Tin Chemistry Fundamentals, Frontiers, and Applications

Edited by

ALWYN G. DAVIES

University College London, UK

MARCEL GIELEN

Free University of Brussels VUB, Belgium

KEITH H. PANNELL

University of Texas at El Paso, USA

EDWARD R. T. TIEKINK

University of Texas at San Antonio, USA

Tin Chemistry

Tin Chemistry Fundamentals, Frontiers, and Applications

Edited by

ALWYN G. DAVIES

University College London, UK

MARCEL GIELEN

Free University of Brussels VUB, Belgium

KEITH H. PANNELL

University of Texas at El Paso, USA

EDWARD R. T. TIEKINK

University of Texas at San Antonio, USA

This edition first published 2008 © 2008 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Tin chemistry : fundamentals, frontiers, and applications / edited by Marcel Gielen . . . [et al.].
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-51771-0 (cloth : alk. paper) 1. Organotin compounds. I. Gielen, M. (Marcel), 1938– QD412.S7T56 2008
546'.686–dc22

2008010997

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN 9780470517710

Typeset in 10/12pt Times by Aptara, New Delhi, India Printed in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire Dedicated to the memory of Des Cunningham, 1942–2006

Contents

Preface		xvii	
Lis	List of Contributors		
1	Introduction and Overview	1	
	1.1 Introduction	1	
	Alwyn G. Davies		
	1.1.1 History, Occurrence, Production, and Applications	1	
	1.1.2 The Element	3	
	1.1.3 Structure and Bonding	4	
	1.1.4 Organotin Compounds, $R_n Sn_m$	5	
	1.1.5 Organotin Compounds With Electronegative Ligands, R _n SnX _{4-n}	9	
	1.1.6 Preparation of Organotin(IV) Compounds	10	
	1.1.7 Preparation of Organotin Compounds in Lower Valence States	13	
	1.1.8 Literature	13	
	References	14	
2	Fundamentals in Tin Chemistry	17	
	2.1 NMR Spectroscopy of Tin Compounds	17	
	Bernd Wrackmeyer		
	2.1.1 Introduction	17	
	2.1.2 Experimental	17	
	2.1.3 Nuclear Spin Relaxation	20	
	2.1.4 Chemical Shifts δ^{119} Sn	21	
	2.1.5 Indirect Nuclear Spin–Spin Coupling Constants ⁿ J(¹¹⁹ Sn,X)	39	
	References	45	
	2.2 Tin(II) Clusters	53	
	Tristram Chivers and Dana J. Eisler		
	2.2.1 Introduction	53	

2.2.2 In	nidotin Cubane Clusters	53
2.2.3 T	he Seco-Cubane Sn ₃ (µ ₃ -NtBu)(µ-NtBu)(µ-NHtBu) ₂	60
2.2.4 D	ouble-Cubane Clusters	61
2.2.5 II	nidotin Chalcogenides	62
2.2.6 P	hosphido- and Arsenido-Tin Clusters	65
2.2.7 S	ummary and Future Prospects	66
Referen	ces	66
2.3 Mono-O	Organotin Oxo-Clusters	69
Francoi	s Ribot	
2.3.1 II	troduction	69
2.3.2 N	lolecular Structures	70
2.3.3 S	vntheses and Formation Mechanisms	78
2.3.4 C	onclusions	89
Acknow	ledgments	90
Referen	ces	90
2.4 Organo	in Carboxylate and Sulfonate Clusters	93
Vadapa	li Chandrasekhar. Puja Singh, and Kandasamv Gopal	
2.4.1 II	troduction	93
2.4.2 C	rganotin Carboxylates	93
2.4.3 C	rganotin Sulfonates	105
2.4.4 C	onclusion	113
Acknow	ledgments	114
Referen	ces	114
2.5 Macroc	velic and Supramolecular Chemistry of Organotin(IV)	
Compo	inds	117
Herbert	Höpfl	
2.5.1 II	troduction	117
2.5.2 N	letallosupramolecular Chemistry with Tin	117
2.5.3 F	ormation of Tin Macrocycles and Extended Networks	120
2.5.4 C	onclusions and Perspectives	133
Acknow	vledgments	133
Referen	ces	133
2.6 Deltahe	dral Zintl Ions of Tin: Synthesis, Structure, and Reactivity	138
Slavi C.	Sevov	
2.6.1 In	troduction	138
2.6.2 B	ackground	138
2.6.3 G	eometry, Charge, Electron Count, and Electronic Structure	140
2.6.4 R	eactions With Nine-Atom Deltahedral Zintl Anions of Tin	143
2.6.5 S	olution Studies by NMR	148
2.6.6 C	oncluding Remarks	150
Acknow	ledgments	150
Referen	ces	150
2.7 Stable S	tannylium Cations in Condensed Phases	152
Joseph .	B. Lambert	
2.7.1 Ir	troduction	152
2.7.2 P	entacoordination (Trigonal Pyramids)	154
2.7.3 T	etracoordination: Binding with Solvent or Anion	155

	2.7.4 Tricoordination: NMR Evidence for Free Stannylium Ions	156
	2.7.5 Tricoordination: Crystallographic Evidence and Computational	
	Confirmation of Free Stannylium Ions	157
	2.7.6 Summary	158
	References	159
2.8	Preparation and Coordination Chemistry of Mono- and Bidentate Benzannulated	
	N-Heterocyclic Stannylenes Including Some Germanium and Lead Analogs	160
	Alexander V. Zabula and F. Ekkehardt Hahn	
	2.8.1 Introduction	160
	2.8.2 Stable N-Heterocyclic Stannylenes, Germylenes, and Plumbylenes	160
	2.8.3 Complexes of Bidentate N-Heterocyclic Germylenes and Stannylenes	166
	References	174
2.9	Stannenes, Distannenes, and Stannynes	177
	Yoshiyuki Mizuhata and Norihiro Tokitoh	
	2.9.1 Introduction	177
	2.9.2 Distannenes (Sn=Sn)	177
	2.9.3 Stannenes (Sn=C)	183
	2.9.4 Silastannenes (Si=Sn) and Germastannenes (Ge=Sn)	193
	2.9.5 Stannynes (Sn \equiv C)	195
	2.9.6 Distannynes (Sn=Sn) and Their Reduced Species	196
	References	198
2.10	Tetraorganodistannoxanes: Simple Chemistry From a Personal Perspective	201
	Klaus Jurkschat	
	2.10.1 Introduction	201
	2.10.2 Unsymmetrically Substituted Tetraorganodistannoxanes	202
	2.10.3 Looking for the Third Dimension	209
	2.10.4 Variation of R	212
	2.10.5 Variation of Spacer Z	212
	2.10.6 Variation of the Electronegative Substituents X and Y	221
	2.10.7 Miscellaneous	221
	Acknowledgments	229
	References	229
2.11	Unusual Bonds and Coordination Geometries	231
	Mónica Moya-Cabrera, Vojtech Jancik and Raymundo Cea-Olivares	
	2.11.1 Introduction	231
	2.11.2 Unusual Bonds	231
	2.11.3 Unusual Coordination Geometries	241
	References	247
2.12	Tin(II) Heterobimetallic and Oligometallic Derivatives	251
	Muhammad Mazhar and Imtiaz-ud-Din	
	2.12.1 Introduction	251
	2.12.2 General Synthetic Procedures	254
	2.12.3 Characterization Techniques	256
	2.12.4 Stoichiometric and Structural Aspects of Tin(II) Heterobimetallic	
	and Oligometallic Compounds	258
	2.12.5 Conclusion	267
	References	267

x Contents

	2.13 Computational Methods for Organotin Compounds	269
	Sarah R. Whittleton, Russell J. Boyd, and T. Bruce Grindley	
	2.13.1 Introduction	269
	2.13.2 Relativistic Effects in Heavy Elements	269
	2.13.3 Effective Core Potentials	270
	2.13.4 Other Computational Methods Available for Tin	271
	2.13.5 Current State of Computational Organotin Chemistry	272
	2.13.6 Structure Prediction	272
	2.13.7 Reaction Pathways and Mechanisms	274
	2.13.8 Thermochemistry	276
	2.13.9 Bond Strengths and Bond Dissociation Enthalpies	276
	2.13.10 Spectroscopic and Related Properties	277
	2.13.11 Conclusion	278
	Acknowledgments	278
	References	279
3	Materials Chemistry and Structural Chemistry of Tin Compounds	285
	3.1 Tin Compounds For CVD (Chemical Vapor Deposition)	285
	Geraldo M. de Lima	
	3.1.1 Introduction	285
	3.1.2 General Aspects of CVD	285
	3.1.3 Organometallic Chemical Vapor Deposition (MOCVD)	287
	3.1.4 Tin Compounds For CVD	287
	3.1.5 Tin(IV) Oxide and Related Materials	287
	3.1.6 Tin Sulfides	290
	3.1.7 Tin(II) Selenide and Telluride	291
	3.1.8 Tin (IV) Phosphide	292
	3.1.9 Tin Alloys	292
	3.1.10 Summary	292
	References	293
	3.2 Class II Tin-Based Hybrid Materials Prepared From Alkynyltin Precursors	296
	Thierry Toupance	
	3.2.1 Introduction	296
	3.2.2 Functionalization of Oxide Surfaces	297
	3.2.3 Self-Assembled Tin-Based Hybrid Materials	301
	3.2.4 Nanoporous Nanostructured Tin Dioxide Materials	306
	3.2.5 Conclusion	309
	Acknowledgments	310
	References	310
	3.3 Organotin Compounds as PVC Stabilizers	312
	Esen Arkis	
	3.3.1 Introduction	312
	3.3.2 Types of Organotin Stabilizers	313
	3.3.3 Tin Carboxylates	314
	3.3.4 Tin Mercaptides	315
	3.3.5 The Mechanism of Stabilization	315

	3.3.6 Operational Considerations	317
	3.3.7 Evaluating Stability	320
	3.3.8 Conclusion	322
	References	323
3.4	Organotin Compounds as Anion-Selective Carriers in Chemical Sensors	324
	Nikos Chaniotakis	
	3.4.1 Introduction to Chemical Sensors	324
	3.4.2 Potentiometric Ion Selective Electrodes (ISEs)	324
	3.4.3 The Ionophores	326
	3.4.4 Organotin-Mediated Anion Partitioning into Liquid Polymeric	
	Membranes	326
	3.4.5 Anion Selective Organotin-based ISEs	329
	3.4.6 Conclusions	336
	References	337
3.5	Tin Compounds as Flame Retardants and Smoke Suppressants	339
	Paul A. Cusack	
	3.5.1 Introduction	339
	3.5.2 Tin Treatments For Fibers	339
	3.5.3 Zinc Stannates	340
	3.5.4 Recent Developments	343
	3.5.5 Fire-Retardant Mechanism	346
	3.5.6 Summary	348
	References	348
3.6	Quadratic Non-Linear Optical Properties of Tin-Based Coordination Compounds	351
	Pascal G. Lacroix and Norberto Farfán	
	3.6.1 Introduction	351
	3.6.2 Basic Concepts of Quadratic Non-Linear Optics	351
	3.6.3 Tin-Based Materials in Quadratic Non-Linear Optics	352
	3.6.4 Concluding Remarks	358
	Acknowledgments	359
	References	359
3.7	Monoorganotin Precursors For Hybrid Materials	361
	Bernard Jousseaume	
	3.7.1 Introduction	361
	3.7.2 Functional Trialkynylorganotins	361
	3.7.3 Bridged Ditins	368
	3.7.4 Conclusion	374
	Acknowledgments	374
• •	References	374
3.8	Organotin Polymers and Related Materials	376
	Hemant K. Sharma and Keith H. Pannell	256
	3.8.1 Introduction	376
	3.8.2 Synthesis of Linear Oligostannanes	376
	3.8.3 Synthesis of Polystannanes	378
	3.8.4 Properties of Polystannanes	381
	3.8.5 Polymers with 1 in in the Backbone	386

	3.8.6 Polymers with Tin as a Pendant Group	388
	Acknowledgments	389
	References	389
	3.9 Intermolecular Tin π -Aryl Interactions: fact or artifact? A New Bonding Motif	
	For Supramolecular Self-Assembly in Organotin Compounds	392
	Ionel Haiduc, Edward R. T. Tiekink, and Julio Zukerman-Schpector	
	3.9.1 Introduction	392
	3.9.2 Discussion	393
	3.9.3 Conclusions and Outlook	409
	Acknowledgments	409
	References	409
4	Medicinal/Biocidal Applications of Tin Compounds and Environmental Aspects	413
	4.1 The Cardiovascular Activity of Organotin Compounds	413
	Mala Nath	
	4.1.1 Introduction	413
	4.1.2 Cardiovascular Activity of Organotin Compounds	414
	4.1.3 Conclusion	425
	References	427
	4.2 Organotins: Insecticidal/Larvicidal Activities and Quantitative	
	Structure–Activity Relationships	430
	George Eng and Xueqing Song	
	4.2.1 Overview: Organotins	430
	4.2.2 Larvicidal/Insecticidal Activities	430
	4.2.3 Quantitative Structure–Activity Relationships	435
	4.2.4 Food For Thought	439
	References	439
	4.3 Anti-Fungal Activity of Organotin Compounds	443
	Heloisa Beraldo and Geraldo M. de Lima	
	4.3.1 Introduction	443
	4.3.2 Biological Applications of Organotin Compounds	443
	4.3.3 Fungi and Fungal Infections	443
	4.3.4 Mechanisms of Biological Action of Organotin Compounds	444
	4.3.5 Structure–Activity Relationships	445
	4.3.6 Anti-Fungal Screening	446
	4.3.7 Conclusions	452
	References	452
	4.4 Chemical and Biotechnological Developments in Organotin Cancer Chemotherapy	454
	Claudio Pettinari and Fabio Marchetti	
	4.4.1 Introduction	454
	4.4.2 Developments in the Design of Organotin Anti-Cancer Compounds	455
	4.4.3 Conclusion	465
	Reterences	465
	4.5 Impact of Organotin Compounds on the Function of Human Natural Killer Cells Margaret M. Whalen	469
	4.5.1 Introduction	469

	4.5.2	Effects of n-butyltin Chlorides on Human NK Cell Function: Tri-n-Butyltin	
		Chloride (TBTC)	470
	4.5.3	Di-n-Butyltin Chloride (DBTC)	472
	4.5.4	Effects of Trimethyltin Chloride (TMTC) on Human NK Cell Function	474
	4.5.5	Effects of Dimethylphenyltin Chloride (DMPTC) on Human NK Cell Function	475
	4.5.6	Effects of Methyldiphenyltin Chloride (MDPTC) on Human NK Cell Function	475
	4.5.7	Effects of Triphenyltin Chloride (TPTC) on Human NK Cell Function	476
	4.5.8	Summary	477
	Refer	ences	479
4.6	Biologia	cal Aspects of Organotins: Perspectives in Structural and Molecular Biology	482
	Hiram I	Beltrán, Rosa Santillan and Norberto Farfán	
	4.6.1	Introduction	482
	4.6.2	Interaction of Organotin Compounds with Biological Systems and Mimic	
		Xenobiotics	482
	4.6.3	Interaction of Organotin Compounds in Real and Model Membranes	484
	4.6.4	Roles of Organotin Compounds in Cell Function	488
	4.6.5	Aspects of Organotins in Structural and Molecular Biology	491
	4.6.6	Perspectives	492
	Ackn	owledgments	492
	Refer	ences	492
Tin i	n Organ	ic Synthesis	497
5.1	Applica	tions of Organotin Derivatives for Carbohydrate Synthesis	497
	T. Bruce	e Grindley	
	5.1.1	Introduction	497
	5.1.2	Preparation	498
	5.1.3	Structures	500
	5.1.4	Reactions	504
	Refer	ences	512
5.2	Reaction	ns of S_E' Substitution for Organostannanes in Organic Synthesis	515
	David R	P. Williams, and Partha P. Nag	
	5.2.1	Introduction	515
	5.2.2	Mechanistic Considerations and a Predictive Model	
		for Reactions with Aldehydes	516
	5.2.3	Allylation Reactions of Substrate Control	519
	5.2.4	Allylation Reactions Exhibiting α -Chelation Control	521
	5.2.5	Allylation Reactions Exhibiting β -Chelation Control	524
	5.2.6	Reactions of γ -(Alkoxy)allylstannanes	526
	5.2.7	Reactions of Oxocarbenium Cations	527
	5.2.8	Reactions of N-Acyliminium Cations	531
	5.2.9	Reactions with α , β -Unsaturated Carbonyl Compounds	532
	5.2.10	Reactions of Allylic Stannanes with Imines	533
	5.2.11	Transmetalation Reactions of Allylic Stannanes	535
	5.2.12	Reactions of Chiral Allylic Stannanes	541
	5.2.13	Reactions of Allenylstannanes	543
	5.2.14	Transmetalation Reactions of Allenylstannanes	547

5

5.2.15 Reactions of Propargylic Stannanes	550
5.2.16 Enantioselective Reactions with Chiral Lewis Acids	552
5.2.17 Conclusion and Future Outlook	555
References	556
5.3 Cross-Coupling of Organotin Compounds for Carbon—Carbon	
Bond Formation	561
Pablo Espinet and Miroslav Genov	
5.3.1 Introduction	561
5.3.2 Mechanistic Aspects and Consequences	561
5.3.3 Catalysts and Ligands	564
5.3.4 Ligandless Coupling	570
5.3.5 Copper Effect	571
5.3.6 Microwave-Assisted Reactions	572
5.3.7 Natural Product Synthesis	574
5.3.8 Conclusion	575
References	575
5.4 Stille Cross-Coupling for the Synthesis of Natural Products	579
Sergio Pascual and Antonio M. Echavarren	
5.4.1 Introduction	579
5.4.2 Alkenyl–Alkenyl Stille Coupling	579
5.4.3 Alkenyl–Alkynyl Stille Coupling	587
5.4.4 Alkenyl–Aryl Stille Coupling	587
5.4.5 Aryl–Aryl Stille Coupling	593
5.4.6 sp ³ –sp ² Coupling Reactions	594
5.4.7 Couplings for the Synthesis of Ketones	599
5.4.8 Summary and Outlook	600
References	602
5.5 New Trends in the Synthesis of Solid-Supported Organotin Reagents and Interest of	
their Use in Organic Synthesis in a Concept of Green Chemistry	607
Jean-Mathieu Chrétien, Jeremy D. Kilburn, Françoise Zammattio, Erwan Le	607
Grognec, and Jean-Paul Quintard	
5.5.1 Introduction	607
5.5.2 Removal of Tin Residues by Partition between Two Phases	608
5.5.3 Solid-Supported Organotin Reagents	608
5.5.4 Use of Supported Organotins in Organic Synthesis	613
5.5.5 Perspectives and Conclusions	617
References	618
5.6 Palladium-Catalyzed Cascade Cyclization-Anion Capture Processes Employing	(22
Pre- and In Situ-Formed Organostannanes	622
Ron Grigg and Visuvanathar Sridharan	(22
5.6.1 Introduction	622
5.0.2 Mono-Cyclization-Anion Capture Processes	623
5.0.5 BIS-Cyclization-Anion Capture Processes	030
5.6.5 Summary	634
J.U.J SUMMARY	620
Kelelences	038

5.7 Carbostannylation of Carbon—Carbon Unsaturated Bonds	640
Eiji Shirakawa	
5.7.1 Introduction	640
5.7.3 Carbostannylation of Alkynes	641
5.7.4 Carbostannylation of Alkenes	647
5.7.5 Carbostannylation of Dienes	650
5.7.6 Conclusion	651
References	651
5.8 Green Organotin Chemistry: an Oxymoron?	653
David Young	
5.8.1 Introduction	653
5.8.2 How Hazardous Are Organostannanes?	654
5.8.3 Removing Organotin By-Products	654
5.8.4 Modified Organotin Reagent for Easy Separation	656
5.8.5 Solid Phase Tin Reagents	659
5.8.6 Less Toxic Organotin Reagents	661
5.8.7 No-Tin Reagents	663
5.8.8 Conclusion	664
References	664
Tin in Catalysis	667
6.1 Green Organotin Catalysts	667
Junzo Otera, Monique Biesemans, Vanja Pinoie, Kevin Poelmans,	
and Rudolph Willem	
6.1.1 Introduction	667
6.1.2 Fluorous Distannoxane Catalysts	668
6.1.3 Grafted Organotin Catalysts	672
6.1.4 Conclusion	678
References	678
6.2 Organotin Catalysts for Isocyanate Reactions	681
Werner J. Blank and Edward T. Hessell	
6.2.1 Introduction	681
6.2.2 Mechanism of Urethane Catalysis by Tin Compounds	681
6.2.3 Structure of the Tin Catalyst	681
6.2.4 Mechanisms	682
6.2.5 Synergism of Tin Compounds with Amine Catalysts: DBDTL and	
1,4-Diazabicyclo[2.2.2]octane	685
6.2.6 Mechanism of Catalysis with Blocked Isocyanates	686
6.2.7 Organotin Catalyst Composition	686
6.2.8 Catalysis with Organotin Compounds	687
6.2.9 Applications	691
6.2.10 Blocked Isocyanates	694
6.2.11 Catalyst Interactions	696
6.2.12 Polymer Synthesis	696
6.2.13 Organotin Replacements	698
References	698

6

xvi Contents

6.3 Catalysis of Reactions of Allyltin Compounds and Organotin Phenoxides b	у
Lithium Perchlorate	701
Wojciech J. Kinart and Cezary M. Kinart	
6.3.1 Catalysis of Metalloene Reactions of Allylstannanes by Lithium Pe	rchlorate 701
6.3.2 Catalysis of reactions of triorganotin phenoxides with diethyl	
azodicarboxylate, bis(trichloroethyl) azodicarboxylate and diethyl	
acetylenedicarboxylate	709
References	719
Indon	701
Index	121

Preface

The chemistry of tin has now grown to the stage where a dedicated monograph can do little more than trace the structure of the subject and provide a guide to the literature. We felt that authoritative, in-depth, reviews were now needed of those branches, both pure and applied, where developments have been most pronounced, and the present volume is the result. Each chapter, by specialists in the field, deals with one important aspect of tin chemistry, and gives a detailed account of its present standing.

Both inorganic and organic aspects are covered, though progress has been most extensive in organotin chemistry which is living up to its reputation of being studied by more techniques, and finding more applications, than the organic derivatives of any other metal.

Advances in techniques include sophisticated NMR methods, both in solution and the solid-state, and computational methods, and these, coupled with X-ray diffraction and other established methods, have been applied to the study of a wide variety of structures. Topics covered in the book include Sn(II) clusters, tin Zintl ions, Sn(II) heterobimetallic compounds, R_3Sn^+ cations, stannylenes ($R_2Sn=SnR_2$ and $R_2Sn=CR_2$), stannynes (RSn=SnR), organotin oxide, carboxylate and sulfonate clusters, dendrimers and macrocycles, organotin polymers, $Sn-\pi$ interactions, unusual bondings and structures, and compounds with non-linear optical properties.

Non-metallurgical uses of tin reflect the biological activity of organotin compounds, and the nontoxicity of inorganic tin. Inorganic tin compounds are used in flame-retardants and smoke suppressants, and SnO_2 for coating glass (though usually deposited from organotin compounds). The principal use for organotin compounds is still as a stabiliser for PVC, and a small but important application is as ionophores in sensors, and as precursors for hybrid organic-inorganic nanometric materials. The use as marine antifoulants is being phased out because of its effect on other marine life, but organotin compounds are showing promise as larvicides, insecticides, and fungicides, and, particularly, in cancer therapy.

Organotin compounds find wide applications in organic synthesis, and their dominance in some homolytic mechanisms has been referred to as the tyranny of tin. In particular, tin hydrides still hold the field in ring-closing cyclisations. The established use of organotin compounds as reactants has been developed in carbon-carbon crosslinking catalysed by transition metals, in carbohydrate synthesis, in the conjugative electrophilic substitution of allylstannanes, and in the of the reaction of allyltin compounds and organotin phenoxides catalysed by lithium perchlorate. They are used as catalysts in a number of reactions,

xviii Preface

particularly esterification and transesterification. Relatively new applications are in carbostannylation of multiple bonds, and in the anionic capture of the intermediates from palladium-catalysed ring-closing reactions.

At the same time, there can be concerns about the disposal of organotin residues, and of traces of toxic organotin residues remaining in the products, and fluorous, polymer-bound, and solid-supported organotin compounds are being increasingly used to avoid the problem.

We hope that the chapters of this book will enable readers to keep abreast of these rapidly developing fields.

A. G. Davies, M. Gielen, K. H. Pannell, E. R. T. Tiekink

List of Contributors

Esen Arkis Izmir Department Institute of Technology, Chemical Engineering Department, Turkey

Hiram I. Beltrán Departamento de Ciencias Naturales, División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana – Cuajimalpa, Mexico

Heloisa Beraldo Inorganic Medicinal Chemistry Laboratory, Departamento de Química – Universidade Federal de Minas Gerais, Brazil

Monique Biesemans High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium

Werner J. Blank 89 Spectacle Lane, Wilton, CT, USA

Russell J. Boyd Department of Chemistry, Dalhousie University, Halifax, Canada

Raymundo Cea-Olivares Instituto de Química, Universidad Nacional Autónoma de Mexico, Mexico

Vadapalli Chandrasekhar Department of Chemistry, Indian Institute of Technology Kanpur, India

Nikos Chaniotakis Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete, Iraklion, Greece

Tristram Chivers Department of Chemistry, University of Calgary, Canada

Jean-Mathieu Chrétien Laboratoire de Synthèse Organique (LSO), UFR des Sciences et des Techniques, Université de Nantes, France

Paul A. Cusack Tin Technology, St. Albans, UK

xx List of Contributors

Alwyn G Davies Chemistry Department, University College London, UK

Geraldo M. de Lima Tin Chemistry Laboratory, Departamento de Química – Universidade Federal de Minas Gerais, Minas Gerais, Brazil

Antonio M. Echavarren Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

Dana J. Eisler Department of Chemistry, University of Calgary, Canada

George Eng Department of Chemistry and Physics, University of the District of Columbia, Washington, DC, USA

Pablo EspinetIU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid,Spain

Norberto Farfán Departamento de Química, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico

Miroslav Genov IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Spain

Kandasamy Gopal Department of Chemistry, Indian Institute of Technology Kanpur, India

Ron Grigg Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, UK

T. Bruce Grindley Department of Chemistry, Dalhousie University, Halifax, Canada

Imtiaz-ud-Din Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan

F. Ekkehardt Hahn Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Germany

Ionel Haiduc Department of Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania

Edward T. Hessell King Industries Inc. Norwalk, CT, USA

Herbert Höpfl Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Mexico

Vojtech Jancik Instituto de Química, Universidad Nacional Autónoma de Mexico, Mexico

Bernard Jousseaume Groupe Matériaux, Université Bordeaux 1, Talence, France

Klaus Jurkschat Lehrstuhl für Anorganische Chemie der Universität, Dortmund, Germany

Jeremy D. Kilburn School of Chemistry, University of Southampton, UK

Cezary M. Kinart Department of Chemistry, University of Łodz, Poland

Wojciech J. Kinart Department of Organic Chemistry, University of Łodz, Poland

Pascal G. Lacroix Laboratoire de Chimie de Coordination du CNRS, Toulouse, France

Joseph B. Lambert Department of Chemistry, Northwestern University, IL, USA

Erwan Le Grognec Laboratoire de Synthèse Organique (LSO), UFR des Sciences et des Techniques, Université de Nantes, France

Fabio Marchetti Dipartimento di Scienze Chimiche, University of Camerino, Italy

M. Mazhar Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan

Yoshiyuki Mizuhata Institute for Chemical Research, Kyoto University, Japan

Mónica Moya-Cabrera Instituto de Química, Universidad Nacional Autónoma de Mexico, Mexico

Partha P. Nag Department of Chemistry, Indiana University, Bloomington, IN, USA

Mala Nath Department of Chemistry, Indian Institute of Technology Roorkee, India

Junzo Otera Department of Applied Chemistry, Okayama University of Science, Japan

Keith H. Pannell Department of Chemistry, University of Texas at El Paso, TX, USA

Sergio Pascual Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

Claudio Pettinari Dipartimento di Scienze Chimiche, University of Camerino, Italy

Vanja Pinoie High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium

Kevin Poelmans High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium

Jean-Paul Quintard Laboratoire de Synthèse Organique (LSO), UFR des Sciences et des Techniques, Université de Nantes, France

François RiBOT Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, Paris

Rosa Santillan Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.

Slavi C. Sevov Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA

Hemant K. Sharma Department of Chemistry, University of Texas at El Paso, TX, USA

Eiji Shirakawa Department of Chemistry, Graduate School of Science, Kyoto University, Japan

Puja Singh Department of Chemistry, Indian Institute of Technology Kanpur, India

Xueqing Song Department of Chemistry and Physics, University of the District of Columbia, Washington, DC, USA

V. Sridrahan Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, UK

Edward R.T. Tiekink Department of Chemistry, The University of Texas at San Antonio, TX, USA

Norihiro Tokitoh Institute for Chemical Research, Kyoto University, Japan

Thierry Toupance Institut des Sciences Moléculaires, Groupe Matériaux, University of Bordeaux 1, Institut des Sciences Moléculaires, France

Margaret M. Whalen Department of Chemistry, Tennessee State University, Nashville, TN, USA

Sarah R. Whittleton Department of Chemistry, Dalhousie University, Halifax, Canada

Rudolph Willem High Resolution NMR Centre (HNMR), Vrije Universiteit Brussels, Belgium

David R. Williams Department of Chemistry, Indiana University, Bloomington, IN, USA

Bernd Wrackmeyer Anorganische Chemie II, Universität Bayreuth, Germany

David Young Eskitis Institute of Cell and Molecular Therapies, Griffith University, Queensland, Australia

Alexander V. Zabula Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Germany

Françoise Zammattio Laboratoire de Synthèse Organique (LSO), UFR des Sciences et des Techniques, Université de Nantes, France

Julio Zukerman-Schpector Department of Chemistry, Universidade Federal de Sáo Carlos, Brazil

1 Introduction and Overview

1.1 Introduction

Alwyn G. Davies Chemistry Department, University College London, UK

1.1.1 History, Occurrence, Production, and Applications

Tin has been known as a metal since time immemorial, and the discovery, in about 3500 BC, that it formed a strong, hard alloy with copper, started the Bronze Age, which lasted until about 1200 BC.

The abundance of tin in the Earth's surface is about 2 ppm, significantly less than that of zinc (94 ppm), copper (63 ppm), or lead (12 ppm). The most important ore is cassiterite, SnO₂, which occurs as placer (alluvial) deposits. The breakdown of the current production of tin by area is shown in Figure 1.1.1. About 75% of the world's production comes from China and South East Asia, and about 18% from South America, but the annual figures are sensitive to political, social, and economic factors.¹

The cassiterite ore is obtained by dredging, open-cast mining, or gravel-washing, in which the ore is washed out of the deposit with high-pressure jets of water. The cassiterite has a density 2.5 times that of sand, and the ore is concentrated by gravity. It is roasted to remove arsenic and sulfur, and to convert metal sulfides into oxides, then it is reduced by smelting with coal or fuel oil in a reverberatory, rotary, or electric furnace (Equation 1.1.1).

$$\operatorname{SnO}_2 + 2\operatorname{CO} \longrightarrow \operatorname{Sn} + 2\operatorname{CO}_2$$
 (1.1.1)

An increasing amount of tin is also being recovered, by melting, from food and drink cans and industrial scrap.

In 2005 and 2006, the total annual production of refined tin was about 350 000 tonnes. At the time of writing (April, 2008), demand exceeds supply, and the price of high-grade tin has just hit a record high of US\$22 150/tonne.

The applications of tin are shown in the pie chart in Figure 1.1.2.

About half the production of tin is used in solders, and this is increasing with the increasing production of telecommunication and electronic equipment, and the need to eliminate lead, because of its toxicity.

Tin Chemistry: Fundamentals, Frontiers, and Applications Edited by Marcel Gielen, Alwyn Davies, Keith Pannell and Edward Tiekink © 2008 John Wiley & Sons, Ltd

2 Tin Chemistry: Fundamentals, Frontiers and Applications

Figure 1.1.1 World production of tin

Conventional tin/lead solders have the approximate composition Sn63/Pb37 by weight, corresponding to the eutectic mixture, which is close to Sn₃Pb, with a melting point of 183 °C. Lead-free solders are often composed of tin with 3–4% silver and 0.5–1% copper, and have a melting point of 215–220 °C.

Some 20% of the production of tin goes into tinplate, which is produced by hot-dipping or electroplating; its use in canning has reduced because of the increasing competition from aluminium cans, and protective polymer layers for steel cans.

As an alloy with lead, tin has been used also in pewters, for making organ pipes, and, alloyed with copper, for making bronze. Babbitt metal, used in bearings, commonly contains about 90% of tin, together with a small amount of harder metals such as copper or antimony.

About 14% of the production of tin goes into tin chemicals; a further breakdown is not possible because of the commercial sensitivity of the information. Tin tetrachloride and butyltin trichloride are used for coating glass with SnO₂ (see Chapter 3.1), and float glass is produced on a molten pool of tin.

The first organotin compound, diethyltin dichloride, was prepared by Frankland in 1849 by heating ethyl chloride with metallic tin, and this is often taken to mark the beginning of organometallic chemistry. The first application of organotin compounds came in about 1943, when they were used first for the stabilization of PVC against heat during processing, and a variety of industrial and biological applications were subsequently developed, although, in recent years these have been somewhat curtailed by concerns about toxicity.

Figure 1.1.2 Applications of tin

Property	Value	Property	Value
Atomic number Atomic mass Melting point Boiling point Density (white tin) Density (grey tin)	50 118.710 232 °C 2625 °C 5.769 g cm ⁻³ 7.280 g cm ⁻³	Electronegativity Atomic radius Covalent radius van der Waals radius	1.96 (Pauling) 1.45 pm 1.41 pm 2.17 pm

Table 1.1.1Properties of tin

In the last half century, there has been much more research activity in the organometallic chemistry of tin than in its inorganic chemistry, and this is reflected in the contents of this book.

1.1.2 The Element

Selected properties of the element are shown in Table 1.1.1. It is in Group 14 of the Periodic Table, with the electronic configuration [Kr] $4d^{10}$ 5s² 5p²; its principal valence state is Sn(IV), though Sn(II) inorganic compounds are common, and many stannous organic compounds, with specially designed structures, have been prepared in recent years. Tin has 10 stable isotopes (Table 1.1.2), which is the largest number for any element, and results in very characteristic mass spectra. The ¹¹⁷Sn and ¹¹⁹Sn isotopes, each with spin $\frac{1}{2}$, are used in NMR spectroscopy. The γ -active ^{119m}Sn isotope, which is prepared by the neutron-irradiation of enriched ¹¹⁸Sn, is used in Mössbauer spectroscopy.

Metallic tin exists in two allotropes. White tin, or β -tin, is a silvery-white, electrically conducting, metal, with a distorted cubic structure. Below about 10 °C, it slowly coverts into grey tin, or α -tin, with a 26% increase in volume, which creates excressences on the surface, called tin pest or plague. α -Tin is a semiconductor with a diamond structure, with $\Delta H_f = 2.51$ kJ mol⁻¹ compared with metallic tin.²

Isotope	Mass	Abundance (%)	Spin
112	111.90494	0.95	0
114	113.90296	0.65	0
115	114.90353	0.34	1/2
116	115.90211	14.24	0
117	116.90306	7.57	1/2
118	117.90179	24.01	0
119	118.90339	8.58	1/2
120	119.90213	32.97	0
122	121.90341	4.17	0
124	123.90524	5.98	0

Table 1.1.2Tin isotopes

4 Tin Chemistry: Fundamentals, Frontiers and Applications

White tin is inert to air at room temperature, but at 200 °C it is oxidized to SnO₂. Samples for microanalysis for C, H, and N, by combustion in oxygen, are usually sealed in tin capsules. The heat of combustion of the tin ($\Delta H_c = -142 \text{ kJ mol}^{-1}$) raises the temperature from about 1000 °C to 1800 °C, and the SnO₂ which is formed acts as an oxidation catalyst.

Tin shows no reaction with water and dilute acids, but concentrated hydrochloric acid reacts to give $SnCl_2$ and hydrogen, and concentrated sulfuric acid gives $SnSO_4$ and SO_2 . In ether, HCl gas reacts to give solvated H₂SnCl₂, which, together with HSnCl₃ from HCl and SnCl₂, finds some use in organic synthesis. Hot aqueous alkali, MOH, reacts to give M₂[Sn(OH)₆].

If electrons are added into the crystal structure, they lead to the breaking of the Sn–Sn bonds, each atom carrying an unshared electron pair, and ultimately to the formation of isolated anionic clusters with triangular faces (deltahedra), known as Zintl ions (e.g. **1** and **2**; see Chapter 1.6).³ These compounds are diamagnetic and poor conductors. They can be prepared either by reduction of tin with an alkali metal or electrochemically, and are soluble in polar, basic solvents. For example, $[Na^+]_4 [Sn_9]^{4-}$ can be prepared from the reaction of tin with sodium in ethylenediamine, or in the presence of a crown ether to associate with the sodium cations. The most common structure is a nine-atom cluster **2**.⁴

Surprisingly little work appears to have been carried out on the reaction of these cluster anions with organic electrophiles, but electrically neutral organotin clusters can be prepared, usually by the reduction of organotin(II) compounds carrying bulky aryl groups. Examples are Sn_5Ar_6 , with a propellane structure (3), and Sn_8Ar_4 (4) and Sn_8Ar_8 , with cubic structures.⁵

1.1.3 Structure and Bonding

Both the Sn(II) and Sn(IV) states are stable. The Sn(II) state uses mainly the 5p orbitals for bonding, leaving the unshared singlet pair in the largely 5s state, with a little p character, and compounds SnX₂ (**5**, the stannylenes) have an XSnX angle of about 90–100°. These compounds are most stable when there are strongly electron-attracting ligands, which make loss of the remaining electron pair more difficult (e.g. :SnF₂, :SnCl₂), or when the ligands X are very bulky, and sterically protect the tin against further ligation (e.g. :Sn[N(SiMe₃)₂]₂). Otherwise, oxidation readily occurs to the Sn(IV) state, where the tin is sp³ hybridized, and the SnX₄ (**8**, stannane) molecule has tetrahedral symmetry.

However, both the stannylenes and the stannanes have vacant 5d orbitals, which can accept one or more further ligands, The stannylenes readily form the pyramidal sp^3 complexes :SnX₃ (6), and the trigonal bipyramidal sp^3d complexes :SnX₄ (7), and the stannanes form the trigonal bipyridamidal sp^3d complexes SnX₅ (9) or octahedral sp^3d^2 complexes SnX₆ (10). All of these may carry charges corresponding to the charge of the new ligands X. These basic structures are often distorted, and higher coordination states are sometimes formed.

Introduction 5

The X groups themselves may act as these further ligands, resulting in intramolecular coordination, or, particularly in condensed phases, intermolecular association, to give oligomers or polymers. A variety of techniques are available for determining these structures [^{119m}Sn Mössbauer spectroscopy, ¹¹⁷Sn or ¹¹⁹Sn NMR spectroscopy in the solid or liquid state (see Chapter 2.1),⁶ IR spectroscopy, X-ray diffraction etc.] and structural studies have been a major aspect of inorganic and organic tin chemistry.

For example, in the vapor phase, $Sn(II)F_2$ is a monomer with an FSnF angle of 94° (11),⁷ whereas, in the solid state, it exists as cyclic tetramers, held together by weaker Sn–F interactions (12).⁸ Within the ring, the average FSnF angle is 83.7°, and outside the ring it is 82.8°. In the gas-phase, Me₃SnCl is a tetrahedral monomer with *r*SnCl 2.306(3) Å; in solution, the monomer is in equilibrium with oligomers, but in the crystal it is associated into a zig-zag polymer (13), with approximately trigonal bipyramidal tin, and *r*SnCl 2.43 and 3.27 Å.⁹

Some values of bond lengths and bond dissociation energies are given in Table 1.1.3, but it must be emphasized that these are only indicative values, which are dependent on the physical state.

1.1.4 Organotin Compounds, R_nSn_m

The various known organotin species and their structures, where the tin is bonded to only carbon or tin, and without functional groups, are shown in Table 1.1.4.

Stannane radical cations $\text{SnMe}_4^{\bullet+}$ (and $\text{SnH}_4^{\bullet+}$) have been generated in frozen Freon matrices by irradiation with γ -rays. The ESR spectra, with the backing of MNDO and PM3 calculations, have been interpreted as implying distortion of the tetrahedral structure of the stannane into a C_{3v} configuration, with an almost planar trigonal base, and one long one-electron SnMe bond. Alkylstannane radical anions can be prepared by γ -irradiation of the stannane in a matrix of Me₄Si, and arylstannane radical anions by reduction with an alkali metal. The radical anion, Me₄Sn^{•-}, appears to have a trigonal bipyramidal structure, with the unpaired electron located in an equatorial, largely sp², orbital.

Bond	<i>r</i> /pm	BDE/ kJ mol ⁻¹	ν/cm^{-1}
Me ₃ Sn—H	171	322 ±17	1846
Me ₃ Sn—Me	218	295 ±17	526, 506
Me ₃ Sn—Et	220	281	_
$Me_3Sn-CH=CH_2$	212 ^a	340	_
Me ₃ Sn—Ph	214^{b}	358	241
Me_3Sn — $SnMe_3$	277.6	291	192
$R_2Sn=SnAr_2$	ca. 280	90 ^c	_
RSn ≕ SnR	267-307	_	_
Me ₃ SnCl	235.1	425 ±7	331
Me ₃ SnBr	249	381 ±17	234
Me_3SnI	272	320 ± 17	189
Me ₃ SnOH	196	488 ±17	3620 (OH)

 Table 1.1.3
 SnX bond lengths, dissociation energies, and stretching frequencies

^{*a*}For (CH=CH₂)₄Sn. ^{*b*}For Ph₄Sn. ^{*c*}For R = (Me₃Si)₂CH

Hypervalent pentaorganostannate anions, such as Me_5Sn^- , are formed when an organolithium compound is added to a tetraorganostannane in the presence of a ligand to solvate the lithium cation. The ¹¹⁹Sn NMR signal occurs about 300 ppm upfield from that of the parent stannane. The six isomeric $Ph_nMe_{5-n}Sn^-$ anions can be observed in equilibrium, and the NMR spectra imply that the anions have a trigonal bipyramidal structure, with the phenyl groups in the apical positions.¹⁰ These anions are formed particularly readily from the stannacyclopentanes and stannacyclopentadienes, perhaps because ring strain is relieved by rehybridization of the tin.

The UV spectra of the oligostannanes, $(R_2Sn)_n$, show a strong absorption maximum, with a red shift with increasing chain length. Conjugation between the σ_{SnSn} bonds produces a series of molecular orbitals analogous to the π -orbitals of a conjugated polyene. The bonding orbitals have no nodes at the midpoints of bonds, and an increasing number of nodes at the tin atoms; the antibonding orbitals have nodes at the midpoints of bonds, and again an increasing number of nodes at tin. The HOMO has a node at each tin atom, as shown in Table 1.1.4. A metal-like electronic band is formed, with the implication of useful electronic and optical properties (see Chapter 3.8).¹¹

The three-coordinate anion Ph_3Sn^- is pyramidal, with an average CSnC angle of 96.9°, and the electron pair in a predominantly sp³ orbital.¹² The hindered SnSi-bonded anion, $(Bu_2^tMeSi)_3Sn^-$, is less pyramidal, with average SiSnSi angles of 111.6°, presumably because of the increased steric hindrance.¹³

Prolonged attempts to characterize free organotin cations culminated in 2003, in the isolation of the tris(2,4,6-triisopropylphenyl)stannyl cation by the reaction shown in Equation (1.2) (see Chapter 2.7).¹⁴

$$Ar_{5}Sn \longrightarrow + E^{*} [B(C_{\theta}F_{5})_{4}]^{*} \longrightarrow Ar_{5}Sn^{*} [B(C_{\theta}F_{5})_{4}]^{*} + e^{E}$$

$$E^{*} = Et_{5}Si(C_{\theta}H_{\theta})^{*} \text{ or } Et_{5}SiCH_{2}CPh_{2}^{*}$$
(1.1.2)

The cation is planar about the tin, with the aryl rings twisted out of the plane, propeller-fashion, by an average of 61.1° ; In the NMR spectrum, the value of δSn is 714. The SiSn-bonded cation (Bu^t₂MeSi)₃Sn⁺ is similarly planar, and shows δSn at 2653 ppm.¹⁵