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Preface

Preface to the Second Edition
It has been eight years now since the appearance of the first edition of this book in 2001. During
this time, many courteous users—professors who have been adopting the book, researchers, and
students—have taken the time and care to provide me with valuable feedback about the book.
In preparing the second edition, I have taken into consideration the generous feedback I have
received from these users. To them, and from the very outset, I want to express my deep sense
of gratitude and appreciation.
The underlying focus of the book has remained the same: to provide a well-structured and

self-contained, yet concise, text that is backed by a rich collection of fully solved examples
and problems illustrating various aspects of nonrelativistic quantum mechanics. The book is
intended to achieve a double aim: on the one hand, to provide instructors with a pedagogically
suitable teaching tool and, on the other, to help students not only master the underpinnings of
the theory but also become effective practitioners of quantum mechanics.
Although the overall structure and contents of the book have remained the same upon the

insistence of numerous users, I have carried out a number of streamlining, surgical type changes
in the second edition. These changes were aimed at fixing the weaknesses (such as typos)
detected in the first edition while reinforcing and improving on its strengths. I have introduced a
number of sections, new examples and problems, and newmaterial; these are spread throughout
the text. Additionally, I have operated substantive revisions of the exercises at the end of the
chapters; I have added a number of new exercises, jettisoned some, and streamlined the rest.
I may underscore the fact that the collection of end-of-chapter exercises has been thoroughly
classroom tested for a number of years now.
The book has now a collection of almost six hundred examples, problems, and exercises.

Every chapter contains: (a) a number of solved examples each of which is designed to illustrate
a specific concept pertaining to a particular section within the chapter, (b) plenty of fully solved
problems (which come at the end of every chapter) that are generally comprehensive and, hence,
cover several concepts at once, and (c) an abundance of unsolved exercises intended for home-
work assignments. Through this rich collection of examples, problems, and exercises, I want
to empower the student to become an independent learner and an adept practitioner of quantum
mechanics. Being able to solve problems is an unfailing evidence of a real understanding of the
subject.
The second edition is backed by useful resources designed for instructors adopting the book

(please contact the author or Wiley to receive these free resources).
The material in this book is suitable for three semesters—a two-semester undergraduate

course and a one-semester graduate course. A pertinent question arises: How to actually use

xiii
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the book in an undergraduate or graduate course(s)? There is no simple answer to this ques-
tion as this depends on the background of the students and on the nature of the course(s) at
hand. First, I want to underscore this important observation: As the book offers an abundance
of information, every instructor should certainly select the topics that will be most relevant
to her/his students; going systematically over all the sections of a particular chapter (notably
Chapter 2), one might run the risk of getting bogged down and, hence, ending up spending too
much time on technical topics. Instead, one should be highly selective. For instance, for a one-
semester course where the students have not taken modern physics before, I would recommend
to cover these topics: Sections 1.1–1.6; 2.2.2, 2.2.4, 2.3, 2.4.1–2.4.8, 2.5.1, 2.5.3, 2.6.1–2.6.2,
2.7; 3.2–3.6; 4.3–4.8; 5.2–5.4, 5.6–5.7; and 6.2–6.4. However, if the students have taken mod-
ern physics before, I would skip Chapter 1 altogether and would deal with these sections: 2.2.2,
2.2.4, 2.3, 2.4.1–2.4.8, 2.5.1, 2.5.3, 2.6.1–2.6.2, 2.7; 3.2–3.6; 4.3–4.8; 5.2–5.4, 5.6–5.7; 6.2–
6.4; 9.2.1–9.2.2, 9.3, and 9.4. For a two-semester course, I think the instructor has plenty of
time and flexibility to maneuver and select the topics that would be most suitable for her/his
students; in this case, I would certainly include some topics from Chapters 7–11 as well (but
not all sections of these chapters as this would be unrealistically time demanding). On the other
hand, for a one-semester graduate course, I would cover topics such as Sections 1.7–1.8; 2.4.9,
2.6.3–2.6.5; 3.7–3.8; 4.9; and most topics of Chapters 7–11.

Acknowledgments
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Preface to the First Edition

Books on quantum mechanics can be grouped into two main categories: textbooks, where
the focus is on the formalism, and purely problem-solving books, where the emphasis is on
applications. While many fine textbooks on quantum mechanics exist, problem-solving books
are far fewer. It is not my intention to merely add a text to either of these two lists. My intention
is to combine the two formats into a single text which includes the ingredients of both a textbook
and a problem-solving book. Books in this format are practically nonexistent. I have found this
idea particularly useful, for it gives the student easy and quick access not only to the essential
elements of the theory but also to its practical aspects in a unified setting.
During many years of teaching quantum mechanics, I have noticed that students generally

find it easier to learn its underlying ideas than to handle the practical aspects of the formalism.
Not knowing how to calculate and extract numbers out of the formalism, one misses the full
power and utility of the theory. Mastering the techniques of problem-solving is an essential part
of learning physics. To address this issue, the problems solved in this text are designed to teach
the student how to calculate. No real mastery of quantum mechanics can be achieved without
learning how to derive and calculate quantities.
In this book I want to achieve a double aim: to give a self-contained, yet concise, presenta-

tion of most issues of nonrelativistic quantum mechanics, and to offer a rich collection of fully
solved examples and problems. This unified format is not without cost. Size! Judicious care
has been exercised to achieve conciseness without compromising coherence and completeness.
This book is an outgrowth of undergraduate and graduate lecture notes I have been sup-

plying to my students for about one decade; the problems included have been culled from a
large collection of homework and exam exercises I have been assigning to the students. It is
intended for senior undergraduate and first-year graduate students. The material in this book
could be covered in three semesters: Chapters 1 to 5 (excluding Section 3.7) in a one-semester
undergraduate course; Chapter 6, Section 7.3, Chapter 8, Section 9.2 (excluding fine structure
and the anomalous Zeeman effect), and Sections 11.1 to 11.3 in the second semester; and the
rest of the book in a one-semester graduate course.
The book begins with the experimental basis of quantum mechanics, where we look at

those atomic and subatomic phenomena which confirm the failure of classical physics at the
microscopic scale and establish the need for a new approach. Then come the mathematical
tools of quantum mechanics such as linear spaces, operator algebra, matrix mechanics, and
eigenvalue problems; all these are treated by means of Dirac’s bra-ket notation. After that we
discuss the formal foundations of quantum mechanics and then deal with the exact solutions
of the Schrödinger equation when applied to one-dimensional and three-dimensional problems.
We then look at the stationary and the time-dependent approximation methods and, finally,
present the theory of scattering.
I would like to thank Professors Ismail Zahed (University of New York at Stony Brook)

and Gerry O. Sullivan (University College Dublin, Ireland) for their meticulous reading and
comments on an early draft of the manuscript. I am grateful to the four anonymous reviewers
who provided insightful comments and suggestions. Special thanks go to my editor, Dr Andy
Slade, for his constant support, encouragement, and efficient supervision of this project.
I want to acknowledge the hospitality of the Center for Theoretical Physics of MIT, Cam-

bridge, for the two years I spent there as a visitor. I would like to thank in particular Professors
Alan Guth, Robert Jaffee, and John Negele for their support.
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Note to the student

We are what we repeatedly do. Excellence, then, is not an act, but a habit.
Aristotle

No one expects to learn swimming without getting wet. Nor does anyone expect to learn
it by merely reading books or by watching others swim. Swimming cannot be learned without
practice. There is absolutely no substitute for throwing yourself into water and training for
weeks, or even months, till the exercise becomes a smooth reflex.
Similarly, physics cannot be learned passively. Without tackling various challenging prob-

lems, the student has no other way of testing the quality of his or her understanding of the
subject. Here is where the student gains the sense of satisfaction and involvement produced by
a genuine understanding of the underlying principles. The ability to solve problems is the best
proof of mastering the subject. As in swimming, the more you solve problems, the more you
sharpen and fine-tune your problem-solving skills.
To derive full benefit from the examples and problems solved in the text, avoid consulting

the solution too early. If you cannot solve the problem after your first attempt, try again! If
you look up the solution only after several attempts, it will remain etched in your mind for a
long time. But if you manage to solve the problem on your own, you should still compare your
solution with the book’s solution. You might find a shorter or more elegant approach.
One important observation: as the book is laden with a rich collection of fully solved ex-

amples and problems, one should absolutely avoid the temptation of memorizing the various
techniques and solutions; instead, one should focus on understanding the concepts and the un-
derpinnings of the formalism involved. It is not my intention in this book to teach the student a
number of tricks or techniques for acquiring good grades in quantummechanics classes without
genuine understanding or mastery of the subject; that is, I didn’t mean to teach the student how
to pass quantum mechanics exams without a deep and lasting understanding. However, the stu-
dent who focuses on understanding the underlying foundations of the subject and on reinforcing
that by solving numerous problems and thoroughly understanding themwill doubtlessly achieve
a double aim: reaping good grades as well as obtaining a sound and long-lasting education.

N. Zettili



Chapter 1

Origins of Quantum Physics

In this chapter we are going to review the main physical ideas and experimental facts that
defied classical physics and led to the birth of quantum mechanics. The introduction of quan-
tum mechanics was prompted by the failure of classical physics in explaining a number of
microphysical phenomena that were observed at the end of the nineteenth and early twentieth
centuries.

1.1 Historical Note
At the end of the nineteenth century, physics consisted essentially of classical mechanics, the
theory of electromagnetism1, and thermodynamics. Classical mechanics was used to predict
the dynamics of material bodies, and Maxwell’s electromagnetism provided the proper frame-
work to study radiation; matter and radiation were described in terms of particles and waves,
respectively. As for the interactions between matter and radiation, they were well explained
by the Lorentz force or by thermodynamics. The overwhelming success of classical physics—
classical mechanics, classical theory of electromagnetism, and thermodynamics—made people
believe that the ultimate description of nature had been achieved. It seemed that all known
physical phenomena could be explained within the framework of the general theories of matter
and radiation.
At the turn of the twentieth century, however, classical physics, which had been quite unas-

sailable, was seriously challenged on two major fronts:

Relativistic domain: Einstein’s 1905 theory of relativity showed that the validity of
Newtonian mechanics ceases at very high speeds (i.e., at speeds comparable to that of
light).

Microscopic domain: As soon as new experimental techniques were developed to the
point of probing atomic and subatomic structures, it turned out that classical physics fails
miserably in providing the proper explanation for several newly discovered phenomena.
It thus became evident that the validity of classical physics ceases at the microscopic
level and that new concepts had to be invoked to describe, for instance, the structure of
atoms and molecules and how light interacts with them.

1Maxwell’s theory of electromagnetism had unified the, then ostensibly different, three branches of physics: elec-
tricity, magnetism, and optics.

1
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The failure of classical physics to explain several microscopic phenomena—such as black-
body radiation, the photoelectric effect, atomic stability, and atomic spectroscopy—had cleared
the way for seeking new ideas outside its purview.
The first real breakthrough came in 1900 when Max Planck introduced the concept of the

quantum of energy. In his efforts to explain the phenomenon of blackbody radiation, he suc-
ceeded in reproducing the experimental results only after postulating that the energy exchange
between radiation and its surroundings takes place in discrete, or quantized, amounts. He ar-
gued that the energy exchange between an electromagnetic wave of frequency and matter
occurs only in integer multiples of h , which he called the energy of a quantum, where h is a
fundamental constant called Planck’s constant. The quantization of electromagnetic radiation
turned out to be an idea with far-reaching consequences.
Planck’s idea, which gave an accurate explanation of blackbody radiation, prompted new

thinking and triggered an avalanche of new discoveries that yielded solutions to the most out-
standing problems of the time.
In 1905 Einstein provided a powerful consolidation to Planck’s quantum concept. In trying

to understand the photoelectric effect, Einstein recognized that Planck’s idea of the quantization
of the electromagnetic waves must be valid for light as well. So, following Planck’s approach,
he posited that light itself is made of discrete bits of energy (or tiny particles), called photons,
each of energy h , being the frequency of the light. The introduction of the photon concept
enabled Einstein to give an elegantly accurate explanation to the photoelectric problem, which
had been waiting for a solution ever since its first experimental observation by Hertz in 1887.
Another seminal breakthrough was due to Niels Bohr. Right after Rutherford’s experimental

discovery of the atomic nucleus in 1911, and combining Rutherford’s atomic model, Planck’s
quantum concept, and Einstein’s photons, Bohr introduced in 1913 his model of the hydrogen
atom. In this work, he argued that atoms can be found only in discrete states of energy and
that the interaction of atoms with radiation, i.e., the emission or absorption of radiation by
atoms, takes place only in discrete amounts of h because it results from transitions of the atom
between its various discrete energy states. This work provided a satisfactory explanation to
several outstanding problems such as atomic stability and atomic spectroscopy.
Then in 1923 Compton made an important discovery that gave the most conclusive confir-

mation for the corpuscular aspect of light. By scattering X-rays with electrons, he confirmed
that the X-ray photons behave like particles with momenta h c; is the frequency of the
X-rays.
This series of breakthroughs—due to Planck, Einstein, Bohr, and Compton—gave both

the theoretical foundations as well as the conclusive experimental confirmation for the particle
aspect of waves; that is, the concept that waves exhibit particle behavior at the microscopic
scale. At this scale, classical physics fails not only quantitatively but even qualitatively and
conceptually.
As if things were not bad enough for classical physics, de Broglie introduced in 1923 an-

other powerful new concept that classical physics could not reconcile: he postulated that not
only does radiation exhibit particle-like behavior but, conversely, material particles themselves
display wave-like behavior. This concept was confirmed experimentally in 1927 by Davisson
and Germer; they showed that interference patterns, a property of waves, can be obtained with
material particles such as electrons.
Although Bohr’s model for the atom produced results that agree well with experimental

spectroscopy, it was criticized for lacking the ingredients of a theory. Like the “quantization”
scheme introduced by Planck in 1900, the postulates and assumptions adopted by Bohr in 1913
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were quite arbitrary and do not follow from the first principles of a theory. It was the dissatis-
faction with the arbitrary nature of Planck’s idea and Bohr’s postulates as well as the need to fit
them within the context of a consistent theory that had prompted Heisenberg and Schrödinger
to search for the theoretical foundation underlying these new ideas. By 1925 their efforts paid
off: they skillfully welded the various experimental findings as well as Bohr’s postulates into
a refined theory: quantum mechanics. In addition to providing an accurate reproduction of the
existing experimental data, this theory turned out to possess an astonishingly reliable predic-
tion power which enabled it to explore and unravel many uncharted areas of the microphysical
world. This new theory had put an end to twenty five years (1900–1925) of patchwork which
was dominated by the ideas of Planck and Bohr and which later became known as the old
quantum theory.
Historically, there were two independent formulations of quantum mechanics. The first

formulation, called matrix mechanics, was developed by Heisenberg (1925) to describe atomic
structure starting from the observed spectral lines. Inspired by Planck’s quantization of waves
and by Bohr’s model of the hydrogen atom, Heisenberg founded his theory on the notion that
the only allowed values of energy exchange between microphysical systems are those that are
discrete: quanta. Expressing dynamical quantities such as energy, position, momentum and
angular momentum in terms of matrices, he obtained an eigenvalue problem that describes the
dynamics of microscopic systems; the diagonalization of the Hamiltonian matrix yields the
energy spectrum and the state vectors of the system. Matrix mechanics was very successful in
accounting for the discrete quanta of light emitted and absorbed by atoms.
The second formulation, called wave mechanics, was due to Schrödinger (1926); it is a

generalization of the de Broglie postulate. This method, more intuitive than matrix mechan-
ics, describes the dynamics of microscopic matter by means of a wave equation, called the
Schrödinger equation; instead of the matrix eigenvalue problem of Heisenberg, Schrödinger
obtained a differential equation. The solutions of this equation yield the energy spectrum and
the wave function of the system under consideration. In 1927 Max Born proposed his proba-
bilistic interpretation of wave mechanics: he took the square moduli of the wave functions that
are solutions to the Schrödinger equation and he interpreted them as probability densities.
These two ostensibly different formulations—Schrödinger’s wave formulation and Heisen-

berg’s matrix approach—were shown to be equivalent. Dirac then suggested a more general
formulation of quantum mechanics which deals with abstract objects such as kets (state vec-
tors), bras, and operators. The representation of Dirac’s formalism in a continuous basis—the
position or momentum representations—gives back Schrödinger’s wave mechanics. As for
Heisenberg’s matrix formulation, it can be obtained by representing Dirac’s formalism in a
discrete basis. In this context, the approaches of Schrödinger and Heisenberg represent, re-
spectively, the wave formulation and the matrix formulation of the general theory of quantum
mechanics.
Combining special relativity with quantum mechanics, Dirac derived in 1928 an equation

which describes the motion of electrons. This equation, known as Dirac’s equation, predicted
the existence of an antiparticle, the positron, which has similar properties, but opposite charge,
with the electron; the positron was discovered in 1932, four years after its prediction by quan-
tum mechanics.
In summary, quantum mechanics is the theory that describes the dynamics of matter at the

microscopic scale. Fine! But is it that important to learn? This is no less than an otiose question,
for quantum mechanics is the only valid framework for describing the microphysical world.
It is vital for understanding the physics of solids, lasers, semiconductor and superconductor
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devices, plasmas, etc. In short, quantum mechanics is the founding basis of all modern physics:
solid state, molecular, atomic, nuclear, and particle physics, optics, thermodynamics, statistical
mechanics, and so on. Not only that, it is also considered to be the foundation of chemistry and
biology.

1.2 Particle Aspect of Radiation

According to classical physics, a particle is characterized by an energy E and a momentum
p, whereas a wave is characterized by an amplitude and a wave vector k ( k 2 ) that
specifies the direction of propagation of the wave. Particles and waves exhibit entirely different
behaviors; for instance, the “particle” and “wave” properties are mutually exclusive. We should
note that waves can exchange any (continuous) amount of energy with particles.
In this section we are going to see how these rigid concepts of classical physics led to its

failure in explaining a number of microscopic phenomena such as blackbody radiation, the
photoelectric effect, and the Compton effect. As it turned out, these phenomena could only be
explained by abandoning the rigid concepts of classical physics and introducing a new concept:
the particle aspect of radiation.

1.2.1 Blackbody Radiation

At issue here is how radiation interacts with matter. When heated, a solid object glows and
emits thermal radiation. As the temperature increases, the object becomes red, then yellow,
then white. The thermal radiation emitted by glowing solid objects consists of a continuous
distribution of frequencies ranging from infrared to ultraviolet. The continuous pattern of the
distribution spectrum is in sharp contrast to the radiation emitted by heated gases; the radiation
emitted by gases has a discrete distribution spectrum: a few sharp (narrow), colored lines with
no light (i.e., darkness) in between.
Understanding the continuous character of the radiation emitted by a glowing solid object

constituted one of the major unsolved problems during the second half of the nineteenth century.
All attempts to explain this phenomenon by means of the available theories of classical physics
(statistical thermodynamics and classical electromagnetic theory) ended up in miserable failure.
This problem consisted in essence of specifying the proper theory of thermodynamics that
describes how energy gets exchanged between radiation and matter.
When radiation falls on an object, some of it might be absorbed and some reflected. An

idealized “blackbody” is a material object that absorbs all of the radiation falling on it, and
hence appears as black under reflection when illuminated from outside. When an object is
heated, it radiates electromagnetic energy as a result of the thermal agitation of the electrons
in its surface. The intensity of this radiation depends on its frequency and on the temperature;
the light it emits ranges over the entire spectrum. An object in thermal equilibrium with its
surroundings radiates as much energy as it absorbs. It thus follows that a blackbody is a perfect
absorber as well as a perfect emitter of radiation.
A practical blackbody can be constructed by taking a hollow cavity whose internal walls

perfectly reflect electromagnetic radiation (e.g., metallic walls) and which has a very small
hole on its surface. Radiation that enters through the hole will be trapped inside the cavity and
gets completely absorbed after successive reflections on the inner surfaces of the cavity. The
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Figure 1.1 Spectral energy density u T of blackbody radiation at different temperatures as
a function of the frequency .

hole thus absorbs radiation like a black body. On the other hand, when this cavity is heated2 to
a temperature T , the radiation that leaves the hole is blackbody radiation, for the hole behaves
as a perfect emitter; as the temperature increases, the hole will eventually begin to glow. To
understand the radiation inside the cavity, one needs simply to analyze the spectral distribution
of the radiation coming out of the hole. In what follows, the term blackbody radiation will
then refer to the radiation leaving the hole of a heated hollow cavity; the radiation emitted by a
blackbody when hot is called blackbody radiation.
By the mid-1800s, a wealth of experimental data about blackbody radiation was obtained

for various objects. All these results show that, at equilibrium, the radiation emitted has a well-
defined, continuous energy distribution: to each frequency there corresponds an energy density
which depends neither on the chemical composition of the object nor on its shape, but only
on the temperature of the cavity’s walls (Figure 1.1). The energy density shows a pronounced
maximum at a given frequency, which increases with temperature; that is, the peak of the radi-
ation spectrum occurs at a frequency that is proportional to the temperature (1.16). This is the
underlying reason behind the change in color of a heated object as its temperature increases, no-
tably from red to yellow to white. It turned out that the explanation of the blackbody spectrum
was not so easy.
A number of attempts aimed at explaining the origin of the continuous character of this

radiation were carried out. The most serious among such attempts, and which made use of
classical physics, were due to Wilhelm Wien in 1889 and Rayleigh in 1900. In 1879 J. Stefan
found experimentally that the total intensity (or the total power per unit surface area) radiated
by a glowing object of temperature T is given by

P a T 4 (1.1)

which is known as the Stefan–Boltzmann law, where 5 67 10 8 Wm 2 K 4 is the
2When the walls are heated uniformly to a temperature T , they emit radiation (due to thermal agitation or vibrations

of the electrons in the metallic walls).
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Figure 1.2 Comparison of various spectral densities: while the Planck and experimental dis-
tributions match perfectly (solid curve), the Rayleigh–Jeans and the Wien distributions (dotted
curves) agree only partially with the experimental distribution.

Stefan–Boltzmann constant, and a is a coefficient which is less than or equal to 1; in the case
of a blackbody a 1. Then in 1884 Boltzmann provided a theoretical derivation for Stefan’s
experimental law by combining thermodynamics and Maxwell’s theory of electromagnetism.

Wien’s energy density distribution
Using thermodynamic arguments, Wien took the Stefan–Boltzmann law (1.1) and in 1894 he
extended it to obtain the energy density per unit frequency of the emitted blackbody radiation:

u T A 3e T (1.2)

where A and are empirically defined parameters (they can be adjusted to fit the experimental
data). Note: u T has the dimensions of an energy per unit volume per unit frequency; its SI
units are Jm 3 Hz 1. Although Wien’s formula fits the high-frequency data remarkably well,
it fails badly at low frequencies (Figure 1.2).

Rayleigh’s energy density distribution
In his 1900 attempt, Rayleigh focused on understanding the nature of the electromagnetic ra-
diation inside the cavity. He considered the radiation to consist of standing waves having a
temperature T with nodes at the metallic surfaces. These standing waves, he argued, are equiv-
alent to harmonic oscillators, for they result from the harmonic oscillations of a large number
of electrical charges, electrons, that are present in the walls of the cavity. When the cavity is in
thermal equilibrium, the electromagnetic energy density inside the cavity is equal to the energy
density of the charged particles in the walls of the cavity; the average total energy of the radia-
tion leaving the cavity can be obtained by multiplying the average energy of the oscillators by
the number of modes (standing waves) of the radiation in the frequency interval to d :

N
8 2

c3
(1.3)
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where c 3 108 m s 1 is the speed of light; the quantity 8 2 c3 d gives the number of
modes of oscillation per unit volume in the frequency range to d . So the electromagnetic
energy density in the frequency range to d is given by

u T N E
8 2

c3
E (1.4)

where E is the average energy of the oscillators present on the walls of the cavity (or of the
electromagnetic radiation in that frequency interval); the temperature dependence of u T is
buried in E .
How does one calculate E ? According to the equipartition theorem of classical thermo-

dynamics, all oscillators in the cavity have the same mean energy, irrespective of their frequen-
cies3:

E 0 Ee E kT dE

0 e E kT dE
kT (1.5)

where k 1 3807 10 23 JK 1 is the Boltzmann constant. An insertion of (1.5) into (1.4)
leads to the Rayleigh–Jeans formula:

u T
8 2

c3
kT (1.6)

Except for low frequencies, this law is in complete disagreement with experimental data: u T
as given by (1.6) diverges for high values of , whereas experimentally it must be finite (Fig-
ure 1.2). Moreover, if we integrate (1.6) over all frequencies, the integral diverges. This implies
that the cavity contains an infinite amount of energy. This result is absurd. Historically, this was
called the ultraviolet catastrophe, for (1.6) diverges for high frequencies (i.e., in the ultraviolet
range)—a real catastrophical failure of classical physics indeed! The origin of this failure can
be traced to the derivation of the average energy (1.5). It was founded on an erroneous premise:
the energy exchange between radiation and matter is continuous; any amount of energy can be
exchanged.

Planck’s energy density distribution
By devising an ingenious scheme—interpolation between Wien’s rule and the Rayleigh–Jeans
rule—Planck succeeded in 1900 in avoiding the ultraviolet catastrophe and proposed an ac-
curate description of blackbody radiation. In sharp contrast to Rayleigh’s assumption that a
standing wave can exchange any amount (continuum) of energy with matter, Planck considered
that the energy exchange between radiation and matter must be discrete. He then postulated
that the energy of the radiation (of frequency ) emitted by the oscillating charges (from the
walls of the cavity) must come only in integer multiples of h :

E nh n 0 1 2 3 (1.7)

where h is a universal constant and h is the energy of a “quantum” of radiation ( represents
the frequency of the oscillating charge in the cavity’s walls as well as the frequency of the
radiation emitted from the walls, because the frequency of the radiation emitted by an oscil-
lating charged particle is equal to the frequency of oscillation of the particle itself). That is,
the energy of an oscillator of natural frequency (which corresponds to the energy of a charge

3Using a variable change 1 kT , we have E ln 0 e EdE ln 1 1 kT .
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oscillating with a frequency ) must be an integral multiple of h ; note that h is not the same
for all oscillators, because it depends on the frequency of each oscillator. Classical mechanics,
however, puts no restrictions whatsoever on the frequency, and hence on the energy, an oscilla-
tor can have. The energy of oscillators, such as pendulums, mass–spring systems, and electric
oscillators, varies continuously in terms of the frequency. Equation (1.7) is known as Planck’s
quantization rule for energy or Planck’s postulate.
So, assuming that the energy of an oscillator is quantized, Planck showed that the cor-

rect thermodynamic relation for the average energy can be obtained by merely replacing the
integration of (1.5)—that corresponds to an energy continuum—by a discrete summation cor-
responding to the discreteness of the oscillators’ energies4:

E n 0 nh e
nh kT

n 0 e nh kT
h

eh kT 1
(1.8)

and hence, by inserting (1.8) into (1.4), the energy density per unit frequency of the radiation
emitted from the hole of a cavity is given by

u T
8 2

c3
h

eh kT 1
(1.9)

This is known as Planck’s distribution. It gives an exact fit to the various experimental radiation
distributions, as displayed in Figure 1.2. The numerical value of h obtained by fitting (1.9) with
the experimental data is h 6 626 10 34 J s. We should note that, as shown in (1.12), we
can rewrite Planck’s energy density (1.9) to obtain the energy density per unit wavelength

u T
8 hc
5

1
ehc kT 1

(1.10)

Let us now look at the behavior of Planck’s distribution (1.9) in the limits of both low and
high frequencies, and then try to establish its connection to the relations of Rayleigh–Jeans,
Stefan–Boltzmann, and Wien. First, in the case of very low frequencies h kT , we can
show that (1.9) reduces to the Rayleigh–Jeans law (1.6), since exp h kT 1 h kT .
Moreover, if we integrate Planck’s distribution (1.9) over the whole spectrum (where we use a
change of variable x h kT and make use of a special integral5), we obtain the total energy
density which is expressed in terms of Stefan–Boltzmann’s total power per unit surface area
(1.1) as follows:

0
u T d

8 h
c3 0

3

eh kT 1
d

8 k4T 4

h3c3 0

x3

ex 1
dx

8 5k4

15h3c3
T 4

4
c
T 4

(1.11)
where 2 5k4 15h3c2 5 67 10 8 Wm 2 K 4 is the Stefan–Boltzmann constant. In
this way, Planck’s relation (1.9) leads to a finite total energy density of the radiation emitted
from a blackbody, and hence avoids the ultraviolet catastrophe. Second, in the limit of high
frequencies, we can easily ascertain that Planck’s distribution (1.9) yields Wien’s rule (1.2).
In summary, the spectrum of the blackbody radiation reveals the quantization of radiation,

notably the particle behavior of electromagnetic waves.
4To derive (1.8) one needs: 1 1 x n 0 x

n and x 1 x 2 n 0 nx
n with x e h kT .

5In integrating (1.11), we need to make use of this integral: 0
x3
ex 1dx

4
15 .
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The introduction of the constant h had indeed heralded the end of classical physics and the
dawn of a new era: physics of the microphysical world. Stimulated by the success of Planck’s
quantization of radiation, other physicists, notably Einstein, Compton, de Broglie, and Bohr,
skillfully adapted it to explain a host of other outstanding problems that had been unanswered
for decades.

Example 1.1 (Wien’s displacement law)
(a) Show that the maximum of the Planck energy density (1.9) occurs for a wavelength of

the form max b T , where T is the temperature and b is a constant that needs to be estimated.
(b) Use the relation derived in (a) to estimate the surface temperature of a star if the radiation

it emits has a maximum intensity at a wavelength of 446 nm. What is the intensity radiated by
the star?
(c) Estimate the wavelength and the intensity of the radiation emitted by a glowing tungsten

filament whose surface temperature is 3300 K.

Solution
(a) Since c , we have d d d d c 2 d ; we can thus write Planck’s

energy density (1.9) in terms of the wavelength as follows:

u T u T
d
d

8 hc
5

1
ehc kT 1

(1.12)

The maximum of u T corresponds to u T 0, which yields

8 hc
6 5 1 e hc kT hc

kT
ehc kT

ehc kT 1 2
0 (1.13)

and hence
5 1 e (1.14)

where hc kT . We can solve this transcendental equation either graphically or numeri-
cally by writing 5 . Inserting this value into (1.14), we obtain 5 5 5e 5 ,
which leads to a suggestive approximate solution 5e 5 0 0337 and hence
5 0 0337 4 9663. Since hc kT and using the values h 6 626 10 34 J s and
k 1 3807 10 23 JK 1, we can write the wavelength that corresponds to the maximum of
the Planck energy density (1.9) as follows:

max
hc

4 9663k
1
T

2898 9 10 6 m K
T

(1.15)

This relation, which shows that max decreases with increasing temperature of the body, is
called Wien’s displacement law. It can be used to determine the wavelength corresponding to
the maximum intensity if the temperature of the body is known or, conversely, to determine the
temperature of the radiating body if the wavelength of greatest intensity is known. This law
can be used, in particular, to estimate the temperature of stars (or of glowing objects) from their
radiation, as shown in part (b). From (1.15) we obtain

max
c

max

4 9663
h

kT (1.16)
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This relation shows that the peak of the radiation spectrum occurs at a frequency that is propor-
tional to the temperature.
(b) If the radiation emitted by the star has a maximum intensity at a wavelength of max

446 nm, its surface temperature is given by

T
2898 9 10 6 m K
446 10 9 m

6500 K (1.17)

Using Stefan–Boltzmann’s law (1.1), and assuming the star to radiate like a blackbody, we can
estimate the total power per unit surface area emitted at the surface of the star:

P T 4 5 67 10 8 Wm 2 K 4 6500 K 4 101 2 106 Wm 2 (1.18)

This is an enormous intensity which will decrease as it spreads over space.
(c) The wavelength of greatest intensity of the radiation emitted by a glowing tungsten

filament of temperature 3300 K is

max
2898 9 10 6 m K

3300 K
878 45 nm (1.19)

The intensity (or total power per unit surface area) radiated by the filament is given by

P T 4 5 67 10 8 Wm 2 K 4 3300 K 4 6 7 106 Wm 2 (1.20)

1.2.2 Photoelectric Effect
The photoelectric effect provides a direct confirmation for the energy quantization of light. In
1887 Hertz discovered the photoelectric effect: electrons6 were observed to be ejected from
metals when irradiated with light (Figure 1.3a). Moreover, the following experimental laws
were discovered prior to 1905:

If the frequency of the incident radiation is smaller than the metal’s threshold frequency—
a frequency that depends on the properties of the metal—no electron can be emitted
regardless of the radiation’s intensity (Philip Lenard, 1902).

No matter how low the intensity of the incident radiation, electrons will be ejected in-
stantly the moment the frequency of the radiation exceeds the threshold frequency 0.

At any frequency above 0, the number of electrons ejected increases with the intensity
of the light but does not depend on the light’s frequency.

The kinetic energy of the ejected electrons depends on the frequency but not on the in-
tensity of the beam; the kinetic energy of the ejected electron increases linearly with the
incident frequency.

6In 1899 J. J. Thomson confirmed that the particles giving rise to the photoelectric effect (i.e., the particles ejected
from the metals) are electrons.
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Figure 1.3 (a) Photoelectric effect: when a metal is irradiated with light, electrons may get
emitted. (b) Kinetic energy K of the electron leaving the metal when irradiated with a light of
frequency ; when 0 no electron is ejected from the metal regardless of the intensity of
the radiation.

These experimental findings cannot be explained within the context of a purely classical
picture of radiation, notably the dependence of the effect on the threshold frequency. According
to classical physics, any (continuous) amount of energy can be exchanged with matter. That is,
since the intensity of an electromagnetic wave is proportional to the square of its amplitude, any
frequency with sufficient intensity can supply the necessary energy to free the electron from the
metal.
But what would happen when using a weak light source? According to classical physics,

an electron would keep on absorbing energy—at a continuous rate—until it gained a sufficient
amount; then it would leave the metal. If this argument is to hold, then when using very weak
radiation, the photoelectric effect would not take place for a long time, possibly hours, until an
electron gradually accumulated the necessary amount of energy. This conclusion, however, dis-
agrees utterly with experimental observation. Experiments were conducted with a light source
that was so weak it would have taken several hours for an electron to accumulate the energy
needed for its ejection, and yet some electrons were observed to leave the metal instantly. Fur-
ther experiments showed that an increase in intensity (brightness) alone can in no way dislodge
electrons from the metal. But by increasing the frequency of the incident radiation beyond a cer-
tain threshold, even at very weak intensity, the emission of electrons starts immediately. These
experimental facts indicate that the concept of gradual accumulation, or continuous absorption,
of energy by the electron, as predicated by classical physics, is indeed erroneous.
Inspired by Planck’s quantization of electromagnetic radiation, Einstein succeeded in 1905

in giving a theoretical explanation for the dependence of photoelectric emission on the fre-
quency of the incident radiation. He assumed that light is made of corpuscles each carrying an
energy h , called photons. When a beam of light of frequency is incident on a metal, each
photon transmits all its energy h to an electron near the surface; in the process, the photon is
entirely absorbed by the electron. The electron will thus absorb energy only in quanta of energy
h , irrespective of the intensity of the incident radiation. If h is larger than the metal’s work
function W—the energy required to dislodge the electron from the metal (every metal has free
electrons that move from one atom to another; the minimum energy required to free the electron
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from the metal is called the work function of that metal)—the electron will then be knocked out
of the metal. Hence no electron can be emitted from the metal’s surface unless h W :

h W K (1.21)

where K represents the kinetic energy of the electron leaving the material.
Equation (1.21), which was derived by Einstein, gives the proper explanation to the exper-

imental observation that the kinetic energy of the ejected electron increases linearly with the
incident frequency , as shown in Figure 1.3b:

K h W h 0 (1.22)

where 0 W h is called the threshold or cutoff frequency of the metal. Moreover, this
relation shows clearly why no electron can be ejected from the metal unless 0: since the
kinetic energy cannot be negative, the photoelectric effect cannot occur when 0 regardless
of the intensity of the radiation. The ejected electrons acquire their kinetic energy from the
excess energy h 0 supplied by the incident radiation.
The kinetic energy of the emitted electrons can be experimentally determined as follows.

The setup, which was devised by Lenard, consists of the photoelectric metal (cathode) that is
placed next to an anode inside an evacuated glass tube. When light strikes the cathode’s surface,
the electrons ejected will be attracted to the anode, thereby generating a photoelectric current.
It was found that the magnitude of the photoelectric current thus generated is proportional to
the intensity of the incident radiation, yet the speed of the electrons does not depend on the
radiation’s intensity, but on its frequency. To measure the kinetic energy of the electrons, we
simply need to use a varying voltage source and reverse the terminals. When the potential V
across the tube is reversed, the liberated electrons will be prevented from reaching the anode;
only those electrons with kinetic energy larger than e V will make it to the negative plate and
contribute to the current. We vary V until it reaches a value Vs , called the stopping potential,
at which all of the electrons, even the most energetic ones, will be turned back before reaching
the collector; hence the flow of photoelectric current ceases completely. The stopping potential
Vs is connected to the electrons’ kinetic energy by e Vs 1

2me
2 K (in what follows, Vs

will implicitly denote Vs ). Thus, the relation (1.22) becomes eVs h W or

Vs
h
e

W
e

hc
e

W
e

(1.23)

The shape of the plot of Vs against frequency is a straight line, much like Figure 1.3b with
the slope now given by h e. This shows that the stopping potential depends linearly on the
frequency of the incident radiation.
It was Millikan who, in 1916, gave a systematic experimental confirmation to Einstein’s

photoelectric theory. He produced an extensive collection of photoelectric data using various
metals. He verified that Einstein’s relation (1.23) reproduced his data exactly. In addition,
Millikan found that his empirical value for h, which he obtained by measuring the slope h e of
(1.23) (Figure 1.3b), is equal to Planck’s constant to within a 0 5% experimental error.
In summary, the photoelectric effect does provide compelling evidence for the corpuscular

nature of the electromagnetic radiation.


