Thermodynamic Models for Industrial Applications

From Classical and Advanced Mixing Rules to Association Theories

GEORGIOS M. KONTOGEORGIS

Technical University of Denmark, Lyngby, Denmark

GEORGIOS K. FOLAS

Shell Global Solutions, The Netherlands

Thermodynamic Models for Industrial Applications

Thermodynamic Models for Industrial Applications

From Classical and Advanced Mixing Rules to Association Theories

GEORGIOS M. KONTOGEORGIS

Technical University of Denmark, Lyngby, Denmark

GEORGIOS K. FOLAS

Shell Global Solutions, The Netherlands

This edition first published 2010 © 2010 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Kontogeorgis, Georgios M.

Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories / Georgios M. Kontogeorgis, Georgios K. Folas.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-69726-9 (cloth)

1. Thermodynamics-Industrial applications. 2. Chemical engineering. I. Kontogeorgis, Georgios M. II. Folas, Georgios K. III. Title.

TP155.2.T45K66 2010 660'.2969-dc22

2009028762

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-69726-9 (Cloth)

Set in 10/12 pt, Times Roman by Thomson Digital, Noida, India Printed and bound in Great Britain by CPI Antony Rowe Ltd, Chippenham, Wiltshire No man lives alone and no books are written in a vacuum either. Our families especially (in Denmark, The Netherlands and Greece) have deeply felt the consequences of the process of writing this book.

I (Georgios Kontogeorgis) would like to dedicate the book to my wife Olga for her patience, support, love and understanding – especially as, during the period of writing of this book, our daughter, Elena, was born.

I (Georgios Folas) would like to thank Georgios Kontogeorgis for our excellent collaboration in writing this monograph during the past two years. I am grateful to my family and wish to dedicate this book to my wife Athanasia for always inspiring and supporting me.

Contents

Prefe	ace	xvii
Aboi	ut the Authors	xix
Ackn	nowledgments	xxi
List	of Abbreviations	xxiii
List	of Symbols	xxvii
PAR	RT A INTRODUCTION	1
1	Thermodynamics for process and product design Appendix References	3 9 14
	intermolecular forces and thermodynamic models	17
2	2.1 General	17
	2.1.1 Microscopic (London) approach	21
	2.1.2 Macroscopic (Lifshitz) approach	22
	2.2 Coulombic and van der Waals forces	22
2	2.3 Quasi-chemical forces with emphasis on hydrogen bonding	26
	2.3.1 Hydrogen bonding and the hydrophobic effect	26
2	2.3.2 Hydrogen bonding and phase behavior	29
2	2.4 Some applications of intermolecular forces	20
	in model development	30 31
	2.4.1 Improved terms in equations of state2.4.2 Combining rules in equations of state	32
	2.4.2 Combining rules in equations of state 2.4.3 Beyond the Lennard-Jones potential	33
	2.4.4 Mixing rules	34
2	2.5 Concluding remarks	36
	References	36
PAR	RT B THE CLASSICAL MODELS	39
3 (Cubic equations of state: the classical mixing rules	41
	3.1 General	41
3	3.2 On parameter estimation	45
	3.2.1 Pure compounds	45
	3.2.2 Mixtures	47

			Contents	viii
	3.3	Analysis of the advantages and shortcomings of cubic EoS		51
	5.5	3.3.1 Advantages of Cubic EoS		51
		3.3.2 Shortcomings and limitations of cubic EoS		52
	3.4	Some recent developments with cubic EoS		58
		3.4.1 Use of liquid densities in the EoS parameter estimation		59
		3.4.2 Activity coefficients for evaluating mixing and combining rules		61
		3.4.3 Mixing and combining rules – beyond the vdW1f and classical		
		combining rules		65
	3.5	Concluding remarks		67
	Appe			68
	Refer	ences		74
4	Activ	ity coefficient models Part 1: random-mixing models		79
	4.1	Introduction to the random-mixing models		79
	4.2	Experimental activity coefficients		80
		4.2.1 VLE		80
		4.2.2 SLE (assuming pure solid phase)		80
		4.2.3 Trends of the activity coefficients		81
	4.3	The Margules equations		82
	4.4	From the van der Waals and van Laar equation to the		
		regular solution theory		84
		4.4.1 From the van der Waals EoS to the van Laar model		84
	15	4.4.2 From the van Laar model to the Regular Solution Theory (RST)		86 88
	4.5	Applications of the Regular Solution Theory 4.5.1 General		88
		4.5.1 General 4.5.2 Low-pressure VLE		89
		4.5.3 SLE		90
		4.5.4 Gas-Liquid equilibrium (GLE)		91
		4.5.5 Polymers		92
	4.6	SLE with emphasis on wax formation		97
	4.7	Asphaltene precipitation		99
	4.8	Concluding remarks about the random-mixing-based models		100
	Appe			104
	Refer	ences		106
5	Activ	ity coefficient models Part 2: local composition models, from		
	Wilso	on and NRTL to UNIQUAC and UNIFAC		109
	5.1	General		109
	5.2	Overview of the local composition models		110
		5.2.1 NRTL		110
		5.2.2 UNIQUAC		112
		5.2.3 On UNIQUAC's energy parameters		113
	<i>5</i> 2	5.2.4 On the Wilson equation parameters		114
	5.3	The theoretical limitations		114
	5 A	5.3.1 Necessity for three models		116
	5.4	Range of applicability of the LC models		116

ix Contents

	5.5	On the theoretical significance of the interaction parameters	123
		5.5.1 Parameter values for families of compounds	123
		5.5.2 One-parameter LC models	123
		5.5.3 Comparison of LC model parameters to quantum chemistry	
		and other theoretically determined values	126
	5.6	LC Models: some unifying concepts	126
		5.6.1 Wilson and UNIQUAC	127
		5.6.2 The interaction parameters of the LC models	128
		5.6.3 Successes and limitations of the LC models	128
	5.7	The group contribution principle and UNIFAC	129
		5.7.1 Why there are so many UNIFAC variants	133
		5.7.2 UNIFAC applications	134
	5.8	Local-compositon-free-volume models for polymers	135
		5.8.1 Introduction	135
		5.8.2 FV non-random-mixing models	137
	5.9	Conclusions: is UNIQUAC the best local compostion model available today?	140
	Appe		147
	Refer	rences	154
5	The l	EoS/G^E mixing rules for cubic equations of state	159
	6.1	General	159
	6.2	The infinite pressure limit (the Huron–Vidal mixing rule)	161
	6.3	The zero reference pressure limit (the Michelsen approach)	163
	6.4	Successes and limitations of zero reference pressure models	165
	6.5	The Wong–Sandler (WS) mixing rule	167
	6.6	EoS/G^E approaches suitable for asymmetric mixtures	168
	6.7	Applications of the LCVM, MHV2, PSRK and WS mixing rules	174
	6.8	Cubic EoS for polymers	181
		6.8.1 High-pressure polymer thermodynamics	181
		6.8.2 A simple first approach: application of the vdW EoS to polymers	182
		6.8.3 Cubic EoS for polymers	184
		6.8.4 How to estimate EoS parameters for polymers	187
	6.9	Conclusions: achievements and limitations of the EoS/G^E models	187
	6.10	Recommended Models – so far	189
	Appe		189
	Refer	rences	190
PΑ	ART C	ADVANCED MODELS AND THEIR APPLICATIONS	195
7	Asso	ciation theories and models: the role of spectroscopy	197
	7.1	Introduction	197
	7.2	Three different association theories	197
	7.3	The chemical and perturbation theories	198
		7.3.1 Introductory thoughts: the separability of terms in chemical-based EoS	198
		7.3.2 Beyond oligomers and beyond pure compounds	200
		7.3.3 Extension to mixtures	201
		7.3.4 Perturbation theories	201

			Contents x
	7.4	Spectroscopy and association theories	202
		7.4.1 A key property	202
		7.4.2 Similarity between association theories	204
		7.4.3 Use of the similarities between the various association theories	206
		7.4.4 Spectroscopic data and validation of theories	207
	7.5	Concluding remarks	213
	Appe	endix	214
	Refe	rences	218
8	The S	Statistical Associating Fluid Theory (SAFT)	221
	8.1	The SAFT EoS: a brief look at the history and major developments	221
	8.2	The SAFT equations	225
		8.2.1 The chain and association terms	225
		8.2.2 The dispersion terms	227
	8.3	Parameterization of SAFT	233
		8.3.1 Pure compounds	233
		8.3.2 Mixtures	239
	8.4	Applications of SAFT to non-polar molecules	241
	8.5	GC SAFT approaches	245
		8.5.1 French method	245
		8.5.2 DTU method	246
		8.5.3 Other methods	247
	8.6	Concluding remarks	248
	Appe		249
	Refe	rences	256
9	The	Cubic-Plus-Association equation of state	261
	9.1	Introduction	261
		9.1.1 The importance of associating (hydrogen bonding) mixtures	261
		9.1.2 Why specifically develop the CPA EoS?	262
	9.2	The CPA EoS	263
		9.2.1 General	263
		9.2.2 Mixing and combining rules	264
	9.3	Parameter estimation: pure compounds	265
		9.3.1 Testing of pure compound parameters	266
	9.4	11	272
		9.4.1 VLE, LLE and SLE for alcohol–hydrocarbons	272
		9.4.2 Water–hydrocarbon phase equilibria	273
		9.4.3 Water–methanol and alcohol–alcohol phase equilibria	276
		9.4.4 Water-methanol-hydrocarbons VLLE: prediction of methanol	
		partition coefficient	279
			283
		pendix	284
	Ref	erences	296
10		plications of CPA to the oil and gas industry	299
	10.1	General	299

xi Contents

	10.2	Glycol-water-hydrocarbon phase equilibria	300
		10.2.1 Glycol–hydrocarbons	300
		10.2.2 Glycol–water and multicomponent mixtures	303
	10.3	Gas hydrates	306
		10.3.1 General	306
		10.3.2 Thermodynamic framework	307
		10.3.3 Calculation of hydrate equilibria	308
		10.3.4 Discussion	312
	10.4	Gas phase water content calculations	315
	10.5	Mixtures with acid gases (CO ₂ and H ₂ S)	316
	10.6	Reservoir fluids	323
		10.6.1 Heptanes plus characterization	324
		10.6.2 Applications of CPA to reservoir fluids	325
	10.7	Conclusions	329
	Refer	ences	329
11	Appl	ications of CPA to chemical industries	333
	11.1	Introduction	333
	11.2	Aqueous mixtures with heavy alcohols	334
	11.3	Amines and ketones	336
		11.3.1 The case of a strongly solvating mixture: acetone–chloroform	338
	11.4	Mixtures with organic acids	341
	11.5	Mixtures with ethers and esters	348
	11.6	Multifunctional chemicals: glycolethers and alkanolamines	352
		Complex aqueous mixtures	357
	11.8	Concluding remarks	361
	Appe	ndix	364
	Refer	ences	366
12	Exte	nsion of CPA and SAFT to new systems: worked examples and guidelines	369
	12.1	Introduction	369
	12.2	The Case of sulfolane: CPA application	370
		12.2.1 Introduction	370
		12.2.2 Sulfolane: is it an 'inert' (non-self-associating) compound?	370
		12.2.3 Sulfolane as a self-associating compound	374
	12.3	Application of sPC–SAFT to sulfolane-related systems	379
	12.4	Applicability of association theories and cubic EoS with advanced mixing	
		rules (EoS/ G^E models) to polar chemicals	381
	12.5	Phenols	383
	12.6	Conclusions	387
	Refer	ences	387
13	Appl	ications of SAFT to polar and associating mixtures	389
	13.1	Introduction	389
	13.2	Water-hydrocarbons	389
	13.3	Alcohols, amines and alkanolamines	395
		13.3.1 General	395

			Contents	xii
		13.3.2 Discussion		396
		13.3.3 Study of alcohols with generalized associating parameters		401
	13.4	Glycols		402
		Organic acids		403
	13.6	Polar non-associating compounds		404
		13.6.1 Theories for extension of SAFT to polar fluids	,	405
		13.6.2 Application of the tPC-PSAFT EoS to complex polar fluid mixtures		409
		13.6.3 Discussion: comparisons between various polar SAFT EoS		413
		13.6.4 The importance of solvation (induced association)		419
	13.7	Flow assurance (asphaltenes and gas hydrate inhibitors)		422
		Concluding remarks		424
	Refer	ences		425
14	Appli	ication of SAFT to polymers		429
		Overview		429
	14.2	Estimation of polymer parameters for SAFT-type EoS	,	429
		14.2.1 Estimation of polymer parameters for EoS: general		429
		14.2.2 The Kouskoumvekaki et al. method		431
		14.2.3 Polar and associating polymers		435
		14.2.4 Parameters for co-polymers		438
	14.3	Low-pressure phase equilibria (VLE and LLE) using		
		simplified PC-SAFT		439
	14.4	High-pressure phase equilibria		447
		Co-polymers		450
		Concluding remarks		451
	Appe			454
	Refer	ences	•	458
PA	RT D	THERMODYNAMICS AND OTHER DISCIPLINES		461
15	Mode	els for electrolyte systems		463
	15.1	Introduction: importance of electrolyte mixtures and modeling challenges		463
		15.1.1 Importance of electrolyte systems and coulombic forces		463
		15.1.2 Electroneutrality		464
		15.1.3 Standard states		464
		15.1.4 Mean ionic activity coefficients (of salts)		466
		15.1.5 Osmotic activity coefficients		467
	15.0	15.1.6 Salt solubility		468
	15.2	Theories of ionic (long-range) interactions 15.2.1 Debye–Hückel vs. mean spherical approximation		468
		15.2.1 Debye–Hückel vs. mean spherical approximation15.2.2 Other ionic contributions		468 472
		15.2.2 Other fonc contributions 15.2.3 The role of the dielectric constant		472
	15.3	Electrolyte models: activity coefficients		473
	13.3	15.3.1 Introduction		473
		15.3.2 Comparison of models		476
		15.3.3 Application of the extended UNIQUAC approach to ionic surfactants		479
		II TT		-

15.4.1 General48315.4.2 Lewis-Randall vs. McMillan-Mayer framework48615.5 Comparison of electrolyte EoS: capabilities and limitations48615.5.1 Cubic EoS + electrolyte terms48615.5.2 e-CPA EoS48815.5.3 e-SAFT EoS49215.5.4 Ionic liquids50015.6 Thermodynamic models for CO_2 -water-alkanolamines50015.6.1 Introduction50015.6.2 The Gabrielsen model50515.6.3 Activity coefficient models ($\gamma - \varphi$ approaches)50715.6.4 Equation of State51215.7 Concluding remarks515References52016 Quantum chemistry in engineering thermodynamics52516.1 Introduction52516.2 The COSMO-RS method52716.2.1 Introduction52716.2.2 Range of applicability52716.2.3 Limitations52816.4 Estimation of size parameters of SAFT-type models from QC53116.4.1 The approach of Imperial College540		15.4	Electrolyte models: Equation of State	483
15.5 Comparison of electrolyte EoS: capabilities and limitations 15.5.1 Cubic EoS + electrolyte terms 15.5.2 e-CPA EoS 15.5.3 e-SAFT EoS 15.5.3 e-SAFT EoS 15.5.4 I lonic liquids 500 15.6.1 Introduction 15.6.2 The Gabrielsen model 15.6.3 Activity coefficient models (γ-φ approaches) 15.6.4 Equation of State 15.7 Concluding remarks 8eferences 151 16. Introduction 16.2 The COSMO-RS method 16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.4.2 The approach of Aachen 16.5.4 Environmental thermodynamics 17.1 Introduction 18.2 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Horperial College 16.4.2 The approach of Aachen 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Introduction 17.2 Distribution of chemicals in environmental thermodynamics 17.2.1 Introduction 17.2 Distribution of chemicals in environmental thermodynamics 17.2.1 Introduction of chemicals in environmental thermodynamics 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.1 Introduction of chemicals in environmental thermodynamics 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 Environmentally friendly solvents: supercritical fluids 17.6 Environmental thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2 Intermolecular vs. interparticle forces 18.2 Characterization of solid interfaces with interfacial tension theories				483
15.5 Comparison of electrolyte EoS: capabilities and limitations 15.5.1 Cubic EoS + electrolyte terms 15.5.2 e-CPA EoS 15.5.3 e-SAFT EoS 15.5.3 e-SAFT EoS 15.5.4 I lonic liquids 500 15.6.1 Introduction 15.6.2 The Gabrielsen model 15.6.3 Activity coefficient models (γ-φ approaches) 15.6.4 Equation of State 15.7 Concluding remarks 8eferences 151 16. Introduction 16.2 The COSMO-RS method 16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.4.2 The approach of Aachen 16.5.4 Environmental thermodynamics 17.1 Introduction 18.2 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Horperial College 16.4.2 The approach of Aachen 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Introduction 17.2 Distribution of chemicals in environmental thermodynamics 17.2.1 Introduction 17.2 Distribution of chemicals in environmental thermodynamics 17.2.1 Introduction of chemicals in environmental thermodynamics 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.1 Introduction of chemicals in environmental thermodynamics 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 Environmentally friendly solvents: supercritical fluids 17.6 Environmental thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2 Intermolecular vs. interparticle forces 18.2 Characterization of solid interfaces with interfacial tension theories			15.4.2 Lewis–Randall vs. McMillan–Mayer framework	486
15.5.1 Cubic EoS + electrolyte terms 488 15.5.2 e-CPA EoS 488 15.5.3 e-SAFT EoS 492 15.6.1 Introduction 500 15.6.2 The Gabrielsen model of rocognicient models (γ- φ approaches) 500 15.6.1 Introduction 502 15.6.2 The Gabrielsen model of tate 502 15.6.3 Faquation of State 512 15.6.4 Equation of State 512 15.7 Concluding remarks 515 References 520 16.1 Introduction 522 16.2 The COSMO-RS method 522 16.2.1 Introduction 522 16.2.2 Range of applicability 522 16.3 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 546 16.4.1 The approach of Imperial College 544 16.5 Conclusions 547 References 547 17.2 Introduction to the key concepts of environmental thermodynamics <t< td=""><td></td><td>15.5</td><td></td><td>486</td></t<>		15.5		486
15.5.2 e-CPA EoS 15.5.3 e-SAFT EoS 15.5.4 lonic liquids 15.6 Thermodynamic models for CO2-water-alkanolamines 15.6.1 Introduction 15.6.2 The Gabrielsen model 15.6.3 Activity coefficient models (γ - φ approaches) 15.6.4 Equation of State 15.7 Concluding remarks 8519 15.6 Quantum chemistry in engineering thermodynamics 16.1 Introduction 16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.4.2 The approach of Pimperial College 16.4.1 Introduction 16.5 Conclusions 17.2 Introduction 18.2 Throduction 19.2 Throduction 19.3 Estimation of size parameters of SAFT-type models from QC 19.4 The approach of Imperial College 19.4 The approach of Pimperial College 19.5 Conclusions 19.5 Conclusions 19.6 Environmental thermodynamics 19.7 Environmental thermodynamics 19.7 Lintroduction 19.7 Environmental thermodynamics 19.7 Lintroduction of chemicals in environmental ecosystems 19.7 Lintroduction of chemicals in environmental thermodynamics 19.7 Lintroduction of the key concepts of environmental thermodynamics 19.7 Lintroduction to the key concepts of environmental thermodynamics 19.7 Lintroduction to the key concepts of environmental thermodynamics 19.7 Lintroduction to the key concepts of environmental thermodynamics 19.7 Lintroduction to the key concepts of environmental thermodynamics 19.8 Environmentally friendly solvents: supercritical fluids 19.7 Environmentally friendly solvents: supercritical tension 19.7 Environmental thermodecular vs. interparticle forces 19.7 Environmental thermodecular vs. interparticle			•	
15.5.3 e-SAFT EoS 492 15.5.4 Jonic liquids 500 15.6 Thermodynamic models for CO_2 -water-alkanolamines 500 15.6.1 Introduction 500 15.6.2 The Gabrielsen model 500 15.6.3 Activity coefficient models (γ - φ approaches) 507 15.6.4 Equation of State 512 15.7 Concluding remarks 518 References 520 16 Quantum chemistry in engineering thermodynamics 522 16.1 Introduction 522 16.2 The COSMO-RS method 527 16.2.1 Introduction 522 16.2.2 Range of applicability 527 16.2.3 Limitations 527 16.4 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 544 16.4.1 The approach of Imperial College 540 16.4.2 The approach of Aachen 542 16.5 Conclusions 551 17.2 Distribution of ch			· · · · · · · · · · · · · · · · · · ·	
15.5.4 Ionic liquids 15.6 Thermodynamic models for CO ₂ -water-alkanolamines 500 15.6.1 Introduction 15.6.2 The Gabrielsen model 15.6.3 Activity coefficient models $(\gamma - \varphi)$ approaches) 15.6.4 Equation of State 15.7 Concluding remarks 819 16 Quantum chemistry in engineering thermodynamics 16.1 Introduction 16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.2.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.4.2 The approach of Aachen 16.4.3 The approach of Aachen 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol-water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 8eferences 572 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular vs. interparticle forces 18.2.2 Characterization of solid interfaces with interfacial tension theories				
15.6.Thermodynamic models for CO_2 -water-alkanolamines500 15.6.115.6.1.Introduction500 15.6.215.6.2.The Gabrielsen model500 15.6.315.6.4.Equation of State511 51215.7.Concluding remarks512 512References52216.1.Introduction522 16.2.116.2.The COSMO-RS method527 16.2.216.2.1.Introduction527 16.2.316.2.2.Range of applicability527 16.2.316.3.Estimation of association model parameters using QC531 316.416.4.Estimation of size parameters of SAFT-type models from QC540 16.4.116.4.1.The approach of Imperial College544 16.516.5.Conclusions547 547References54717.Environmental thermodynamics551 17.2.117.2.Distribution of chemicals in environmental ecosystems552 17.2.217.2.1.Scope and importance of thermodynamics in environmental thermodynamics552 17.2.317.2.2.1.Introduction to the key concepts of environmental thermodynamics557 17.2.317.3.Environmentally friendly solvents: supercritical fluids572 57218.1.General573 1ntermolecular vs. interparticle forces573 118.2.118.2.1.Intermolecular forces and theories for interfacial tension theories573 574				
15.6.1Introduction50015.6.2The Gabrielsen model50015.6.3Activity coefficient models ($\gamma - \varphi$ approaches)50715.6.4Equation of State51215.7Concluding remarks518References52016Quantum chemistry in engineering thermodynamics52216.1Introduction52216.2The COSMO-RS method52716.2.1Introduction52716.2.2Range of applicability52716.2.3Limitations52816.4Estimation of association model parameters using QC53116.4Estimation of size parameters of SAFT-type models from QC54616.4.1The approach of Imperial College54416.5Conclusions547References54717Environmental thermodynamics55117.1Introduction55117.2.1Scope and importance of thermodynamics in environmental calculations55217.2.2Introduction to the key concepts of environmental thermodynamics55517.2.3Basic relationships of environmental thermodynamics55517.2.3Basic relationships of environmental thermodynamics55517.2.4The octanol-water partition coefficient56617.3Environmentally friendly solvents: supercritical fluids57718.1General57718.1General57718.2Intermolecular vs. interparticle forces577 <t< td=""><td></td><td>15.6</td><td></td><td></td></t<>		15.6		
15.6.2 The Gabrielsen model 502 15.6.3 Activity coefficient models ($\gamma - \varphi$ approaches) 507 15.6.4 Equation of State 512 15.7 Concluding remarks 515 References 526 16 Quantum chemistry in engineering thermodynamics 522 16.1 Introduction 523 16.2.1 Introduction 527 16.2.2 Range of applicability 527 16.2.3 Limitations 528 16.3 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 544 16.4.1 The approach of Imperial College 546 16.4.2 The approach of Aachen 547 16.5 Conclusions 547 References 547 17.2 Distribution of chemicals in environmental ecosystems 552 17.2.1 Scope and importance of thermodynamics in environmental calculations 552 17.2.2 Introduction to the key concepts of environmental thermodynamics 555 17.2.3 Basic relationships of		10.0		
15.6.3Activity coefficient models $(\gamma - \varphi \text{ approaches})$ 50715.6.4Equation of State51215.7Concluding remarks512References52616Quantum chemistry in engineering thermodynamics52516.1Introduction52516.2The COSMO-RS method52716.2.1Introduction52716.2.2Range of applicability52716.2.3Limitations52816.3Estimation of association model parameters using QC53116.4Estimation of size parameters of SAFT-type models from QC54416.4.1The approach of Imperial College54616.4.2The approach of Aachen54716.5Conclusions547References54717Environmental thermodynamics55117.1Introduction55117.2Distribution of chemicals in environmental ecosystems55217.2.1Scope and importance of thermodynamics in environmental calculations55217.2.2Introduction to the key concepts of environmental thermodynamics55517.2.3Basic relationships of environmental thermodynamics55517.2.4The octanol-water partition coefficient56617.3Environmentally friendly solvents: supercritical fluids57218.1General57318.2Intermolecular vs. interparticle forces57718.1.1Intermolecular forces and theories for interfacial tension theories572				
15.6.4 Equation of State 512 15.7 Concluding remarks 515 References 526 16 Quantum chemistry in engineering thermodynamics 525 16.1 Introduction 525 16.2 The COSMO-RS method 527 16.2.1 Introduction 527 16.2.2 Range of applicability 527 16.2.3 Limitations 528 16.3 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 544 16.4.1 The approach of Imperial College 544 16.4.2 The approach of Aachen 545 16.5 Conclusions 547 References 547 17 Environmental thermodynamics 551 17.1 Introduction 551 17.2 Distribution of chemicals in environmental ecosystems 552 17.2.1 Scope and importance of thermodynamics in environmental calculations 552 17.2.2 Introduction to the key concepts of environmental thermodynamics 555 17.2.3 Sasic relationships of environmental thermodynamics 555 17.2.4 The octanol-water partition coefficient 566 17.3 Environmentally friendly solvents: super				
15.7 Concluding remarks References 526				
References		15.7		
16 Quantum chemistry in engineering thermodynamics 525 16.1 Introduction 522 16.2 The COSMO-RS method 527 16.2.1 Introduction 527 16.2.2 Range of applicability 527 16.2.3 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 546 16.4.1 The approach of Imperial College 544 16.5 Conclusions 547 References 547 17 Environmental thermodynamics 551 17.1 Introduction 551 17.2 Distribution of chemicals in environmental ecosystems 552 17.2.1 Scope and importance of thermodynamics in environmental calculations 552 17.2.2 Introduction to the key concepts of environmental thermodynamics 552 17.2.3 Basic relationships of environmental thermodynamics 553 17.2.4 The octanol-water partition coefficient 566 17.3 Environmentally friendly solvents: supercritical fluids 572 17.4 Conclusions 573 References 574 18 Thermodynamics and colloid and surface chemistry 575 18.1 General 577 <t< td=""><td></td><td></td><td></td><td></td></t<>				
16.1 Introduction 522 16.2 The COSMO–RS method 527 16.2.1 Introduction 527 16.2.2 Range of applicability 527 16.2.3 Limitations 528 16.3 Estimation of association model parameters using QC 531 16.4 Estimation of size parameters of SAFT-type models from QC 540 16.4.1 The approach of Imperial College 540 16.4.2 The approach of Aachen 547 16.5 Conclusions 547 References 547 17 Environmental thermodynamics 547 18 Thermodynamics 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 557 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 557 17.2.3 Basic relationships of environmental thermodynamics 557 17.2.4 The octanol—water partition coefficient 556 17.3 Environmentally friendly solvents: supercritical fluids 572 17.4 Conclusions 573 References 574 18 Thermodynamics and colloid and surface chemistry 574 18.1 General 18.2 Intermolecular vs. interparticle forces 577 18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582		110101		
16.2 The COSMO-RS method 16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of association model parameters using QC 16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions 16.6 Conclusions 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental thermodynamics 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol-water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 References 18.1 Intermolecular vs. interparticle forces 18.2.1 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension theories 18.2.2 Characterization of solid interfaces with interfacial tension theories	16	Quar	tum chemistry in engineering thermodynamics	525
16.2.1 Introduction 16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of association model parameters using QC 16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 References 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension theories 18.2.2 Characterization of solid interfaces with interfacial tension theories		16.1		525
16.2.2 Range of applicability 16.2.3 Limitations 16.3 Estimation of association model parameters using QC 16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics in 17.2.2 Introduction to the key concepts of environmental thermodynamics in 17.2.4 The octanol-water partition coefficient in 17.3 Environmentally friendly solvents: supercritical fluids in 17.4 Conclusions 17.5 References 18.1 General intermolecular vs. interparticle forces interfacial tension interfacial tension interfacial tension interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization of solid interfaces with interfacial tension theories in 18.2.2 Characterization		16.2	The COSMO–RS method	527
16.2.3 Limitations 16.3 Estimation of association model parameters using QC 16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol-water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories			16.2.1 Introduction	527
16.3 Estimation of association model parameters using QC 16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories			16.2.2 Range of applicability	527
16.4 Estimation of size parameters of SAFT-type models from QC 16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol—water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories			16.2.3 Limitations	528
16.4.1 The approach of Imperial College 16.4.2 The approach of Aachen 16.5 Conclusions References 547 17 Environmental thermodynamics 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories		16.3	Estimation of association model parameters using QC	531
16.4.2 The approach of Aachen 16.5 Conclusions References 547 17 Environmental thermodynamics 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories		16.4	Estimation of size parameters of SAFT-type models from QC	540
16.5 Conclusions References 547 17 Environmental thermodynamics 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories			16.4.1 The approach of Imperial College	540
References 547 17 Environmental thermodynamics 551 17.1 Introduction 551 17.2 Distribution of chemicals in environmental ecosystems 552 17.2.1 Scope and importance of thermodynamics in environmental calculations 552 17.2.2 Introduction to the key concepts of environmental thermodynamics 557 17.2.3 Basic relationships of environmental thermodynamics 559 17.2.4 The octanol–water partition coefficient 560 17.3 Environmentally friendly solvents: supercritical fluids 572 17.4 Conclusions 573 References 574 18 Thermodynamics and colloid and surface chemistry 577 18.1 General 577 18.2 Intermolecular vs. interparticle forces 577 18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582			16.4.2 The approach of Aachen	542
17. Environmental thermodynamics 17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 17.5 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories		16.5	Conclusions	547
17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol—water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 References 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories		Refer	ences	547
17.1 Introduction 17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol—water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions 17.5 References 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories	17	Envi	conmental thermodynamics	551
17.2 Distribution of chemicals in environmental ecosystems 17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories				
17.2.1 Scope and importance of thermodynamics in environmental calculations 17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol—water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories				
17.2.2 Introduction to the key concepts of environmental thermodynamics 17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol–water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582				
17.2.3 Basic relationships of environmental thermodynamics 17.2.4 The octanol-water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582			• • •	
17.2.4 The octanol-water partition coefficient 17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582				
17.3 Environmentally friendly solvents: supercritical fluids 17.4 Conclusions References 572 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582			•	
17.4 Conclusions References 573 References 574 18 Thermodynamics and colloid and surface chemistry 18.1 General 18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582		17.3	<u>.</u>	
References 574 18 Thermodynamics and colloid and surface chemistry 577 18.1 General 577 18.2 Intermolecular vs. interparticle forces 577 18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582				
18.1 General 577 18.2 Intermolecular vs. interparticle forces 577 18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582				
18.1 General 577 18.2 Intermolecular vs. interparticle forces 577 18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582	18	Ther	modynamics and colloid and surface chemistry	577
18.2 Intermolecular vs. interparticle forces 18.2.1 Intermolecular forces and theories for interfacial tension 18.2.2 Characterization of solid interfaces with interfacial tension theories 582	10		· · · · · · · · · · · · · · · · · · ·	
18.2.1 Intermolecular forces and theories for interfacial tension 577 18.2.2 Characterization of solid interfaces with interfacial tension theories 582				
18.2.2 Characterization of solid interfaces with interfacial tension theories 582			<u> •</u>	

				Contents	xiv
	18.3	Interna	rticle forces in colloids and interfaces		585
	10.5	-	Interparticle forces and colloids		585
			Forces and colloid stability		587
			Interparticle forces and adhesion		590
	18.4		pase concepts in adhesion studies		591
			Adhesion measurements and interfacial forces		591
			Industrial examples		593
	18.5		e and interfacial tensions from thermodynamic models		594
			The gradient theory		594
	18.6	Hydrop	· · · · · · · · · · · · · · · · · · ·		597
			The CPP parameter		598
			The HLB parameter		598
	18.7		zation and surfactant solutions		600
			General		600
			CMC, Krafft point and micellization		601
			CMC estimation from thermodynamic models		602
	18.8	Adsorp	· · · · · · · · · · · · · · · · · · ·		604
			General		604
			Some applications of adsorption		605
			Multicomponent Langmuir adsorption and the vdW–Platteeuw		
			solid solution theory		608
	18.9	Conclu			609
	Refer	ences			610
19	Theri	modyna	mics for biotechnology		613
.,	19.1	-			613
	19.2		s for Pharmaceuticals		613
	17.2		General		613
			The NRTL-SAC model		615
			The NRHB model for pharmaceuticals		618
	19.3		s for amino acids and polypeptides		619
	17.0		Chemistry and basic relationships		619
			The excess solubility approach		624
		19.3.3	·		624
		19.3.4			627
	19.4		tion of proteins and chromatography		631
		19.4.1	Introduction		631
		19.4.2		3	631
		19.4.3	1		633
		19.4.4			635
	19.5		redictive models for protein systems		637
		19.5.1	The osmotic second virial coefficient and protein solubility: a		
			tool for modeling protein precipitation		638
		19.5.2			639
		19.5.3	* · · · · · · · · · · · · · · · · · · ·		
			for protein separation		641

xv Contents

	19.6 Concluding Remarks	644
	Appendix	644
	References	652
20	Epilogue: thermodynamic challenges in the twenty-first century	655
	20.1 In brief	655
	20.2 Petroleum and chemical industries	656
	20.3 Chemicals including polymers and complex product design	658
	20.4 Biotechnology including pharmaceuticals	659
	20.5 How future needs will be addressed	660
	References	661
Inde	dex	665

Preface

Thermodynamics plays an important role in numerous industries, both in the design of separation equipment and processes as well as for product design and optimizing formulations. Complex polar and associating molecules are present in many applications, for which different types of phase equilibria and other thermodynamic properties need to be known over wide ranges of temperature and pressure. Several applications also include electrolytes, polymers or biomolecules. To some extent, traditional activity coefficient models are being phased out, possibly with the exception of UNIFAC, due to its predictive character, as advances in computers and statistical mechanics favor use of equations of state. However, some of these 'classical' models continue to find applications, especially in the chemical, polymer and pharmaceutical industries. On the other hand, while traditional cubic equations of state are often not adequate for complex phase equilibria, over the past 20–30 years advanced thermodynamic models, especially equations of state, have been developed.

The purpose of this work is to present and discuss in depth both 'classical' and novel thermodynamic models which have found or can potentially be used for industrial applications. Following the first introductory part of two short chapters on the fundamentals of thermodynamics and intermolecular forces, the second part of the book (Chapters 3–6) presents the 'classical' models, such as cubic equations of state, activity coefficient models and their combination in the so-called EoS/G^E mixing rules. The advantages, major applications and reliability are discussed as well as the limitations and points of caution when these models are used for design purposes, typically within a commercial simulation package. Applications in the oil and gas and chemical sectors are emphasized but models suitable for polymers are also presented in Chapters 4–6.

The third part of the book (Chapters 7–14) presents several of the advanced models in the form of association equations of state which have been developed since the early 1990s and are suitable for industrial applications. While many of the principles and applications are common to a large family of these models, we have focused on two of the models (the CPA and PC–SAFT equations of state), largely due to their range of applicability and our familiarity with them. Extensive parameter tables for the two models are available in the two appendices on the companion website at www.wiley.com/go/Kontogeorgis. The final part of the book (Chapters 15–20) illustrates applications of thermodynamics in environmental science and colloid and surface chemistry and discusses models for mixtures containing electrolytes. Finally, brief introductions about the thermodynamic tools available for mixtures with biomolecules as well as the possibility of using quantum chemistry in engineering thermodynamics conclude the book.

The book is based on our extensive experience of working with thermodynamic models, especially the association equations of state, and in close collaboration with industry in the petroleum, energy, chemical and polymer sectors. While we feel that we have included several of the exciting developments in thermodynamic models with an industrial flavor, it has not been possible to include them all. We would like, therefore, to apologize in advance to colleagues and researchers worldwide whose contributions may not have been included or adequately discussed for reasons of economy. However, we are looking forward to receiving comments and suggestions which can lead to improvements in the future.

The book is intended both for engineers wishing to use these models in industrial applications (many of them already available in commercial simulators, as stand-alone or in CAPE-Open compliant format) and for students, researchers and academics in the field of applied thermodynamics. The contents could also be used in

graduate courses on applied chemical engineering thermodynamics, provided that a course on the fundamentals of applied thermodynamics has been previously followed. For this reason, problems are provided on the companion website at www.wiley.com/go/Kontogeorgis. Answers to selected problems are available, while a full solution manual is available from the authors.

Georgios M. Kontogeorgis Copenhagen, Denmark Georgios K. Folas Amsterdam, The Netherlands

About the Authors

Georgios M. Kontogeorgis has been a professor at the Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, since January 2008. Prior to that he was associate professor at the same university, a position he had held since August 1999. He has an MSc in Chemical Engineering from the Technical University of Athens (1991) and a PhD from DTU (1995). His current research areas are energy (especially thermodynamic models for the oil and gas industry), materials and nanotechnology (especially polymers – paints, product design, and colloid and surface chemistry), environment (design CO₂ capture units, fate of chemicals, migration of plasticizers) and biotechnology. He is the author of over 100 publications in international journals and co-editor of one monograph. He is the recipient of the Empirikion Foundation Award for 'Achievements in Chemistry' (1999, Greece) and of the Dana Lim Price (2002, Denmark).

Georgios K. Folas was appointed as technologist in the distillation and thermal conversion department, Shell Global Solutions (The Netherlands) in January 2009. He previously worked as Senior Engineer (Facilities and Flow Assurance) in Aker Engineering & Technology AS (Oslo, Norway). He has an MSc in Chemical Engineering from the Technical University of Athens (2000) and an industrial PhD from DTU (2006), in collaboration with Statoilhydro (Norway). He is the author of 15 publications in international journals and the recipient of the Director Peter Gorm-Petersens Award for his PhD work.

Acknowledgments

We wish to thank all our students and colleagues and especially the faculty members of IVC-SEP Research Center, at the Department of Chemical and Biochemical Engineering of the Technical University of Denmark (DTU), for the many inspiring discussions during the past 10 years which have largely contributed to the shaping of this book. Our very special thanks go to Professor Michael L. Michelsen for the endless discussions we have enjoyed with him on thermodynamics.

In the preparation of this book we have been assisted by many colleagues, friends, current and former students. Some have read chapters of the book or provided material prior to publication, while we have had extensive discussions with others. We would particularly like to thank Professors J. Coutinho, G. Jackson, I. Marrucho, J. Mollerup, G. Sadowski, L. Vega and N. von Solms, Doctors M. Breil, H. Cheng, Ph. Coutsikos, J.-C. de Hemptinne, I. Economou, J. Gabrielsen, A. Grenner, E. Karakatsani I. Kouskoumvekaki, Th. Lindvig, E. Solbraa, N. Sune, A. Tihic, I. Tsivintzelis and W. Yan, as well as the current PhD and MSc students of IVC-SEP, namely A. Avlund, J. Christensen, L. Faramarzi, F. Leon, B. Maribo-Mogensen and A. Sattar-Dar.

All contributions have been highly valuable and we are deeply grateful for them.

List of Abbreviations

AAD % percentage average absolute deviation:

$$AAD \% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{x_{\exp,i} - x_{calc,i}}{x_{\exp,i}} \right) \cdot 100$$

for a property x

AM arithmetic mean rule (for the cross co-volume parameter, b_{12})

AMP 2-amino-2-methyl-1-propanol ATPS aqueous two-phase systems BCF bioconcentration factor

BR butadiene rubber (polybutadiene)
BTEX benzene-toluene-ethylbenzene-xylene
CCC critical coagulation concentration

CDI chronic daily intake
CK-SAFT Chen-Kreglewski SAFT
CMC critical micelle concentration

Comb-FV combinatorial free volume (effect, term, contributions)

COSMO conductor-like screening model

CPA cubic-plus-association
CPP critical packing parameter
CS Carnahan-Starling

CSP corresponding states principle

CTAB hexadecyl trimethylammonium bromide

DBE dibutyl ether

DDT dichlorodiphenyltrichloroethane

DEA diethanolamine DEG diethylene glycol

DFT density functional theory

DH Debye–Hückel DiPE diisopropyl ether

DIPPR Design Institute for Physical Property (database)
DLVO Derjaguin–Landau–Verwey–Overbeek (theory)

DME dimethyl ether DPE dipropyl ether

ECR Elliott's combining rule

EoS Equation of state

EPA Environmental Protection Agency

EPE ethyl propyl ether

ESD Elliott–Suresh–Donohue (EoS)

EU European Union

FCC Face-centered cubic structure (close packed, Z=12)

FH Flory-Huggins **FOG** first-order groups FV Free volume

GC group contribution (methods, principle) **GCA** group contribution plus association

GCVM group contribution of Vidal and Michelsen mixing rules

Group Européen de Recherche Gazière **GERG**

GLC gas-liquid chromatography gas-liquid equilibria **GLE**

GMgeometric mean rule (for the cross-energy parameter, a_{12})

HB hydrogen bonds/bonding hexachlorobenzene **HCB** HF Hartree-Fock

hydrophobic interaction chromatography HIC

hydrophilic-lipophilic balance **HLB HSP** Hansen solubility parameters HVHuron-Vidal mixing rule **IEC** ion-exchange chromatography low-angle light scattering LALS

local composition (models, principle, etc.) LC

LCST lower critical solution temperature

LCVM linear combination of Vidal and Michelsen mixing rules

LGT linear gradient theory LJ Lennard-Jones

LLE liquid-liquid equilibria Lewis-Randall; long range LR

mCR-1 modified CR-1 combining rule (for the CPA EoS), equation (9.10)

Mathias-Copeman SRK MC-SRK **MDEA** methyl diethanolamine monoethanolamine **MEA** (mono)ethylene glycol MEG **MEK** methyl ethyl ketone

modified Huron-Vidal first order MHV1 modified Huron-Vidal second order MHV2

MM McMillan-Mayer molecular orbital MO

MSA mean spherical approximation

molecular weight MW

lattice-fluid hydrogen bonding (EoS) NLF-HB NP number of experimental points non-random hydrogen bonding (EoS) **NRHB**

non-random two liquid NRTL.

PAHs polynuclear aromatic hydrocarbons

poly(butyl acrylate) PBA **PBD** polybutadiene

poly(butyl methacrylate) **PBMA** polychlorinated biphenyls **PCBs**

PC-SAFT perturbed-chain SAFT
PDH Pitzer-Debye-Hückel
PDMS poly(dimethyl siloxane)
PEA poly(ethyl acrylate)
PEG (poly)ethylene glycol
PIB polyisobutylene

PIPMA poly(isopropyl methacrylate)

PM primitive model PMA poly(methyl acrylate) PMMA poly(methyl methacrylate)

PP polypropylene
PPA poly(propyl acrylate)
PR Peng–Robinson
PS polystyrene

PSRK predictive Soave-Redlich-Kwong

PVAc poly(vinyl acetate)
PVAL poly(vinyl alcohol)
PVC poly(vinyl chloride)

PVT pressure, volume, temperature

PZ piperazine

QC quantum chemistry QM quantum mechanics

QSAR quantitative structure–activity relationships

RDF radial distribution function

RK Redlich-Kwong

RP-HPLC reversed-phase high-pressure liquid chromatography

RPM restrictive primitive model RST regular solution theory

SAFT statistical associating fluid theory
SCFE supercritical fluid extraction
SDS sodium dodecyl sulfate
SGE solid–gas equilibria
SL Sanchez–Lacombe
SOG second-order groups
SLE solid–liquid equilibria

SR short range

SRK Soave–Redlich–Kwong (EoS)
SVC second virial coefficients
SWP Sako–Wu–Prausnitz (EoS)

TEG triethylene glycol THF tetrahydrofurane

UCST upper critical solution temperature
UMR-PR universal mixing rule (with the PR EoS)

UNIFAC universal quasi-chemical functional group activity coefficient

UNIQUAC universal quasi-chemical vdW van der Waals (EoS)

vdW1f vdW one-fluid (mixing rules)

VLE vapor-liquid equilibria

VLLE vapor–liquid–liquid equilibria VOR volatile organic compound

VR variable range

VTPR volume-translated Peng–Robinson (EoS)

WHO World Health Organization

WS Wong-Sandler

 Δy

 $\Delta \rho \%$

WWF World Wide Fund for Nature $\Delta P\%$ average absolute percentage error:

$$\Delta P\% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{P_{exp,i} - P_{calc,i}}{P_{exp,i}} \right) \cdot 100$$

in bubble point pressure P of component i average absolute percentage deviation:

$$\Delta y = \frac{1}{NP} \sum_{i=1}^{NP} ABS(y_{exp,i} - y_{calc,i})$$

in the vapor phase mole fraction of component i average absolute percentage deviation:

$$\Delta\rho\% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{\rho_{exp,i} - \rho_{calc,i}}{\rho_{exp,i}} \right) \cdot 100$$

in the liquid density of component i

List of Symbols

```
energy term in the SRK term (bar 1<sup>2</sup>/mol<sup>2</sup>) or activity or particle radius
а
               surfactant head area
a_0
               non-randomness parameter of molecules of type i around a molecule of type j
a_{ij}
a_{mk}, a_{mk,1},
   a_{mk,2},
               UNIFAC temperature-dependent parameters, K
   a_{mk,3}
               surface area or Helmholtz energy or Hamaker constant
\boldsymbol{A}
               effective Hamaker constant
A_{eff}
               site A in molecule i
A_i
A_{ii}
               Hamaker constant of particle/surface i–i
               parameter in Langmuir constant, K/bar
A_{m,i}
               specific surface area, typically in m<sup>2</sup>/g
A_{spec}
               area occupied by a gas molecule
A_0
               reduced Helmholtz energy
ã
               parameter in the energy term of CPA (bar L^2/mol^2) or area of the head of a surfactant molecule
a_0
A_1, A_2, A_3
               parameters in GERG model for water
               Hamaker constant between particles (or surfaces) 1 and 3 in medium 2
A_{123}
               co-volume parameter (l/mol) of cubic equations of state
R
               second virial coefficient
B_i
               site B in molecule j
B_{m,i}
               parameter in Langmuir constant, K
C
               molar concentration (often in mol/l or mol/m<sup>3</sup>) or concentration (in general) or the London
               coefficient
               parameter in the energy term of CPA
c_1
               Langmuir constant for component i in cavity m
C_{m,i}
d
               density (eq. 4.29) or temperature-dependent diameter
D
               Diffusion coefficient or dielectric constant
E
               modulus of Elasticity
f
               fugacity, bar
f
               fugacity, bar
F
               Force
G
               Gibbs energy
G^E, g^E
               excess Gibbs energy
               Huron–Vidal energy parameter, characteristic of the j-i interaction, K
g_{ji}/R
               radial distribution function
g
               Planck's constant, 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}
h
H
H
               interparticle or interface distance or (H<sub>i</sub>) Henry's law constant
Ι
               first ionization potential, J or ionic strength
```

kBoltzmann's constant, J/K K_i Distribution factor e.g. Table 1.3 chemical equilibrium constant K

binary interaction parameter (in equations of state) k_{12}, k_{ij}

 K_{OW} octanol-water partition coefficient

 K^{ref} chemical equilibrium constant at the reference temperature

parameter in the Hansen–Beerbower–Skaarup equation (eq. 18.8) or distance between charges

in a molecule (eq. 2.2a or 2.2b) length of a surfactant molecule

 l_c segment number or molality m molecular weight (molar mass) MW, M

Avogadro's number = 6.0225×10^{23} mol/mol N_A

aggregation (or aggregate) number N_{agg}

refractive index true number of moles n_T apparent number of moles n_o

pressure, bar

 P^{sat} saturated vapor pressure

q

quadrupole moment, C m² Q

 Q_k surface area parameter for group k

van der Waals surface area Q_w

gas constant, bar l/mol/K or molecular radius R

radial distance from the center of the cavity, Å or intermolecular distance r

 R_i the radius of cage i, Å volume parameter for group k R_k

S Harkins spreading coefficient or entropy

Ttemperature, K

 T_c critical temperature, K

 $T_{m,i}$ melting temperature of the component i, K

reduced temperature T_r **T**ref reference temperature, K

arbitrary temperature for linear UNIFAC (in the temperature dependency of the T_0

energy parameters), see Table 5.7 composition variable or internal energy U

(van der Waals) potential energy V_A

reduced volume $V^{^*}$ hard-core volume

Vvolume

 V_c critical volume V_f V_g \bar{V}_i free volume

gas volume at STP conditions (= 22 414 cm³/mol)

partial molar volume

molar volume (L mol⁻¹) or maximum volume occupied by a gas (in adsorption in a solid)

molar volume of ice, 1 mol⁻¹ van der Waals volume V_w W(r)cell potential function, J