hydrogen peroxide (H,O,).
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AOs
R7OH =5~ R So +H0;
R = alkyl, aryl
Examples:
HO 0 OH P20 = pyranose oxidase
GAOX = galactose oxidase
HO OH
OH GAOX o

R cholesterol
\ omdase Q
Z

Figure 1.6

1.5.5 Peroxidases (EC 1.11.1.X)

Peroxidases utilize H,0, as the oxidant (Figure 1.7). The active site of peroxidases may involve
a heme unit (horseradish peroxidase), selenium (glutathione peroxidase), vanadium (bromo-
peroxidase) and manganese (manganese peroxidase). These enzymes catalyze a wide range of
oxidations, including hydroxylation of arenes, oligomerization of phenols and aromatic
amines, epoxidation and halogenation of olefins, oxygenation of heteroatoms and reduction
of hydroperoxides [42—44].

MeO

R
AN i
|/ peroxidase Ho— / / A\ OH
MeO H20,
OMe
©A perOX|dase
202 ©/\
©:OH peroxidase @OH ]
H20, 7 OMeJn

OMe

|||o

polymer

\_ R; peroxidase \ ./R1

H20, )

Figure 1.7
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1.5.6 Halogenases (EC. xxxXx)

Halogenases catalyze regio- and stereo-selective halogenation (Figure 1.8) [45,46]. For
electron-rich substrates, nature often uses flavin-dependent halogenases for chlorination,
bromination or iodination via FADH-OX (X = halide) as the halogenation agent (Figure 1.9).
For electron-deficient molecules such as alkanes, mononuclear iron halogenases are utilized
through a radical mechanism (Figure 1.9). Fluorinases adopt an Sy2 nucleophilic substitution

Ro Ro

tryptophan
7N 7-halogenase N
Ry T - " R1—! Cl
Z H NaCl, FADH,, O, Z N
H

R1=H, Me
R, = amine, alkyl, nitrile

chlorinase
_— HoN
Cr
enzyme
NH»
N X
Me
i, ¢ |l )N fluorinase F
HOC S N — o
NH, o
OH OH
OH OH
Figure 1.8

Cofactors and Oxidants of Halogenating Enzymes

H
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O H
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0] N
HN T 2.0 NN
fj — N—Y-OH //Fe”V
(0] N—/N
vanadium haloperoxidase H>O» heme-iron haloperoxidase HoO»

Figure 1.9
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mechanism in the presence of F~ to introduce a fluorine atom [47]. While it is still in its infancy,
the use of enzymatic halogenation has shown great promise, especially in whole-cell systems
(Figure 1.9). For example, tryptophan 7-halogenase was able to catalyze regioselective
halogenation of a wide range of indole derivatives and aromatic heterocycles [48]. It is to
be noted that halogenation can also be catalyzed by haloperoxidases, which often gives poor
regio- and stereo-selectivity, since the activated halogen source, (e.g. hypohalous acids) is
freely diffusible within and away from enzymes (Figure 1.8) [49].

1.5.7 Nitrilases (EC 3.5.5.1)

Nitrilases convert nitriles to the corresponding carboxylic acids and NH; through a cysteine
residue in the active site [50]. Because of their high enantio- and regio-selectivity, nitrilases are
attractive as ‘green’ catalysts for the synthesis of a variety of carboxylic acids and derivatives
(Figure 1.10) [51,52]. Recently, a number of recombinant nitrilases have been cloned and
characterized heterologously for synthetic applications [50,53,54].

Mechanism:

___ nitrilase
R™N "0

‘R OH

NH, 0
R/i\s-enzyme} J\
OH

R = aryl, alkenyl, alkyl

Product Examples:

o) O o}
= R
*RJ\OH N/A(\%\OH 1j*)J\OH
Ro
Figure 1.10

1.5.8 Nitrile Hydratases (EC 4.2.1.84)

Nitrile hydratase (NHase) catalyzes the hydration of nitriles to amides (Figure 1.11) and has
been used for production of acrylamide and nicotinamide at large scale. NHases are roughly

Mechanism:
nitrile NH o
__ hydratase _ H,O
R—=N ———> R—=N--M3 o |/
M3+ R™ "OH *R° NH;

R = aryl, alkenyl, alkyl

Product Examples:
0 O 0}

M Z R
R ONH, N/AMJJ\NH2 1j*)J\NH2

n
Ro

Figure 1.11
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classified into iron and cobalt types according to the metal involved in the active
site [55,56]. Recent elucidation of the catalytic mechanism and characterization of a
number of NHases have led to a wide range of applications in both biotransformation and
bioremediation [53].

1.5.9 Epoxide Hydrolases (EC 3.3.2.X)

Epoxide hydrolases (EHs) catalyze the hydrolysis of a wide range of epoxides (Figure 1.12).
They are cofactor independent and robust for the synthesis of enantiopure epoxides, diols and
their derivatives [57-59]. There are over 100 epoxide hydrolase gene sequences, and the X-ray
structures are available for fungal, bacterial and mammalian epoxide hydrolases [60]. Hetero-
logous expression in E. coli and other hosts has also been successful. In addition, several
efficient high-throughput screening methods have been developed, allowing the improvement
of EHs through site-directed mutagenesis and directed evolution [61,62]. EHs also play
important roles in the detoxification of genotoxic compounds and drug metabolism [63].

Mechanism:
enzyme
epoxide enzyme y OH

hydrolase &l\ i o) H,0
> ———— |00 0 — —
0 H,0 D)

~ OH
0 OH
Examples:
R R4 Ry R1 R
Rg't Rs""yR

’> R, Ry R o 7, 2

le) [e) (6] (0] R4
Figure 1.12

1.5.10 w-Transaminases (EC 2.6.1.X)

w-Transaminases catalyze the conversion of a ketone group to an amine in the presence of the
cofactor pyridoxal-5'-phosphate (PLP), which is tightly bound to the active site. The catalysis
starts with the formation of an imine between the cofactor and an amine donor (Figure 1.13)
[64]. Since this is a one-step method to prepare (R)- or (S)-amines from ketones, it has huge
potential (Figure 1.14) [65,66]. For example, a high-throughput biocatalytic process to
(S)-methoxyisopropylamine, a moiety common to the two important chloroacetamide herbi-
cides metolachlor and dimethenamid, has been reported by enzymatic transamination of
methoxyacetone using isopropylamine as the donor [67].

1.5.11 Hydroxynitrile Lyases (EC 4.1.2.X)

Hydroxynitrile lyases (HNLs or oxynitrilases) catalyze C—C bond-forming reactions between
an aldehyde or ketone and cyanide to form enantiopure cyanohydrins (Figure 1.15), which are
versatile building blocks for the chiral synthesis of amino acids, hydroxy ketones, hydroxy
acids, amines and so on [68]. Screening of natural sources has led to the discovery of both
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(R)- and (S)-selective HNLs. A number of recombinant HNLs have also been expressed in E.
coli, Saccharomyces cerevisiae, and Pichia pastoris. Recently, protein engineering has been
successfully applied to the development of a tailor-made HNL for large-scale production of
specific cyanohydrins [69,70].

1.5.12 Aldolases (EC. xxxx)

Aldolases catalyze asymmetric aldol reactions via either Schiff base formation (type I aldolase)
or activation by Zn”>* (type II aldolase) (Figure 1.16). The most common natural donors of
aldoalses are dihydroxyacetone phosphate (DHAP), pyruvate/phosphoenolpyruvate (PEP),
acetaldehyde and glycine (Figure 1.17) [71]. When acetaldehyde is used as the donor,
2-deoxyribose-5-phosphate aldolases (DERAS) are able to catalyze a sequential aldol reaction
to form 2,4-didexoyhexoses [72,73]. Aldolases have been used to synthesize a variety of
carbohydrates and derivatives, such as azasugars, cyclitols and densely functionalized chiral
linear or cyclic molecules [74,75].

Schiff-base Mechanism

o o I/Enzyme HN/Enzyme R)J\H
x A Eemee oy N X A, & —
R4 Ry R1  aldol reaction
OH NI,Enzyme oOH O
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X X
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2 502
Q 2 o o4 RJ\ H
X\)J\/OH Zn X\)\/O\ D X\)\/O\
enzyme H H aldol reaction
2
Y i
X 0] X\)%EOH
R OH R OH
Figure 1.16

1.5.13 Glycosidases (EC. xxxx)

Glycosidases catalyze the hydrolysis of glycosidic linkages via an oxonium intermediate or
transition state similarly to acid-catalyzed hydrolysis of glycosides under either a retention of
the configuration at the anomeric center (Mechanism, Figure 1.18) or less common inversion.
The oxonium is presumably stabilized by a carboxylate group such as glutamic acid, acommon
structural motif in the active site of glycosidases [76]. Glycosidase-catalyzed synthesis of
glycosides can be achieved under either equilibrium-controlled conditions or kinetic-controlled
conditions [77-79]. In the former case, the reaction is established to shift the equilibrium toward a
product; for example, by adding organic solvents. In the latter case, activated glycosyl donors are
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used, which include di- or oligo-saccharides, aryl glycosides, glycosyl fluorides and so on [80].
Owing to greater promiscuity toward donors and wide availability, these enzymes were found to
have a wide range of applications in preparation of carbohydrates and derivatives [81-83].

1.5.14 Glycosyltransferase (EC. xxxx)

Glycosyltransferases (Gtfs) accept activated sugars such as uridine diphosphate (UDP)
nucleotide sugars or glycosyl phosphates as monosaccharide donors under either a retention
or inversion of the configuration at the anomeric center (Mechanism, Figure 1.19; only
inversion scenario shown). Recently, a number of Gtfs have been discovered to be quite
promiscuous, and used to synthesize many oligosaccharides, their derivatives or glycosylated
natural products, which are otherwise difficult to obtain [84—87]. For large-scale applications,
the main issue to be overcome is to recycle released nucleotide monophosphate (NMP) or
nucleotide diphosphate (NDP), which are expensive. Several methods have been re-
ported [88,89], and one utilizes sugar nucleotide pyrophosphorylase, which transfers the
sugar moiety of a sugar phosphate to a free uridine triphosphate (UTP) to regenerate the desired
UTP-sugar (Figure 1.19) [90]. The availability of a wide range of Gtfs and sugar donors also
provides a general strategy to synthesize glycosylated molecules in vivo through pathway
engineering and combinatorial biosynthesis. For example, novel macrocyclic polyketides have
been produced by applying a promiscuous Gtf from picromycin biosynthesis, which accepts a
wide range of sugar donors (Figure 1.19) [91,92].
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1.6 Conclusions

Biocatalysis has been practiced historically mostly by whole-cell systems, which limits its
applications due to low throughput and complex in vivo pathways. As a result of recent
advances in genomics and high-throughput screening, more and more diverse recombinant
enzymes are available in catalogs. Subsequently, a number of them have been successfully
applied to the commercial production of nonnatural molecules. More recently, biocatalysis is
emerging to be one of the greenest technologies for chemical synthesis [93,94]. Specifically,
biocatalysis can prevent waste generation by using catalytic processes with high stereo- and
region-selectivity, prevent or limit the use of hazardous organic reagents by using water as the
green solvent, design processes with higher energy efficiency and safer chemistry by con-
ducting reactions at room temperature under ambient atmosphere, and increase atom economy
by avoiding extensive protection and deprotection to maximize the use of renewable feedstock
designed for degradation.

Enzymes can catalyze transformations which are difficult to achieve by traditional chemical
methods. To truly realize the promise of this emerging technology for the pharmaceutical
industry, it is essential to integrate biocatalysis into drug discovery, development and
manufacturing. For drug production, the key relies on integration of enzymatic transformations
with modern chemical research and development at the retrosynthetic level to deliver efficient
and practical synthetic sequences with fewer synthetic steps and significantly reduced waste
streams [95,96].
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