Scripting Intelligence

Web 3.0 Information Gathering
and Processing

Mark Watson

Apress-

Scripting Intelligence: Web 3.0 Information Gathering and Processing
Copyright © 2009 by Mark Watson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2351-1
ISBN-13 (electronic): 978-1-4302-2352-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries.

Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Michelle Lowman

Technical Reviewer: Peter Szinek

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Nina Goldschlager Perry

Associate Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Dina Quan

Proofreader: Liz Welch

Indexer: BIM Indexing & Proofreading Services

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

To Carol, Julie, David, Josh, Calvin, and Emily

Contents at a Glance

About the Author

.. XV
About the Technical Reviewer Xvii
ACKNOWIBdgMENES Xix
INtrodUCHiON XXi
PART 1 Text Processing
CHAPTER 1 Parsing Common Document Types............................... 3
CHAPTER 2 Cleaning, Segmenting, and Spell-Checking Text 19
CHAPTER 3 Natural Language Processing........................cooviinn... 35
PART 2 The Semantic Web
CHAPTER 4 Using RDF and RDFS Data Formats.............................. 69
CHAPTER 5 Delving Into RDF DataStores 95
CHAPTER 6 Performing SPARQL Queries and Understanding Reasoning 115
CHAPTER 7 Implementing SPARQL Endpoint Web Portals 133
PART 3 Information Gathering and Storage
CHAPTER 8 Working with Relational Databases 153
CHAPTER 9 Supporting Indexingand Search 175
CHAPTER 10 Using Web Scraping to Create Semantic Relations 205
CHAPTER 11 Taking Advantage of LinkedData 229
CHAPTER 12 Implementing Strategies for Large-Scale Data Storage.......... 247

PART 4

CHAPTER 13
CHAPTER 14
CHAPTER 15

PART 5

APPENDIX A
APPENDIX B
APPENDIX C

Information Publishing

CreatingWeb Mashups.. 269
Performing Large-Scale Data Processing....................... 281
Building Information Web Portals 303
Appendixes

Using the AMI with Book Examples............................. 337
Publishing HTML or RDF Based on HTTP Request Headers. 341
IntroducingRDFa................ 347

351

Contents

Aboutthe Author. o XV
About the Technical Reviewer Xvii
ACKNOWIBdgMENES Xix
INtrodUCHiON XXi

PART 1 Text Processing

CHAPTER 1 Parsing Common Document Types 3
Representing Styled Text............. il 3
Implementing Derived Classes for Different Document Types 6

Plain Text. ... 6
Binary DocumentFormats 6
HTMLand XHTML 7
OpenDocument. 10
RSS. . 11
AOM . 13
Handling Other File and Document Formats......................... 14
Handling PDF Files. 14
Handling Microsoft Word Files................................ 15
Other RESOUICES\ 15
GNU Metadata Extractor Library 15
FastTag Ruby Part-of-speech Tagger.......................... 16
WU .. 16

CHAPTER2 Cleaning, Segmenting, and Spell-Checking Text 19
Removing HTMLTaQS. ... 19
Extracting All Text from Any XML File 21

Using REXML. 21
Using Nokogirio 22
Segmenting Text 23
Stemming Text. ... 27

vii

viii

CONTENTS

CHAPTER 3

PART 2

CHAPTER 4

Spell-Checking Text 27
Recognizing and Removing Noise Characters from Text 29
Custom Text Processing.ooovuiii e 32
WrapUD . 33
Natural Language Processing.............................. 35
Automating Text Categorization 36
Using Word-Count Statistics for Categorization................. 37
Using a Bayesian Classifier for Categorization.................. 39
Using LSI for Categorization.................................. 42
Using Bayesian Classification and LSI Summarization 45
Extracting Entitiesfrom Text 46
Performing Entity Extraction Using Open Calais...................... 52
Automatically Generating Summaries 55
Determining the “Sentiment” of Text. 57
Clustering Text Documents 58
K-means Document Clustering 58
Clustering Documents with Word-Use Intersections............. 59
Combining the TextResource Class with NLP Code. 62
WrapUD .o 65

The Semantic Web

Using RDF and RDFS DataFormats........................ 69
Understanding RDF 70
Understanding RDFS.............. ... i 75
Understanding OWL. o 77
Converting Between RDF Formats 78
Working with the Protégé Ontology Editor. 79
Exploring Logic and Inference................. 82
Creating SPARQL QUEries.ot 83
Accessing SPARQL Endpoint Services.....................ooial. 85

Using the Linked Movie Database SPARQL Endpoint............. 87

Using the World Fact Book SPARQL Endpoint................... 90

WrapUD . 92

CHAPTER 5

CHAPTER 6

CONTENTS
Delving Into RDF Data Stores 95
Installing Redland RDF Ruby Bindings.............................. 95
Using the Sesame RDF Data Store................................. 99
Embedding Sesame in JRuby Applications......................... 105
Using the AllegroGraph RDF Data Store. 107
Testing with Large RDF Data Sets 109
Sources of Large RDF DataSets............................. 109
Loading RDF Data from UMBEL intoRedland 110
Loading SEC RDF Data from RdfAbout.com into Sesame. 11
Loading SEC RDF Data from RdfAbout.com into
AllegroGraph 112
Using Available Ontologies. ..., 113
WrapUD . 113
Performing SPARQL Queries and Understanding
Reasoning 115
Defining Terms. ... 115
URI . 115
RDF Literal...... ..o 116
RDF Typed Literal. 116
Blank RDFNode................co i 117
RDFTriple. ... 118
RDF Graph. ... 118
Comparing SPARQL Query Syntax 119
SPARQL SELECT Queriesccoiiiiiiinn.. 120
SPARQL CONSTRUCT Queriescovvivirininannn... 123
SPARQL DESCRIBE QUeriesccovvvniiaaanann... 124
SPARQL ASK QUENIES.ot 125
Implementing Reasoning and Inference 125
RDFS Inferencing: Type Propagation Rule for
Class Inheritance, 127
RDFS Inferencing: Type Propagation Rule for
Property Inheritance.................... 127
Using rdfs:range and rdfs:domain to Infer Triples 128
Combining RDF Repositories That Use Different Schemas. 130

WrapUD ..o 131

ix

CONTENTS

CHAPTER 7

PART 3

CHAPTER 8

CHAPTER 9

Implementing SPARQL Endpoint Web Portals............ 133
Designing and Implementing a Common FrontEnd 136
Designing and Implementing the JRuby and Sesame Back End. 138
Designing and Implementing the Ruby and Redland Back End. 140
Implementing a Ruby TestClient 142
Modifying the Portal to Accept New RDF Data in Real Time 142
Monkey-Patching the SesameBackend Class. 143
Monkey-Patching the RedlandBackend Class 143
Modifying the portal.rb Script to Automatically Load New
RDFFleS ... 144
Modifying the Portal to Generate Graphviz RDF Diagrams............ 145
WrapUD ..o 150

Information Gathering and Storage

Working with Relational Databases 153
Doing ORM with ActiveRecord. 154
Quick-Start Tutorial 155
One-to-Many Relationshipsc.oiiil. 156
Handling Transactions. ..., 158
Handling Callbacks and Observers in ActiveRecord. 159
Modifying Default Behavior 162
Using SAL Queries.t 164
AccessingMetadataL. 165
Doing ORM with DataMapper ..., 166
Quick-Start Tutorialo 167
Migrating to New Database Schemas 171
Using Transactions i, 172
Modifying Default Behavior 172
Handling Callbacks and Observers in DataMapper 173
WU ..o 174
Supporting Indexing and Search.......................... 175
Using JRuby and Lucenecooiiiiiiiii et 175
Doing Spatial Search Using Geohash.............................. 178
Using Solr Web Services. o i, 182

Using Nutch with Ruby Clients 184

CHAPTER 10

CHAPTER 11

CONTENTS

Using Sphinx with the Thinking Sphinx Rails Plugin................. 188
Installing Sphinx. o 188
Installing Thinking Sphinx................................... 189

Using PostgreSQL Full-TextSearch 192
Developing a Ruby Client Script 195
Integrating PostgreSQL Text Search with ActiveRecord 196

Using MySQL Full-TextSearch 198
Using MySQL SQL Full-Text Functions........................ 199
Integrating MySQL Text Search with ActiveRecord 202
Comparing PostgreSQL and MySQL Text Indexing

andSearch......... ... 204

WrapUD .. 204

Using Firebug to Find HTML Elements on Web Pages 206
Using scRUBY1! to Web-Scrape CJsKitchen.com.................... 209
Example Use of SCRUBYH! 209
Database Schema for Storing Web-Scraped Recipes........... 210
Storing Recipes from CJsKitchen.com in a Local Database. 211
Using Watir to Web-Scrape CookingSpace.com 213
Example Use of FireWatir................................... 213
Storing Recipes from CookingSpace.com in a
Local Databasecooiiiiiiii 214
Generating RDF Relations. il 218
Extending the ScrapedRecipe Class.......................... 218
Graphviz Visualization for Relations Between Recipes 219
RDFS Modeling of Relations Between Recipes................. 222
Automatically Generating RDF Relations Between Recipes 224
Publishing the Data for Recipe Relationsas RDF Data.......... 227
Comparing the Use of RDF and Relational Databases. 227
WrapUD ..o 228
Taking Advantage of Linked Data......................... 229
Producing Linked Data UsingD2R 230
Using Linked Data Sourcescoviviiiiiiniiin., 235
DBpedia.o 235
Freebase ... i 239
OpenCalais.co ot 242

WrapUD .. 246

Xi

Xii

CONTENTS

CHAPTER 12

PART 4

CHAPTER 13

CHAPTER 14

Implementing Strategies for Large-Scale

DataStorage ...l 247
Using Multiple-Server Databases................................. 247
Database Master/Slave Setup for PostgreSQL 247
Database Master/Slave Setup forMySQL 248
Database Sharding 249
Caching ... 250
Usingmemcached.co i 250
Using memcached with ActiveRecord 252
Using memcached with Web-Service Calls.................... 253
UsingCouchDB 255
Saving Wikipedia Articlesin CouchDB 258
Reading Wikipedia Article Data from CouchDB................. 259
UsSiNgAmazon S3. 260
Using Amazon EC2 i 263
WrapUD ..o 265

Information Publishing

Creating Web Mashups 269
Twitter Web APIS 270
Twitter APIOverview, 270
Using the Twitter Gem................., 270
Google MapS APISo 272
Google Maps APl Overview.ccoiiiiia.. 272
Using the YM4R/GM Rails Plugin. 274
An Example Rails Mashup Web Application 275
Place-Name Library........... o i 276
MashupController Classciiiii... 277
Handling Large COOKiesS, 278
RailsViewforaMap i, 279
WrapUD ..o 279
Performing Large-Scale Data Processing................ 281
Using the Distributed Map/Reduce Algorithm. 282

Installing Hadoop. ... 283

CHAPTER 15

PART 5

APPENDIX A

APPENDIX B

CONTENTS

Writing Map/Reduce Functions Using Hadoop Streaming 284
Running the Ruby Map/Reduce Functions 284
Creating an Inverted Word Index with the Ruby

Map/Reduce Functions 285
Creating an Inverted Person-Name Index with the
Ruby Map/Reduce Functions 288
Creating an Inverted Person-Name Index with Java
Map/Reduce Functions i 293
Running with LargerDataSets................................... 296
Running the Ruby Map/Reduce Example Using Amazon
Elastic MapReduce. i 298

WrapUD .. 301

Building Information Web Portals......................... 303

Searching for People’s Names on Wikipedia 303
Using the auto_complete Rails Plugin with a Generated

auto_complete_forMethod. 306
Using the auto_complete Rails Plugin with a Custom
auto_complete_for Method. 307

A Personal “Interesting Things” Web Application 309
Back-End Processing 310
RailsUserInterface ...l 319
Web-Service APIs Defined in the Web-Service Controller......... 328
SPARQL Endpoint for the Interesting Things Application 331
ScalingUp. ... 332

WrapUD ..o 333

Appendixes

Using the AMI with Book Examples....................... 337

Publishing HTML or RDF Based on HTTP
RequestHeaders.. 341

Returning HTML or RDF Data Depending on HTTP Headers 342
Handling Data Requests in a Rails Example 342

Xiii

Xiv CONTENTS

APPENDIXC IntroducingRDFa... 347
The RDFa Ruby Gem. i, 348
Implementing a Rails Application Using the RDFa Gem 349

About the Author

MARK WATSON is the author of 15 books on artificial intelligence (A),
software agents, Java, Common Lisp, Scheme, Linux, and user interfaces.
He wrote the free chess program distributed with the original Apple II
computer, built the world’s first commercial Go playing program, and
developed commercial products for the original Macintosh and for
Windows 1.0. He was an architect and a lead developer for the worldwide-
distributed Nuclear Monitoring Research and Development (NMRD)
project and for a distributed expert system designed to detect telephone
credit-card fraud. He has worked on the Al for Nintendo video games and
was technical lead for a Virtual Reality system for Disney. He currently works on text- and
data-mining projects, and develops web applications using Ruby on Rails and server-side Java.

Mark enjoys hiking and cooking, as well as playing guitar, didgeridoo, and the American
Indian flute.

XV

About the Technical Reviewer

PETER SZINEK is a freelance software developer. He left his Java job and
academic career a few years ago to hack on everything Ruby- and Rails-
related, and never looked back. He is the author of Ruby’s most popular
web-scraping framework, sScRUBYt! (http://scrubyt.org), whichis
featured in this book. After founding two startups, he started his own con-
sultancy called HexAgile (http://hexagile.com), which offers Ruby, Rails,
JavaScript, and web-scraping services. In addition to coding, he also
enjoys writing—namely, blogging at http://www.rubyrailways.com, work-
ing on the “AJAX on Rails” guide for the docrails project, and tweeting too
much. As one of the first members of the RailsBridge initiative (http://railsbridge.com), he
tries to expand and enrich the Rails community, one project at a time. He loves to travel and
chill out with his two-and-a-half-year-old daughter.

Xvii

Acknowledgments

Many people helped me with this book project. I would like to thank all of the open source
developers who wrote software that I used both for this book and in my work. My wife Carol
supported my efforts in many ways, including reviewing early versions to catch typos and
offering comments on general readability. My technical editor Peter Szinek made many use-
ful comments and suggestions, as did my editor Michelle Lowman. Project manager Beth
Christmas kept me on schedule and ensured that everything ran smoothly. Copy editor Nina
Goldschlager Perry helped me improve the general readability of my text. Production editor
Ellie Fountain made the final manuscript look good. I would also like to thank Apress staff who
helped, even though I did not directly interact with them: indexer Kevin Broccoli, proofreader
Liz Welch, compositor Dina Quan, and artist Kinetic Publishing.

Xix

Introduction

This book covers Web 3.0 technologies from a software developer’s point of view. While non-
techies can use web services and portals that other people create, developers have the ability
to be creators and consumers at the same time—by integrating their work with other people’s
efforts.

The Meaning of Web 3.0

Currently, there is no firm consensus on what “Web 3.0” means, so I feel free to define
Web 3.0 for the context of this book and to cover Ruby technologies that I believe will help
you develop Web 3.0 applications. I believe that Web 3.0 applications will be small, that they
can be constructed from existing web applications, and that they can be used to build new
web applications. Most Web 3.0 technologies will be important for both clients and services.
Web 3.0 software systems will need to find and “understand” information, merge information
from different sources, and offer flexibility in publishing information for both human read-
ers and other software systems. Web 3.0 applications will also take advantage of new “cloud”
computing architectures and rich-client platforms.

Web 3.0 also means you can create more powerful applications for less money by using
open source software, relying on public Linked Data sources, and taking advantage of third-
party “cloud” hosting services like Amazon EC2 and Google App Engine.

Reasons for Using Ruby

This book reflects a major trend in software development: optimizing the process by saving
programmer time rather than computing resources. Ruby is a concise and effective program-
ming language that I find ideal for many development tasks. Ruby code will probably never
run as fast as natively compiled Common Lisp or server-side Java—both of which I also use
for development. Ruby hits a sweet spot for me because much of the software that I write sim-
ply does not require high runtime performance: web scrapers, text-handling utilities, natural
language processing (NLP) applications, system-administration utilities, and low- or medium-
volume web sites and web portals.

There are other fine scripting languages. Python in particular is a widely used and effec-
tive scripting language that, like Ruby, also finds use in medium- and large-scale systems.
The choice of using Ruby for this book is a personal choice. I actually started using Python
before Ruby (and used ABC, a precursor to Python, back in ancient history). But once I started
using Ruby, I felt that I had happily concluded my personal search for a lightweight scripting
language to augment and largely replace the use of Common Lisp and Java in my day-to-day
development.

XXi

XXii

INTRODUCTION

Motivation for Developing Web 3.0 Applications

The world of information will continue to catch up in importance with the physical world.
While food, shelter, family, and friends are the core of our existence, we’re seeing tighter cou-
pling between the world of information and the physical aspects of our lives. As developers
of Web 3.0 technologies and beyond, we have the opportunity to help society in general by
increasing our abilities to get the information we need, make optimal decisions, and share
with the world both raw information and information-aggregation resources of our own
creation.

I consider Web 3.0 technologies to be an evolutionary advance from the original Web
and Web 2.0. The original Web is characterized by linked pages and other resources, whereas
Web 2.0 is commonly defined by supporting social networks and web-based systems that
in general utilize contributions from active users (I would also add the slow integration of
Semantic Web technologies to this definition). Only time will tell how Web 3.0 technologies
evolve, but my hope is that there will be a balance of support for both human users and soft-
ware agents—for both consuming and generating web-based information resources.

Evolution of the Web

The evolution of the Web has been greatly facilitated by the adoption of standards such as
TCP/IP, HTML, and HTTP. This success has motivated a rigorous process of standardization
of Semantic Web technologies, which you will see in Part 2 of this book. Examples from Part 3
take advantage of information resources on the Web that use standards for Linked Data. You
will also see the advantages of using standard web-service protocols in Part 4, when we look at
techniques for publishing information for both human readers and software agents.

The first version of the Web consisted of hand-edited HTML pages that linked to other
pages, which were often written by people with the same interests. The next evolutionary step
was database-backed web sites: data in relational databases was used to render pages based
on some interaction with human readers. The next evolutionary step took advantage of user-
contributed data to create content for other users. The evolution of the Web 3.0 platform will
support more automation of using content from multiple sources and generating new and
aggregated content.

I wrote this book specifically for software developers and not for general users of the Web,
so I am not going to spend too much time on my personal vision for Web 3.0 and beyond.
Instead, I will concentrate on practical technologies and techniques that you can use for
designing and constructing new, useful, and innovative systems that process information from
different sources, integrate different sources of information, and publish information for both
human users and software agents.

Book Contents

The first part of this book covers practical techniques for dealing with and taking advantage of
rich-document formats. I also present some of the techniques that I use in my work for deter-
mining the “sentiment” of text and automatically extracting structured information from text.
Part 2 covers aspects of the Semantic Web that are relevant to the theme of this book: discover-
ing, integrating, and publishing information.

INTRODUCTION Xxiii

Part 3 covers techniques for gathering and processing information from a variety of
sources on the Web. Because most information resources do not yet use Semantic Web tech-
nologies, I discuss techniques for automatically gathering information from sources that might
use custom or ad-hoc formats.

Part 4 deals with large-scale data processing and information publishing. For my own
work, I use both the Rails and Merb frameworks, and I will show you how to use tools like Rails
and Hadoop to handle these tasks.

Ruby Development

I am assuming that you have at least some experience with Ruby development and that you
have a standard set of tools installed: Ruby, irb, gem, and Rails. Currently, Ruby version 1.8.6 is
most frequently used. That said, I find myself frequently using JRuby either because I want to
use existing Java libraries in my projects or because I want to deploy a Rails web application
using a Java container like Tomcat, JBoss, or GlassFish. To make things more confusing, I'll
point out that Ruby versions 1.9.x are now used in some production systems because of better
performance and Unicode support. I will state clearly if individual examples are dependent on
any specific version of Ruby; many examples will run using any Ruby version.

Ruby provides a standard format for writing and distributing libraries: gems. I strongly
encourage you to develop the good habit of packaging your code in gem libraries. Because a
strong advantage of the Ruby language is brevity of code, I encourage you to use a “bottom-
up” style of development: package and test libraries as gems, and build up domain-specific
languages (DSLs) that match the vocabulary of your application domain. The goal is to have
very short Ruby applications with complexity hidden in DSL implementations and in tested
and trusted gem libraries.

I will use most of the common Ruby programming idioms and assume that you are
already familiar with object modeling, using classes and modules, duck typing, and so on.

Book Software

The software that I have written for this book is all released under one or more open source
licenses. My preference is the Lesser General Public License (LGPL), which allows you to use
my code in commercial applications without releasing your own code. But note that if you
improve LGPL code, you are required to share your improvements. In some of this book’s
examples, I use other people’s open source projects, in which cases I will license my example
code with the same licenses used by the authors of those libraries.

The software for this book is available in the Source Code/Download area of the Apress
web site at http://www.apress.com. I will also maintain a web page on my own web site
with pointers to the Apress site and other resources (see http://markwatson.com/books/
web3_book/).

To make it easier for you to experiment with the web-service and web-portal examples
in this book, have made an Amazon EC2 machine image available to you. You'll learn more
about this when I discuss cloud services. Appendix A provides instructions for using my
Amazon Machine Image (AMI) with the book examples.

XXiv

INTRODUCTION

Development Tools

I use a Mac and Linux for most of my development, and I usually deploy to Linux servers. I use
Windows when required by customers. On the Mac I use TextMate for writing small bits of
Ruby code, but I prefer IDEs such as RubyMine, NetBeans, and Intelli] IDEA, all of which offer
good support for Ruby development. You should use your favorite tools—there are no exam-
ples in this book that depend on specific development tools. It is worth noting that Microsoft
is making Ruby a supported language on the .NET Framework.

PART

Text Processing

Part 1 of this book gives you the necessary tools to process text in Web 3.0 applications.
In Chapter 1, you’ll learn how to parse text from common document formats and convert
complex file types to simpler types for easier processing. In Chapter 2, you’ll see how
to clean up text, segment it into sentences, and perform spelling correction. Chapter 3
covers natural language processing (NLP) techniques that you’ll find useful for Web 3.0
applications.

CHAPTER 1

Parsing Common Document
Types

Rich-text file formats are a mixed blessing for Web 3.0 applications that require general
processing of text and at least some degree of semantic understanding. On the positive side,
rich text lets you use styling information such as headings, tables, and metadata to identify
important or specific parts of documents. On the negative side, dealing with rich text is more
complex than working with plain text. You'll get more in-depth coverage of style markup in
Chapter 10, but I'll cover some basics here.

In this chapter, I'll introduce you to the TextResource base class, which lets you identify
and parse a text resource’s tagged information such as its title, headings, and metadata. Then
I'll derive several subclasses from it to help you parse text from common document formats
such as plain-text documents, binary documents, HTML documents, RSS and Atom feeds, and
more. You can use the code as-is or modify it to suit your own needs. Finally, I'll show you a
couple command-line utilities you can use to convert PDF and Word files to formats that are
easier to work with.

Representing Styled Text

You need a common API for dealing with text and metadata from different sources such as
HTML, Microsoft Office, and PDF files. The remaining sections in this chapter contain imple-
mentations of these APIs using class inheritance with some “duck typing” to allow the addition
of plug-ins, which I'll cover in Chapters 2 and 3. If certain document formats do not provide
sufficient information to determine document structure—if a phrase is inside a text head-
ing, for example—then the API implementations for these document types simply return no
information.

You want to identify the following information for each input document:

e Title
¢ Headings
e URI

You use the Ruby class TextResource to extract information from any text resource that
possibly has its title, headings, and metadata tagged. Here is the complete source listing for the
TextResource class:

4 CHAPTER 1 PARSING COMMON DOCUMENT TYPES

class TextResource
attr accessor :source uri
attr accessor :plain_text
attr accessor :title
attr accessor :headings 1
attr accessor :headings 2
attr accessor :headings 3
attr accessor :sentence_boundaries
attr accessor :categories
attr_accessor :place_names
attr_accessor :human_names
attr accessor :summary
attr accessor :sentiment rating # [-1..+1] positive number
implies positive sentiment
def initialize source uri="'
@source_uri = source uri
@title = "'
@headings 1 = []
@headings 2
@headings 3
end
def cleanup plain text text # just a placeholder until chapter 2
text
end
def process_text semantics! text # a placeholder until chapter 3
end
end

U} U}
— —
[E—

The most important things for you to notice are the attributes and the two placeholder
methods. I'll introduce the attributes in this chapter and delve into them further in Chapters
2 and 3, and I'll implement the cleanup_plain text and process text semantics methods in
Chapters 2 and 3, respectively.

Note The source code for this book contains a single gem library called text-resource that contains
all the code for the TextResource class and other examples developed in Chapters 1 through 3. You can
find the code samples for this chapter in the Source Code/Download area of the Apress web site (http://
WWW . apress. com).

You will never directly create an instance of the TextResource class. Instead, you will use
subclasses developed in the remainder of this chapter for specific document formats (see Fig-
ure 1-1). In Chapters 2 and 3, you will “plug in” functionality to the base class TextResouzrce.
This functionality will then be available to the subclasses as well.

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

TextResource
source_uri
plain_text
title
headings_1
headings_2
headings_3
sentence_boundaries
categories RssResource

human_names

/ place_names initialize

PlainTextResource summary RsResource.get_entries
__ sentiment_rating
initialize cleanup_plain_text
process_text_semantics AtomResource
initialize
HtmIXhtmiIResource AtomResource.get_entries
initialize
OpenDocumentResource
xml_handler
initialize
BinaryTextResource
00XmiHandler
initialize initialize

remove_noise_characters
remove_words_not_in_spelling_dictionary

Figure 1-1. TextResource base class and derived classes

The RssResource and AtomResource classes (see Figure 1-1) have static class factories for
creating an array of text-resource objects from RSS and Atom blog feeds. (You'll learn more
about RssResource and AtomResource in the corresponding subsections under the section
“Implementing Derived Classes for Different Document Types.”)

As a practical software developer, I consider it to be a mistake to reinvent the wheel when
good open source libraries are available for use. If existing libraries do not do everything that
you need, then consider extending an existing library and giving your changes back to the
community. I use the following third-party gem libraries in this chapter to handle ZIP files and
to parse RSS and Atom data:

e gem install rubyzip
e gem install simple-rss
e gem install atom

e gem install nokogiri

These libraries all work with either Ruby 1.8.6 or Ruby 1.9.1.

5

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

Implementing Derived Classes for Different
Document Types

In this section, I'll show you the implementations of classes that I'll derive from Ruby’s
TextResource class, each of which is shown in Figure 1-1. You can use these derived classes
to parse data from the corresponding document types.

Plain Text

The base class TextResource is abstract in the sense that it provides behavior and class attri-
bute definitions but does not handle any file types. In this section, I implement the simplest
derived class that you will see in this chapter: PlainTextResource. The implementation of this
class is simple because it only needs to read raw text from an input URI (which can be a local
file) and use methods of the base class:

class PlainTextResource < TextResource
def initialize source uri="'
super(source uri)
file = open(source uri)
@plain_text = cleanup plain text(file.read)
process_text semantics(@plain_text)
end
end

Except for reading text from a URI (web or local file), all other class behavior is imple-
mented from the TextResource superclass. You can use this PlainTextResource class for any
information sources in plain text or for structured data that is externally converted to plain
text.

Binary Document Formats

The class you use to parse binary documents differs from the class you use to parse plain-
text documents because you need to remove unwanted characters and words. The strategy
is to read a binary file as if it were text and then discard nonprinting (“noise”) characters
and anything that is not in a spelling dictionary. (You'll learn more about noise characters in
Chapter 2.)

Here’s the code for the BinaryTextResource class, which is also derived from the base class
TextResource:

class BinaryTextResource < TextResource
def initialize source uri="'
puts "++ entered BinaryPlainTextResource constructor"”
super(source uri)
file = open(source uri)
text = file.read
text = remove noise characters(text)
text = remove words not_in spelling dictionary(text)
@plain text = cleanup plain text(text)

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

process_text semantics(@plain text)
end
def remove noise characters text
text # stub: will be implemented in chapter 2
end
def remove words not in spelling dictionary text
text # stub: will be implemented in chapter 2
end
end

I'll implement the two stub methods (remove noise characters and remove words not
in_spelling dictionary) in Chapter 2 when I discuss strategies for cleaning up data sources.
(You'll also find the complete implementation in the code samples for this book on the Apress
web site.)

HTML and XHTML

There are several gem libraries for parsing HTML. I use the Nokogiri library in this chapter
because it also parses XML, which means it supports Extensible Hypertext Markup Language
(XHTML). So the example code in this section works for both HTML and XHTML. I will discuss
only the processing of “clean” HTML and XHTML here; Part 3 of the book covers how to pro-
cess information from web sites that contain advertisements, blocks of links to other web sites
that are not useful for your application, and so on. For those cases, you need to use custom,
site-specific web-scraping techniques.

Before showing you the derived class for parsing HTML and XHTML, I'll give you a quick
introduction to Nokogiri in which I use Nokogiri’s APIs to fetch the HTML from my web site
(I'll remove some output for brevity). Here’s a snippet from an interactive irb session:

irb(main):001:0> require 'nokogiri'

=> true

irb(main):002:0> require 'open-uri'

=> true

irb(main):003:0> doc = Nokogiri::HTML(open('http://markwatson.com"))

= ...

>> doc.class

=> Nokogiri::HTML: :Document

irb(main):004:0> (doc.public methods - Object.public_methods).sort

= ["/", "<«", "[]", "[]=", "add_child", "add next sibling",

"add_previous sibling", "after", "at", "attributes", "before", "blank?",
"cdata?", "child", "children", "collect namespaces", "comment?",

"content", "content=", "css", "css_path", "decorate", "decorate!", "decorators",
"document"”, "document=", "encode_special chars", "get attribute",
"has_attribute?", "html?", "inner_html", "inner_ text", "internal subset",
"key?", "name=", "namespaces", "next", "next sibling", "node cache",

"parent=", "path", "pointer_id", "previous_sibling", "remove", "remove attribute",
"replace", "root", "root=", "search", "serialize", "set attribute", "slop!",
"text", "to html", "to xml", "traverse", "unlink", "xml?", "xpath"]

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

I suggest that you try the preceding example yourself and experiment with the methods
for the Nokogiri: :HTML: :Document class listed at the end of the snippet. (I'll show you portions
of irb sessions throughout this book.)

In order to extract all of the plain text, you can use the inner_text method:

irb(main):005:0> doc.inner text
=> "Mark Watson, Ruby and Java Consultant and Author\n .. "

The plain text contains new-line characters and generally a lot of extra space characters
that you don’t want. In the next chapter, you'll learn techniques for cleaning up this text; for
now, the TextResource base class contains a placeholder method called cleanup_plain_text
for cleaning text. Nokogiri supports XML Path Language (XPath) processing, DOM-style
processing, and Cascading Style Sheets (CSS) processing. I'll start with the DOM (Document
Object Model) APIs. I am assuming that you are also using irb and following along, so I am
showing only the output for the first child element and the inner text of the first child element:

irb(main):006:0> doc.root.children.each {|node| pp node; pp node.inner text }
#<Nokogiri: :XML::Element:0x32f618
@document=
#<Nokogiri: :HTML: :Document:0x104e4cO
@decorators=nil,
@node_cache=
{23674064=>
#<Nokogiri::XML::Element:0x32f2f8
@document=#<Nokogiri: :HTML: :Document:0x104e4c0 ...>>,
23673296=>#<Nokogiri: :XML: :Element:0x321618 ...>,
23672576=>
#<Nokogiri::XML: :Element:0x32fba4
@document=#<Nokogiri: :HTML: :Document:0x104e4c0 ...>>}>>
"Mark Watson, Ruby and Java Consultant and Author\n"

As you can see, dealing with HTML using DOM is tedious. DOM is appropriate for deal-
ing with XML data that has a published schema, but the free-style nature of HTML (especially
“handwritten” HTML) makes DOM processing difficult.

Fortunately, the XPath APIs are just what you need to selectively extract headings from an
HTML document. You use XPath to find patterns in nested elements; for example, you'll use
the pattern '//h3' to match all HTML third-level heading elements. Combine XPath with the
inner text method to extract headings:

irb(main):007:0> doc.xpath('//h1")
=> <h1 class="block" align="center">
Mark Watson: Ruby and Java Consultant and Author
</h1>
irb(main):008:0> doc.xpath('//h1").inner text.strip
=> "Mark Watson: Ruby and Java Consultant and Author"

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

By substituting '//h2", '//h3", and '//h4" for the XPath expression, you can collect the
page headers. As another example, here’s how you would collect all of the headings of level h3:

irb(main):009:0> doc.xpath('//h3"').collect {|h| h.inner text.strip}
=> ["I specialize in Java, Ruby, and Artificial Intelligence (AI) technologies",
"Enjoy my Open Content Free Web Books and Open Source Software", "Recent News"]

Now you're ready to use the HtmlXhtmlResource class, which is derived from TextResource
and included in the text-resource gem library. This is the code for processing HTML and
XHTML resources:

doc = Nokogiri::HTML(open(source uri))

@plain_text = cleanup plain_text(doc.inner text)

@headings 1 = doc.xpath('//h1").collect {|h| h.inner_ text.strip}
@headings 2 = doc.xpath('//h2").collect {|h| h.inner_ text.strip}
@headings 3 = doc.xpath('//h3").collect {|h| h.inner text.strip}

The TextResource class’s cleanup _plain_text utility method is currently a placeholder; I'll
implement it in Chapter 2. Running the preceding code yields these extracted headers from
my web site:

@headings_1=["Mark Watson: Ruby and Java Consultant and Author"],

@headings 2=["Blogs", "Fun stuff"],

@headings 3=
["I specialize in Java, Ruby, and Artificial Intelligence (AI) technologies"”,
"Enjoy my Open Content Free Web Books and Open Source Software",
"Recent News"],

Here is the complete class implementation:

class HtmlXhtmlResource < TextResource
def initialize source uri="'
super (source_uri)
parse HTML:
doc = Nokogiri::HTML(open(source uri))
@plain_text = cleanup plain text(doc.inner text)
@headings 1 = doc.xpath('//h1').collect {|h| h.inner text.strip}
@headings 2 = doc.xpath('//h2').collect {|h| h.inner text.strip}
@headings 3 = doc.xpath('//h3').collect {|h| h.inner text.strip}
process_text semantics(@plain_text)
end
end

This code extracts headings based on the heading level of HTML tags.

10

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

Note For JRuby developers, | provide example code in the next section for using the pure Ruby REXML
library to grab all text (attributes and element text). For processing HTML, you can use a pure Ruby library
such as ymHTML (included in the source code for this book on the Apress web site).

OpenDocument

Now I'll discuss the OpenDocumentResouzrce class, which lets you parse text from documents in
OpenOffice.org’s OpenDocument format. You won'’t find many web resources in this docu-
ment format, but it’s an international standard that’s used by at least five word processors. I
include support for OpenDocument in this chapter because this format is ideal for maintain-
ing document repositories. OpenOffice.org offers batch-conversion utilities for converting
various Microsoft Office formats and HTML to the OpenDocument format. You can select
directories of files for conversion using the application’s menus.

The OpenDocument format is an easy-to-read, easy-to-parse XML format that is stored in
a ZIP file. First use the standard Ruby ZIP library to extract the ZIP entry named content.xml.
Then use the REXML XML parser by providing a Simple API for XML (SAX) XML event handler
as a nested class inside the implementation of the OpenDocumentResource class:

class OpenDocumentResource < TextResource
class 00XmlHandler
include StreamListener
attr reader :plain text
attr reader :headers

REXML calls the tag_start method for each new starting XML tag:

def tag start name, attrs
@last name = name
end

You need to save the element name so you know what the enclosing element type is when
the text method is called. REXML calls the text method whenever text is found in the input
stream. The XML for the document content has many elements starting with text:. You'll col-
lect all the inner text from any element whose name contains text:h and save it in an array of
header titles. You'll also collect the inner text from any element whose name contains text and
save it in the plain-text buffer:

def text s
s.strip!
if @last _name.index('text:h")
@headers << s if s.length > 0
end
if @last _name.index('text"')
if s.length > 0
@plain_text << s
@plain_text << "\n"
end

CHAPTER 1 PARSING COMMON DOCUMENT TYPES

end
end
end # ends inner class StreamListener

The OpenDocumentResource class constructor uses the internal SAX callback class to parse
the XML input stream read from the ZIP file entry content.xml:

def initialize source uri="'
Zip::ZipFile.open(source uri) {
|zipFile|
xml_h = 00XmlHandler.new
Document.parse stream((zipFile.read('content.xml')), xml h)
@plain_text = cleanup_plain text(xml_h.plain_text)
@headers_1 = xml_h.headers
}
process_text semantics(@plain text)
end
end

The OpenDocument standard, which is implemented by many word-processing sys-
tems, is ideal for creating and maintaining document repositories. Here, you only collected
the headers and plain text from OpenDocument files, but the format is richer than the simple
Ruby code in the OpenDocumentResource class indicates. If you are interested, I recommend
that you try unzipping any OpenDocument file and examine both the metadata and contents-
file entries.

I am using OpenOffice.org to write this book. You might find this amusing: I used the
OpenDocument file for this chapter as my test data for writing the OpenDocumentResource class.

RSS

Another useful source of information on the Web is web blogs that use either RSS or Atom
XML-syndication formats. I originally considered not supporting web blogs as a subclass of
TextResource because a single blog URI refers to many blog entries, but I decided to imple-
ment RSS and Atom classes with factories for returning an array of blog entries for a single blog
URI. These derived classes are called RssResource and AtomResource (see Figure 1-1). This deci-
sion makes sense: a static class-factory method returns a collection of TextResource instances,
each with the semantic processing performed by the code that you will see in Chapter 3.

The implementation of RSS-feed reading is simple using Lucas Carlson’s simple-rss
gem library. The simple-rss library handles both RSS 1.0 and RSS 2.0. The RssResource con-
structor calls the TextResource constructor to initialize instance data to default empty strings
and empty lists. The static class method get_entries is a factory that creates an array of
RssResource objects from a blog URL:

class RssResource < TextResource
def initialize
super('")
end
def RssResource.get entries source uri =
entries = []

11

