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The real voyage of discovery consists
not in seeking new landscapes

but in having new eyes
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Preface

This book was written in response to the growing demand for a text that provides a unified
treatment of complex valued adaptive filters, both linear and nonlinear, and methods for the
processing of both complex circular and complex noncircular signals. We believe that this is
the first attempt to bring together established adaptive filtering algorithms in C and the recent
developments in the statistics of complex variable under the umbrella of powerful mathematical
frameworks of CR (Wirtinger) calculus and augmented complex statistics. Combining the
results from the authors’ original research and current established methods, this books serves
as a rigorous account of existing and novel complex signal processing methods, and provides
next generation solutions for adaptive filtering of the generality of complex valued signals.
The introductory chapters can be used as a text for a course on adaptive filtering. It is our hope
that people as excited as we are by the possibilities opened by the more advanced work in this
book will further develop these ideas into new and useful applications.

The title reflects our ambition to write a book which addresses several major problems
in modern complex adaptive filtering. Real world data are non-Gaussian, nonstationary and
generated by nonlinear systems with possibly long impulse responses. For the processing of
such signals we therefore need nonlinear architectures to deal with nonlinearity and non-
Gaussianity, feedback to deal with long responses, and adaptive mode of operation to deal
with the nonstationary nature of the data. These have all been brought together in this book,
hence the title “Complex Valued Nonlinear Adaptive Filters”. The subtitle reflects some more
intricate aspects of the processing of complex random variables, and that the class of nonlinear
filters addressed in this work can be viewed as temporal neural networks. This material can
also be used to supplement courses on neural networks, as the algorithms developed can be
used to train neural networks for pattern processing and classification.

Complex valued signals play a pivotal role in communications, array signal processing,
power, environmental, and biomedical signal processing and related fields. These signals are
either complex by design, such as symbols used in data communications (e.g. quadrature
phase shift keying), or are made complex by convenience of representation. The latter class
includes analytic signals and signals coming from many important modern applications in mag-
netic source imaging, interferometric radar, direction of arrival estimation and smart antennas,
mathematical biosciences, mobile communications, optics and seismics. Existing books do not
take into account the effects on performance of a unique property of complex statistics – com-
plex noncircularity, and employ several convenient mathematical shortcuts in the treatment of
complex random variables.

Adaptive filters based on widely linear models introduced in this work are derived rigor-
ously, and are suited for the processing of a much wider class of complex noncircular signals
(directional processes, vector fields), and offer a number of theoretical performance gains.
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Perhaps the first time we became involved in practical applications of complex adaptive fil-
tering was when trying to perform short term wind forecasting by treating wind speed and
direction, which are routinely processed separately, as a unique complex valued quantity. Our
results outperformed the standard approaches. This opened a can of worms, as it became ap-
parent that the standard techniques were not adequate, and that mathematical foundations and
practical tools for the applications of complex valued adaptive filters to the generality of com-
plex signals are scattered throughout the literature. For instance, an often confusing aspect
of complex adaptive filtering is that the cost (objective) function to be minimised is a real
function (measure of error power) of complex variables, and is not analytic. Thus, standard
complex differentiability (Cauchy-Riemann conditions) does not apply, and we need to resort
to pseudoderivatives. We identified the need for a rigorous, concise, and unified treatment of
the statistics of complex variables, methods for dealing with nonlinearity and noncircularity,
and enhanced solutions for adaptive signal processing inC, and were encouraged by our series
editor Simon Haykin and the staff from Wiley Chichester to produce this text.

The first two chapters give the introduction to the field and illustrate the benefits of the
processing in the complex domain. Chapter 1 provides a personal view of the history of
complex numbers. They are truly fascinating and, unlike other number systems which were
introduced as solutions to practical problems, they arose as a product of intellectual exercise.
Complex numbers were formalised in the mid-19th century by Gauss and Euler in order to
provide solutions for the fundamental theorem of algebra; within 50 years (and without the
Internet) they became a linchpin of electromagnetic field and relativity theory. Chapter 2
offers theoretical and practical justification for converting many apparently real valued signal
processing problems into the complex domain, where they can benefit from the convenience of
representation and the power and beauty of complex calculus. It illustrates the duality between
the processing inR2 andC, and the benefits of complex valued processing – unlikeR2 the field
of complex numbers forms a division algebra and provides a rigorous mathematics framework
for the treatment of phase, nonlinearity and coupling between signal components.

The foundations of standard complex adaptive filtering are established in Chapters 3–7.
Chapter 3 provides an overview of adaptive filtering architectures, and introduces the back-
ground for their state space representations and links with polynomial filters and neural net-
works. Chapter 4 deals with the choice of complex nonlinear activation function and addresses
the trade off between their boundedness and analyticity. The only continuously differentiable
function in C that satisfies the Cauchy-Riemann conditions is a constant; to preserve bound-
edness some ad hoc approaches (also called split-complex) employ real valued nonlinearities
on the real and imaginary parts. Our main interest is in complex functions of complex vari-
ables (also called fully complex) which are not bounded on the whole complex plane, but are
complex differentiable and provide solutions which are generic extensions of the correspond-
ing solutions in R. Chapter 5 addresses the duality between gradient calculation in R2 and
C and introduces the so called CR calculus which is suitable for general functions of com-
plex variables, both holomorphic and non-holomorphic. This provides a unified framework
for computing the Jacobians, Hessians, and gradients of cost functions, and serves as a basis
for the derivation of learning algorithms throughout this book. Chapters 6 and 7 introduce
standard complex valued adaptive filters, both linear and nonlinear; they are supported by
rigorous proofs of convergence, and can be used to teach a course on adaptive filtering. The
complex least mean square (CLMS) in Chapter 6 is derived step by step, whereas the learning
algorithms for feedback structures in Chapter 7 are derived in a compact way, based on CR
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calculus. Furthermore, learning algorithms for both linear and nonlinear feedback architectures
are introduced, starting from linear IIR filters to temporal recurrent neural networks.

Chapters 8–11 address several practical aspects of adaptive filtering, such as adaptive step-
sizes, dynamical range extension, and a posteriori mode of operation. Chapter 8 provides a
thorough review of adaptive step size algorithms and introduces the general normalised gradi-
ent descent (GNGD) algorithm for enhanced stability. Chapter 9 gives solutions for dynamical
range extension of nonlinear neural adaptive filters, whereas Chapter 10 explains a posteriori
algorithms and analyses them in the framework of fixed point theory. Chapter 11 rounds up
the first part of the book and introduces fractional delay filters together with links between
complex nonlinear functions and number theory.

Chapters 12–15 introduce linear and nonlinear adaptive filters based on widely linear models,
which are suited to deal with complex noncircularity, thus providing theoretical and practical
adaptive filtering solutions for the generality of complex signals. Chapter 12 provides a com-
prehensive overview of the latest results (2008) in the statistics of complex random signals,
with a particular emphasis on complex noncircularity. It is shown that the standard complex
Gaussian model is inadequate and the concepts of noise, stationarity, multicorrelation, and
multispectra are re-introduced based on the augmented statistics. This has served as a basis for
the development of the class of ‘augmented’ adaptive filtering algorithms, starting from the
complex least square (ACLMS) algorithm through to augmented learning algorithms for IIR
filters, recurrent neural networks, and augmented Kalman filters. Chapter 13 introduces the
augmented least mean square algorithm, a quantum step in the adaptive signal processing of
complex noncircular signals. It is shown that this approach is as good as standard approaches for
circular data, whereas it outperforms standard filters for noncircular data. Chapter 14 provides
an insight into the duality between complex valued linear adaptive filters and dual channel real
adaptive filters. A correspondence is established between the ACLMS and the dual channel real
LMS algorithms. Chapter 15 extends widely linear modelling in C to feedback and nonlinear
architectures. The derivations are based onCR calculus and are provided for both the gradient
descent and state space (Kalman filtering) models.

Chapter 16 addresses collaborative adaptive filtering in C. It is shown that by employing
collaborative filtering architectures we can gain insight into the nature of a signal in hand, and
a simple test for complex noncircularity is proposed. Chapter 17 introduces complex empirical
mode decomposition (EMD), a data driven time-frequency technique. This technique, when
used for preprocessing complex valued data, provides a framework for “data fusion via fission”,
with a number of applications, especially in biomedical engineering and neuroscience. Chapter
18 provides a rigorous statistical testing framework for the validity of complex representation.

The material is supported by a number of Appendices (some of them based on [190]), ranging
from the theory of complex variable through to fixed point theory. We believe this makes
the book self-sufficient for a reader who has basic knowledge of adaptive signal processing.
Simulations were performed for both circular and noncircular data sources, from benchmark
linear and nonlinear models to real world wind and radar signals. The applications are set
in a prediction setting, as prediction is at the core of adaptive filtering. The complex valued
wind signal is our most frequently used test signal, due to its intermittent, non-Gaussian
and noncircular nature. Gill Instruments provided ultrasonic anemometers used for our wind
recordings.
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1
The Magic of Complex Numbers

The notion of complex number is intimately related to the Fundamental Theorem of Algebra
and is therefore at the very foundation of mathematical analysis. The development of complex
algebra, however, has been far from straightforward.1

The human idea of ‘number’ has evolved together with human society. The natural numbers
(1, 2, . . . ∈ N) are straightforward to accept, and they have been used for counting in many
cultures, irrespective of the actual base of the number system used. At a later stage, for sharing,
people introduced fractions in order to answer a simple problem such as ‘if we catch U fish, I
will have two parts 2

5 U and you will have three parts 3
5 U of the whole catch’. The acceptance of

negative numbers and zero has been motivated by the emergence of economy, for dealing with
profit and loss. It is rather impressive that ancient civilisations were aware of the need for irra-
tional numbers such as

√
2 in the case of the Babylonians [77] and π in the case of the ancient

Greeks.2

The concept of a new ‘number’ often came from the need to solve a specific practical
problem. For instance, in the above example of sharing U number of fish caught, we need
to solve for 2U = 5 and hence to introduce fractions, whereas to solve x2 = 2 (diagonal of a
square) irrational numbers needed to be introduced. Complex numbers came from the necessity
to solve equations such as x2 = −1.

1A classic reference which provides a comprehensive account of the development of numbers is Number: The Language
of Science by Tobias Dantzig [57].
2The Babylonians have actually left us the basics of Fixed Point Theory (see Appendix P), which in terms of modern
mathematics was introduced by Stefan Banach in 1922. On a clay tablet (YBC 7289) from the Yale Babylonian
Collection, the Mesopotamian scribes explain how to calculate the diagonal of a square with base 30. This was
achieved using a fixed point iteration around the initial guess. The ancient Greeks used π in geometry, although the
irrationality of π was only proved in the 1700s. More information on the history of mathematics can be found in [34]
whereas P. Nahin’s book is dedicated to the history of complex numbers [215].

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd



2 The Magic of Complex Numbers

1.1 History of Complex Numbers

Perhaps the earliest reference to square roots of negative numbers occurred in the work of
Heron of Alexandria3, around 60 AD, who encountered them while calculating volumes of
geometric bodies. Some 200 years later, Diophantus (about 275 AD) posed a simple problem
in geometry,

Find the sides of a right–angled triangle of perimeter 12 units and area 7 squared units.

which is illustrated in Figure 1.1. To solve this, let the side |AB| = x, and the height |BC| = h,
to yield

area = 1

2
x h

perimeter = x + h +
√

x2 + h2

In order to solve for x we need to find the roots of

6x2 − 43x + 84 = 0

however this equation does not have real roots.
A similar problem was posed by Cardan4 in 1545. He attempted to find two numbers a and

b such that

a + b = 10

a b = 40

A

12 units

7  sq. units

C

B

Figure 1.1 Problem posed by Diophantus (third century AD)

3Heron (or Hero) of Alexandria was a Greek mathematician and inventor. He is credited with finding a formula for
the area of a triangle (as a function of the perimeter). He invented many gadgets operated by fluids; these include a
fountain, fire engine and siphons. The aeolipile, his engine in which the recoil of steam revolves a ball or a wheel, is
the forerunner of the steam engine (and the jet engine). In his method for approximating the square root of a number
he effectively found a way round the complex number. It is fascinating to realise that complex numbers have been
used, implicitly, long before their introduction in the 16th century.
4Girolamo or Hieronimo Cardano (1501–1576). His name in Latin was Hieronymus Cardanus and he is also known
by the English version of his name Jerome Cardan. For more detail on Cardano’s life, see [1].
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These equations are satisfied for

a = 5 + √−15 and b = 5 − √−15 (1.1)

which are clearly not real.
The need to introduce the complex number became rather urgent in the 16th century. Several

mathematicians were working on what is today known as the Fundamental Theorem of Algebra
(FTA) which states that

Every nth order polynomial with real5 coefficients has exactly n roots in C.

Earlier attempts to find the roots of an arbitrary polynomial include the work by
Al-Khwarizmi (ca 800 AD), which only allowed for positive roots, hence being only a special
case of FTA. In the 16th century Niccolo Tartaglia6 and Girolamo Cardano (see Equation 1.1)
considered closed formulas for the roots of third- and fourth-order polynomials. Girolamo
Cardano first introduced complex numbers in his Ars Magna in 1545 as a tool for finding
real roots of the ‘depressed’ cubic equation x3 + ax + b = 0. He needed this result to provide
algebraic solutions to the general cubic equation

ay3 + by2 + cy + d = 0

By substituting y = x − 1
3b, the cubic equation is transformed into a depressed cubic (without

the square term), given by

x3 + βx + γ = 0

Scipione del Ferro of Bologna and Tartaglia showed that the depressed cubic can be solved
as7

x = 3

√√√√−γ

2
+

√
γ2

4
+ β3

27
+ 3

√√√√−γ

2
−

√
γ2

4
+ β3

27
(1.2)

For certain problem settings (for instance a = 1, b = 9, c = 24, d = 20), and using the
substitution y = x − 3, Tartaglia could show that, by symmetry, there exists

√−1 which has
mathematical meaning. For example, Tartaglia’s formula for the roots of x3 − x = 0 is given
by

1√
3

(
(
√−1)

1
3 + 1

(
√−1)

1
3

)

5In fact, it states that every nth order polynomial with complex coefficients has n roots in C, but for historical reasons
we adopt the above variant.
6Real name Niccolo Fontana, who is known as Tartaglia (the stammerer) due to a speaking disorder.
7In modern notation this can be written as x = (q + w)

1
3 + (q − w)

1
3 .
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Rafael Bombelli also analysed the roots of cubic polynomials by the ‘depressed cubic’
transformations and by applying the Ferro–Tartaglia formula (1.2). While solving for the
roots of

x3 − 15x − 4 = 0

he was able to show that (
2 + √−1

)
+

(
2 − √−1

)
= 4

Indeed x = 4 is a correct solution, however, in order to solve for the real roots, it was necessary
to perform calculations in C. In 1572, in his Algebra, Bombelli introduced the symbol

√−1
and established rules for manipulating ‘complex numbers’.

The term ‘imaginary’ number was coined by Descartes in the 1630s to reflect his observation
that ‘For every equation of degree n, we can imagine n roots which do not correspond to any
real quantity’. In 1629, Flemish mathematician8 Albert Girard in his L’Invention Nouvelle en
l’Algèbre asserts that there are n roots to an nth order polynomial, however this was accepted
as self-evident, but with no guarantee that the actual solution has the form a + j b, a, b ∈ R.

It was only after their geometric representation (John Wallis9 in 1685 in De Algebra Tractatus
and Caspar Wessel10 in 1797 in the Proceedings of the Copenhagen Academy) that the complex
numbers were finally accepted. In 1673, while investigating geometric representations of the
roots of polynomials, John Wallis realised that for a general quadratic polynomial of the
form

x2 + 2bx + c2 = 0

for which the solution is

x = −b ±
√

b2 − c2 (1.3)

a geometric interpretation was only possible for b2 − c2 ≥ 0. Wallis visualised this solution
as displacements from the point −b, as shown in Figure 1.2(a) [206]. He interpreted each
solution as a vertex (A and B in Figure 1.2) of a right triangle with height c and side

√
b2 − c2.

Whereas this geometric interpretation is clearly correct for b2 − c2 ≥ 0, Wallis argued that for
b2 − c2 < 0, since b is shorter than c, we will have the situation shown in Figure 1.2(b); this

8Albert Girard was born in France in 1595, but his family later moved to the Netherlands as religious refugees. He
attended the University of Leiden where he studied music. Girard was the first to propose the fundamental theorem
of algebra, and in 1626, in his first book on trigonometry, he introduced the abbreviations sin, cos, and tan. This book
also contains the formula for the area of a spherical triangle.
9In his Treatise on Algebra Wallis accepts negative and complex roots. He also shows that equation x3 − 7x = 6 has
exactly three roots in R.
10Within his work on geodesy Caspar Wessel (1745–1818) used complex numbers to represent directions in a plane as
early as in 1787. His article from 1797 entitled ‘On the Analytical Representation of Direction: An Attempt Applied
Chiefly to Solving Plane and Spherical Polygons’ (in Danish) is perhaps the first to contain a well-thought-out
geometrical interpretation of complex numbers.
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b

2−c2bsqrt(

x

y

B

(a) Real solution

A (−b,0)

b

c

)

x

b

c

b

(−b,0)

B

(b) Complex solution

A

y

Figure 1.2 Geometric representation of the roots of a quadratic equation

way we can think of a complex number as a point on the plane.11 In 1732 Leonhard Euler
calculated the solutions to the equation

xn − 1 = 0

in the form of

cos θ + √−1 sin θ

and tried to visualise them as the vertices of a planar polygon. Further breakthroughs came with
the work of Abraham de Moivre (1730) and again Euler (1748), who introduced the famous
formulas

(cos θ + j sin θ)n = cos nθ + j sin nθ

cos θ + j sin θ = ejθ

Based on these results, in 1749 Euler attempted to prove FTA for real polynomials in Recherches
Sur Les Racines Imaginaires des Équations. This was achieved based on a decomposition a
monic polynomials and by using Cardano’s technique from Ars Magna to remove the second
largest degree term of a polynomial.

In 1806 the Swiss accountant and amateur mathematician Jean Robert Argand published
a proof of the FTA which was based on an idea by d’Alembert from 1746. Argand’s initial
idea was published as Essai Sur Une Manière de Représenter les Quantités Imaginaires Dans
les Constructions Géométriques [60, 305]. He simply interpreted j as a rotation by 90◦ and
introduced the Argand plane (or Argand diagram) as a geometric representation of complex
numbers. In Argand’s diagram, ±√−1 represents a unit line, perpendicular to the real axis.
The notation and terminology we use today is pretty much the same. A complex number

z = x + jy

11In his interpretation −√−1 is the same point as
√−1, but nevertheless this was an important step towards the

geometric representation of complex numbers.
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y

−y
= x − j yz*

Re{z}

Im{z}

z = x + j y

x

Figure 1.3 Argand’s diagram for a complex number z and its conjugate z∗

is simply represented as a vector in the complex plane, as shown in Figure 1.3. Argand
called

√
x2 + y2 the modulus, and Gauss introduced the term complex number and notation12

ı = √−1 (in signal processing we use j = ı = √−1). Karl Friedrich Gauss used complex
numbers in his several proofs of the fundamental theorem of algebra, and in 1831 he not only
associated the complex number z = x + jy with a point (x, y) on a plane, but also introduced
the rules for the addition13 and multiplication of such numbers. Much of the terminology
used today comes from Gauss, Cauchy14 who introduced the term ‘conjugate’, and Hankel
who in 1867 introduced the term direction coefficient for cos θ + j sin θ, whereas Weierstrass
(1815–1897) introduced the term absolute value for the modulus.

Some analytical aspects of complex numbers were also developed by Georg Friedrich
Bernhard Riemann (1826–1866), and those principles are nowadays the basics behind what
is known as manifold signal processing.15 To illustrate the potential of complex numbers in
this context, consider the stereographic16 projection [242] of the Riemann sphere, shown
in Figure 1.4(a). In a way analogous to Cardano’s ‘depressed cubic’, we can perform
dimensionality reduction by embedding C in R3, and rewriting

Z = a + j b, (a, b, 0) ∈ R3

12There is a simple trap, that is, we cannot apply the identity of the type
√

ab = √
a
√

b to the ‘imaginary’ numbers,

this would lead to the wrong conclusion 1 = √
(−1)(−1) = √−1

√−1, however
√−1

2 = √−1
√−1 = −1.

13So much so that, for instance, 3 remains a prime number whereas 5 does not, since it can be written as (1 − 2j)
(1 + 2j).
14Augustin Louis Cauchy (1789–1867) formulated many of the classic theorems in complex analysis.
15Examples include the Natural Gradient algorithm used in blind source separation [10, 49].
16The stereographic projection is a mapping that projects a sphere onto a plane. The mapping is smooth, bijective and
conformal (preserves relationships between angles).
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Figure 1.4 Stereographic projection and Riemann sphere: (a) the principle of the stereographic projec-
tion; (b) stereographic projection of the Earth (seen from the south pole S)

Consider a sphere � defined by

� =
{

(x, y, u) ∈ R3 : x2 + y2 + (u − d)2 = r2
}

, d, r ∈ R

There is a one-to-one correspondence between the points of C and the points of �, excluding
N (the north pole of �), since the line from any point z ∈ C cuts � \ {N} in precisely one point.
If we include the point ∞, so as to have the extended complex plane C ∪ {∞}, then the north
pole N from sphere � is also included and we have a mapping of the Riemann sphere onto the
extended complex plane. A stereographic projection of the Earth onto a plane tangential to the
north pole N is shown in Figure 1.4(b).

1.1.1 Hypercomplex Numbers

Generalisations of complex numbers (generally termed ‘hypercomplex numbers’) include the
work of Sir William Rowan Hamilton (1805–1865), who introduced the quaternions in 1843.
A quaternion 	q is defined as [103]

	q = q0 + q1ı + q2j + q3k (1.4)

where the variables ı, j, k are all defined as
√−1, but their multiplication is not commutative.17

Pivotal figures in the development of the theory of complex numbers are Hermann Günther
Grassmann (1809–1877), who introduced multidimensional vector calculus, and James Cockle,

17That is: ıj = −jı = k, jk = −kj = ı, and kı = −ık = j.



8 The Magic of Complex Numbers

who in 1848 introduced split-complex numbers.18 A split-complex number (also known as
motors, dual numbers, hyperbolic numbers, tessarines, and Lorenz numbers) is defined as [51]

z = x + jy, j2 = 1

In 1876, in order to model spins, William Kingdon Clifford introduced a system of
hypercomplex numbers (Clifford algebra). This was achieved by conveniently combining the
quaternion algebra and split-complex numbers. Both Hamilton and Clifford are credited with
the introduction of biquaternions, that is, quaternions for which the coefficients are complex
numbers. A comprehensive account of hypercomplex numbers can be found in [143]; in general
a hypercomplex number system has at least one non-real axis and is closed under addition and
multiplication. Other members of the family of hypercomplex numbers include McFarlane’s
hyperbolic quaternion, hyper-numbers, multicomplex numbers, and twistors (developed by
Roger Penrose in 1967 [233]).

1.2 History of Mathematical Notation

It is also interesting to look at the development of ‘symbols’ and abbreviations in mathematics.
For books copied by hand the choice of mathematical symbols was not an issue, whereas for
printed books this choice was largely determined by the availability of fonts of the early printers.
Thus, for instance, in the 9th century in Al-Khwarizmi’s Algebra solutions were descriptive
rather than in the form of equations, while in Cardano’s Ars Magna in the 16th century the
unknowns were denoted by single roman letters to facilitate the printing process.

It was arguably Descartes who first established some general rules for the use of mathemati-
cal symbols. He used lowercase italic letters at the beginning of the alphabet to denote unknown
constants (a, b, c, d), whereas letters at the end of the alphabet were used for unknown vari-
ables (x, y, z, w). Using Descartes’ recommendations, the expression for a quadratic equation
becomes

a x2 + b x + c = 0

which is exactly the way we use it in modern mathematics.
As already mentioned, the symbol for imaginary unit ı = √−1 was introduced by Gauss,

whereas boldface letters for vectors were first introduced by Oliver Heaviside [115]. More
details on the history of mathematical notation can be found in the two–volume book A History
of Mathematical Notations [39], written by Florian Cajori in 1929.

In the modern era, the introduction of mathematical symbols has been closely related with
the developments in computing and programming languages.19 The relationship between com-
puters and typography is explored in Digital Typography by Donald E. Knuth [153], who also
developed the TeX typesetting language.

18Notice the difference between the split-complex numbers and split-complex activation functions of neurons [152,
190]. The term split-complex number relates to an alternative hypercomplex number defined by x + jy where j2 = 1,
whereas the term split-complex function refers to functions g : C→ C for which the real and imaginary part of the
‘net’ function are processed separately by a real function of real argument f , to give g(net) = f (�(net)) + jf (�(net)).
19Apart from the various new symbols used, e.g. in computing, one such symbol is © for ‘copyright’.
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1.3 Development of Complex Valued Adaptive Signal Processing

The distinguishing characteristics of complex valued nonlinear adaptive filtering are related
to the character of complex nonlinearity, the associated learning algorithms, and some recent
developments in complex statistics. It is also important to notice that the universal function
approximation property of some complex nonlinearities does not guarantee fast and efficient
learning.

Complex nonlinearities. In 1992, Georgiou and Koutsougeras [88] proposed a list of re-
quirements that a complex valued activation function should satisfy in order to qualify
for the nonlinearity at the neuron. The calculation of complex gradients and Hessians
has been detailed in work by Van Den Bos [30]. In 1995 Arena et al. [18] proved the
universal approximation property20 of a Complex Multilayer Perceptron (CMLP), based
on the split-complex approach. This also gave theoretical justification for the use of
complex neural networks (NNs) in time series modelling tasks, and thus gave rise to temporal
neural networks. The split-complex approach has been shown to yield reasonable performance
in channel equalisation applications [27, 147, 166], and in applications where there is no strong
coupling between the real and imaginary part within the complex signal. However, for the com-
mon case where the inphase (I) and quadrature (Q) components have the same variance and
are uncorrelated, algorithms employing split-complex activation functions tend to yield poor
performance.21 In addition, split-complex based algorithms do not have a generic form of their
real-valued counterparts, and hence their signal flow-graphs are fundamentally different [220].
In the classification context, early results on Boolean threshold functions and the notion of
multiple-valued threshold function can be found in [7, 8].

The problems associated with the choice of complex nonlinearities suitable for nonlinear
adaptive filtering in C have been addressed by Kim and Adali in 2003 [152]. They have
identified a class of ‘fully complex’ activation functions (differentiable and bounded almost
everywhere in C such as tanh), as a suitable choice, and have derived the fully complex back-
propagation algorithm [150, 151], which is a generic extension of its real-valued counterpart.
They also provide an insight into the character of singularities of fully complex nonlinearities,
together with their universal function approximation properties. Uncini et al. have introduced a
2D splitting complex activation function [298], and have also applied complex neural networks
in the context of blind equalisation [278] and complex blind source separation [259].

Learning algorithms. The first adaptive signal processing algorithm operating completely in
C was the complex least mean square (CLMS), introduced in 1975 by Widrow, Mc Cool and
Ball [307] as a natural extension of the real LMS. Work on complex nonlinear architectures,
such as complex neural networks (NNs) started much later. Whereas the extension from real
LMS to CLMS was fairly straightforward, the extensions of algorithms for nonlinear adaptive
filtering fromR intoC have not been trivial. This is largely due to problems associated with the

20This is the famous 13th problem of Hilbert, which has been the basis for the development of adaptive models for
universal function approximation [56, 125, 126, 155].
21Split-complex algorithms cannot calculate the true gradient unless the real and imaginary weight updates are mutually
independent. This proves useful, e.g. in communications applications where the data symbols are made orthogonal
by design.


