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Preface

The chemistry of tin has now grown to the stage where a dedicated monograph can do little more than
trace the structure of the subject and provide a guide to the literature. We felt that authoritative, in-depth,
reviews were now needed of those branches, both pure and applied, where developments have been most
pronounced, and the present volume is the result. Each chapter, by specialists in the field, deals with one
important aspect of tin chemistry, and gives a detailed account of its present standing.

Both inorganic and organic aspects are covered, though progress has been most extensive in organotin
chemistry which is living up to its reputation of being studied by more techniques, and finding more
applications, than the organic derivatives of any other metal.

Advances in techniques include sophisticated NMR methods, both in solution and the solid-state,
and computational methods, and these, coupled with X-ray diffraction and other established methods,
have been applied to the study of a wide variety of structures. Topics covered in the book include
Sn(II) clusters, tin Zintl ions, Sn(II) heterobimetallic compounds, R3Sn+ cations, stannylenes (R2Sn:),
stannenes (R2Sn SnR2 and R2Sn CR2), stannynes (RSn SnR), organotin oxide, carboxylate and sul-
fonate clusters, dendrimers and macrocycles, organotin polymers, Sn-π interactions, unusual bondings
and structures, and compounds with non-linear optical properties.

Non-metallurgical uses of tin reflect the biological activity of organotin compounds, and the non-
toxicity of inorganic tin. Inorganic tin compounds are used in flame-retardants and smoke suppressants,
and SnO2 for coating glass (though usually deposited from organotin compounds). The principal use for
organotin compounds is still as a stabiliser for PVC, and a small but important application is as ionophores
in sensors, and as precursors for hybrid organic-inorganic nanometric materials. The use as marine anti-
foulants is being phased out because of its effect on other marine life, but organotin compounds are
showing promise as larvicides, insecticides, and fungicides, and, particularly, in cancer therapy.

Organotin compounds find wide applications in organic synthesis, and their dominance in some ho-
molytic mechanisms has been referred to as the tyranny of tin. In particular, tin hydrides still hold the field
in ring-closing cyclisations. The established use of organotin compounds as reactants has been developed
in carbon-carbon crosslinking catalysed by transition metals, in carbohydrate synthesis, in the conjugative
electrophilic substitution of allylstannanes, and in the of the reaction of allyltin compounds and organ-
otin phenoxides catalysed by lithium perchlorate. They are used as catalysts in a number of reactions,
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xviii Preface

particularly esterification and transesterification. Relatively new applications are in carbostannylation of
multiple bonds, and in the anionic capture of the intermediates from palladium-catalysed ring-closing
reactions.

At the same time, there can be concerns about the disposal of organotin residues, and of traces of
toxic organotin residues remaining in the products, and fluorous, polymer-bound, and solid-supported
organotin compounds are being increasingly used to avoid the problem.

We hope that the chapters of this book will enable readers to keep abreast of these rapidly developing
fields.

A. G. Davies, M. Gielen, K. H. Pannell, E. R. T. Tiekink
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Université de Nantes, France

Fabio Marchetti Dipartimento di Scienze Chimiche, University of Camerino, Italy

M. Mazhar Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan

Yoshiyuki Mizuhata Institute for Chemical Research, Kyoto University, Japan

Mónica Moya-Cabrera Instituto de Quı́mica, Universidad Nacional Autónoma de Mexico,
Mexico

Partha P. Nag Department of Chemistry, Indiana University, Bloomington, IN, USA

Mala Nath Department of Chemistry, Indian Institute of Technology Roorkee, India

Junzo Otera Department of Applied Chemistry, Okayama University of Science, Japan

Keith H. Pannell Department of Chemistry, University of Texas at El Paso, TX, USA

Sergio Pascual Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

Claudio Pettinari Dipartimento di Scienze Chimiche, University of Camerino, Italy

Vanja Pinoie High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium

Kevin Poelmans High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium
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Thierry Toupance Institut des Sciences Moléculaires, Groupe Matériaux, University of Bordeaux 1,
Institut des Sciences Moléculaires, France
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1
Introduction and Overview

1.1 Introduction

Alwyn G. Davies
Chemistry Department, University College London, UK

1.1.1 History, Occurrence, Production, and Applications

Tin has been known as a metal since time immemorial, and the discovery, in about 3500 bc, that it formed
a strong, hard alloy with copper, started the Bronze Age, which lasted until about 1200 bc.

The abundance of tin in the Earth’s surface is about 2 ppm, significantly less than that of zinc (94 ppm),
copper (63 ppm), or lead (12 ppm). The most important ore is cassiterite, SnO2, which occurs as placer
(alluvial) deposits. The breakdown of the current production of tin by area is shown in Figure 1.1.1.
About 75% of the world’s production comes from China and South East Asia, and about 18% from South
America, but the annual figures are sensitive to political, social, and economic factors.1

The cassiterite ore is obtained by dredging, open-cast mining, or gravel-washing, in which the ore is
washed out of the deposit with high-pressure jets of water. The cassiterite has a density 2.5 times that
of sand, and the ore is concentrated by gravity. It is roasted to remove arsenic and sulfur, and to convert
metal sulfides into oxides, then it is reduced by smelting with coal or fuel oil in a reverberatory, rotary,
or electric furnace (Equation 1.1.1).

SnO2 + 2CO −−−→ Sn + 2CO2 (1.1.1)

An increasing amount of tin is also being recovered, by melting, from food and drink cans and industrial
scrap.

In 2005 and 2006, the total annual production of refined tin was about 350 000 tonnes. At the time of
writing (April, 2008), demand exceeds supply, and the price of high-grade tin has just hit a record high
of US$22 150/tonne.

The applications of tin are shown in the pie chart in Figure 1.1.2.
About half the production of tin is used in solders, and this is increasing with the increasing production

of telecommunication and electronic equipment, and the need to eliminate lead, because of its toxicity.

Tin Chemistry: Fundamentals, Frontiers, and Applications Edited by Marcel Gielen, Alwyn Davies, Keith Pannell and Edward Tiekink
C© 2008 John Wiley & Sons, Ltd
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China 37.2%

Indonesia 23.2%

Malaysia 6.5%

Thailand 7.9%

Bolivia 4.0%

Brazil 2.5%

Peru 11.7%

Belgium 2.3%

Russia 1.1%

Other 3.7%

Figure 1.1.1 World production of tin

Conventional tin/lead solders have the approximate composition Sn63/Pb37 by weight, corresponding to
the eutectic mixture, which is close to Sn3Pb, with a melting point of 183 ◦C. Lead-free solders are often
composed of tin with 3–4% silver and 0.5–1% copper, and have a melting point of 215–220 ◦C.

Some 20% of the production of tin goes into tinplate, which is produced by hot-dipping or electroplating;
its use in canning has reduced because of the increasing competition from aluminium cans, and protective
polymer layers for steel cans.

As an alloy with lead, tin has been used also in pewters, for making organ pipes, and, alloyed with
copper, for making bronze. Babbitt metal, used in bearings, commonly contains about 90% of tin, together
with a small amount of harder metals such as copper or antimony.

About 14% of the production of tin goes into tin chemicals; a further breakdown is not possible because
of the commercial sensitivity of the information. Tin tetrachloride and butyltin trichloride are used for
coating glass with SnO2 (see Chapter 3.1), and float glass is produced on a molten pool of tin.

The first organotin compound, diethyltin dichloride, was prepared by Frankland in 1849 by heating
ethyl chloride with metallic tin, and this is often taken to mark the beginning of organometallic chemistry.
The first application of organotin compounds came in about 1943, when they were used first for the
stabilization of PVC against heat during processing, and a variety of industrial and biological applications
were subsequently developed, although, in recent years these have been somewhat curtailed by concerns
about toxicity.

Solders 49.7%

Tinplate 18.3%

Chemicals

14.1%

Brass and

bronze 5.6%

Glass 1.8%

Other 10.4%

Figure 1.1.2 Applications of tin
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Introduction 3

Table 1.1.1 Properties of tin

Property Value Property Value

Atomic number 50 Electronegativity 1.96 (Pauling)
Atomic mass 118.710 Atomic radius 1.45 pm
Melting point 232 ◦C Covalent radius 1.41 pm
Boiling point 2625 ◦C van der Waals radius 2.17 pm
Density (white tin) 5.769 g cm–3

Density (grey tin) 7.280 g cm–3

In the last half century, there has been much more research activity in the organometallic chemistry of
tin than in its inorganic chemistry, and this is reflected in the contents of this book.

1.1.2 The Element

Selected properties of the element are shown in Table 1.1.1. It is in Group 14 of the Periodic Table, with
the electronic configuration [Kr] 4d10 5s2 5p2; its principal valence state is Sn(IV), though Sn(II) inorganic
compounds are common, and many stannous organic compounds, with specially designed structures, have
been prepared in recent years. Tin has 10 stable isotopes (Table 1.1.2), which is the largest number for any
element, and results in very characteristic mass spectra. The 117Sn and 119Sn isotopes, each with spin 1/2,
are used in NMR spectroscopy. The γ-active 119mSn isotope, which is prepared by the neutron-irradiation
of enriched 118Sn, is used in Mössbauer spectroscopy.

Metallic tin exists in two allotropes. White tin, or β-tin, is a silvery-white, electrically conducting,
metal, with a distorted cubic structure. Below about 10 ◦C, it slowly coverts into grey tin, or α-tin, with
a 26% increase in volume, which creates excrescences on the surface, called tin pest or plague. α-Tin is
a semiconductor with a diamond structure, with �Hf = 2.51 kJ mol–1 compared with metallic tin.2

Table 1.1.2 Tin isotopes

Isotope Mass Abundance (%) Spin

112 111.90494 0.95 0

114 113.90296 0.65 0

115 114.90353 0.34 1/2

116 115.90211 14.24 0

117 116.90306 7.57 1/2

118 117.90179 24.01 0

119 118.90339 8.58 1/2

120 119.90213 32.97 0

122 121.90341 4.17 0

124 123.90524 5.98 0

Mass Spectrum

124112 114 116 118 120 122
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White tin is inert to air at room temperature, but at 200 ◦C it is oxidized to SnO2. Samples for
microanalysis for C, H, and N, by combustion in oxygen, are usually sealed in tin capsules. The heat of
combustion of the tin (�Hc = −142 kJ mol–1) raises the temperature from about 1000 ◦C to 1800 ◦C,
and the SnO2 which is formed acts as an oxidation catalyst.

Tin shows no reaction with water and dilute acids, but concentrated hydrochloric acid reacts to give
SnCl2 and hydrogen, and concentrated sulfuric acid gives SnSO4 and SO2. In ether, HCl gas reacts to
give solvated H2SnCl2, which, together with HSnCl3 from HCl and SnCl2, finds some use in organic
synthesis. Hot aqueous alkali, MOH, reacts to give M2[Sn(OH)6].

If electrons are added into the crystal structure, they lead to the breaking of the Sn–Sn bonds, each
atom carrying an unshared electron pair, and ultimately to the formation of isolated anionic clusters with
triangular faces (deltahedra), known as Zintl ions (e.g. 1 and 2; see Chapter 1.6).3 These compounds are
diamagnetic and poor conductors. They can be prepared either by reduction of tin with an alkali metal or
electrochemically, and are soluble in polar, basic solvents. For example, [Na+]4 [Sn9]4– can be prepared
from the reaction of tin with sodium in ethylenediamine, or in the presence of a crown ether to associate
with the sodium cations. The most common structure is a nine-atom cluster 2.4

Surprisingly little work appears to have been carried out on the reaction of these cluster anions with
organic electrophiles, but electrically neutral organotin clusters can be prepared, usually by the reduction
of organotin(II) compounds carrying bulky aryl groups. Examples are Sn5Ar6, with a propellane structure
(3), and Sn8Ar4 (4) and Sn8Ar8, with cubic structures.5

1.1.3 Structure and Bonding

Both the Sn(II) and Sn(IV) states are stable. The Sn(II) state uses mainly the 5p orbitals for bonding,
leaving the unshared singlet pair in the largely 5s state, with a little p character, and compounds SnX2

(5, the stannylenes) have an XSnX angle of about 90–100◦. These compounds are most stable when there
are strongly electron-attracting ligands, which make loss of the remaining electron pair more difficult
(e.g. :SnF2, :SnCl2), or when the ligands X are very bulky, and sterically protect the tin against further
ligation (e.g. :Sn[N(SiMe3)2]2). Otherwise, oxidation readily occurs to the Sn(IV) state, where the tin is
sp3 hybridized, and the SnX4 (8, stannane) molecule has tetrahedral symmetry.

However, both the stannylenes and the stannanes have vacant 5d orbitals, which can accept one or more
further ligands, The stannylenes readily form the pyramidal sp3 complexes :SnX3 (6), and the trigonal
bipyramidal sp3d complexes :SnX4 (7), and the stannanes form the trigonal bipyridamidal sp3d complexes
SnX5 (9) or octahedral sp3d2 complexes SnX6 (10). All of these may carry charges corresponding to the
charge of the new ligands X. These basic structures are often distorted, and higher coordination states
are sometimes formed.
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Structures of Sn(IV) compounds

The X groups themselves may act as these further ligands, resulting in intramolecular coordination, or,
particularly in condensed phases, intermolecular association, to give oligomers or polymers. A variety of
techniques are available for determining these structures [119mSn Mössbauer spectroscopy, 117Sn or 119Sn
NMR spectroscopy in the solid or liquid state (see Chapter 2.1),6 IR spectroscopy, X-ray diffraction etc.]
and structural studies have been a major aspect of inorganic and organic tin chemistry.

For example, in the vapor phase, Sn(II)F2 is a monomer with an FSnF angle of 94◦ (11),7 whereas,
in the solid state, it exists as cyclic tetramers, held together by weaker Sn–F interactions (12).8 Within
the ring, the average FSnF angle is 83.7◦, and outside the ring it is 82.8◦. In the gas-phase, Me3SnCl is a
tetrahedral monomer with rSnCl 2.306(3) Å; in solution, the monomer is in equilibrium with oligomers,
but in the crystal it is associated into a zig-zag polymer (13), with approximately trigonal bipyramidal
tin, and rSnCl 2.43 and 3.27 Å.9
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Some values of bond lengths and bond dissociation energies are given in Table 1.1.3, but it must be
emphasized that these are only indicative values, which are dependent on the physical state.

1.1.4 Organotin Compounds, RnSnm

The various known organotin species and their structures, where the tin is bonded to only carbon or tin,
and without functional groups, are shown in Table 1.1.4.

Stannane radical cations SnMe•+
4 (and SnH•+

4 ) have been generated in frozen Freon matrices by
irradiation with γ -rays. The ESR spectra, with the backing of MNDO and PM3 calculations, have been
interpreted as implying distortion of the tetrahedral structure of the stannane into a C3v configuration,
with an almost planar trigonal base, and one long one-electron SnMe bond. Alkylstannane radical anions
can be prepared by γ -irradiation of the stannane in a matrix of Me4Si, and arylstannane radical anions
by reduction with an alkali metal. The radical anion, Me4Sn•–, appears to have a trigonal bipyramidal
structure, with the unpaired electron located in an equatorial, largely sp2, orbital.
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Table 1.1.3 SnX bond lengths, dissociation energies, and stretching frequencies

Bond r/pm BDE/ kJ mol–1 ν/cm–1

Me3Sn H 171 322 ±17 1846
Me3Sn Me 218 295 ±17 526, 506
Me3Sn Et 220 281 —
Me3Sn CH CH2 212a 340 —
Me3Sn Ph 214b 358 241
Me3Sn SnMe3 277.6 291 192
R2Sn SnAr2 ca. 280 90c —
RSn SnR 267–307 — —
Me3SnCl 235.1 425 ±7 331
Me3SnBr 249 381 ±17 234
Me3SnI 272 320 ±17 189
Me3SnOH 196 488 ±17 3620 (OH)

aFor (CH CH2)4Sn. b For Ph4Sn. c For R = (Me3Si)2CH

Hypervalent pentaorganostannate anions, such as Me5Sn–, are formed when an organolithium com-
pound is added to a tetraorganostannane in the presence of a ligand to solvate the lithium cation. The
119Sn NMR signal occurs about 300 ppm upfield from that of the parent stannane. The six isomeric
PhnMe5−nSn− anions can be observed in equilibrium, and the NMR spectra imply that the anions have
a trigonal bipyramidal structure, with the phenyl groups in the apical positions.10 These anions are
formed particularly readily from the stannacyclopentanes and stannacyclopentadienes, perhaps because
ring strain is relieved by rehybridization of the tin.

The UV spectra of the oligostannanes, (R2Sn)n, show a strong absorption maximum, with a red shift
with increasing chain length. Conjugation between the σSnSn bonds produces a series of molecular orbitals
analogous to the π -orbitals of a conjugated polyene. The bonding orbitals have no nodes at the midpoints
of bonds, and an increasing number of nodes at the tin atoms; the antibonding orbitals have nodes at the
midpoints of bonds, and again an increasing number of nodes at tin. The HOMO has a node at each tin
atom, as shown in Table 1.1.4. A metal-like electronic band is formed, with the implication of useful
electronic and optical properties (see Chapter 3.8).11

The three-coordinate anion Ph3Sn– is pyramidal, with an average CSnC angle of 96.9◦, and the electron
pair in a predominantly sp3 orbital.12 The hindered SnSi-bonded anion, (But

2MeSi)3Sn–, is less pyramidal,
with average SiSnSi angles of 111.6◦, presumably because of the increased steric hindrance.13

Prolonged attempts to characterize free organotin cations culminated in 2003, in the isolation of the
tris(2,4,6-triisopropylphenyl)stannyl cation by the reaction shown in Equation (1.2) (see Chapter 2.7).14

(1.1.2)

The cation is planar about the tin, with the aryl rings twisted out of the plane, propeller-fashion, by an
average of 61.1◦; In the NMR spectrum, the value of δSn is 714. The SiSn-bonded cation (But

2MeSi)3Sn+

is similarly planar, and shows δSn at 2653 ppm.15


