Trace Quantitative Analysis by Mass Spectrometry

Robert K. Boyd
National Research Council, Ottawa, Canada

Cecilia Basic Basic Mass Spec., Winnipeg, Canada

Robert A. Bethem Alta Analytical Laboratory, El Dorado Hills, CA, USA

Trace Quantitative Analysis by Mass Spectrometry

Trace Quantitative Analysis by Mass Spectrometry

Robert K. Boyd
National Research Council, Ottawa, Canada

Cecilia Basic Basic Mass Spec., Winnipeg, Canada

Robert A. Bethem Alta Analytical Laboratory, El Dorado Hills, CA, USA

Copyright © 2008

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Ltd, 6045 Freemont Blvd, Mississauga, Ontaria, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Boyd, Bob, 1938-

Trace quantitative analysis by mass spectrometry/Bob Boyd, Robert Bethem, Cecilia Basic.

p. cm

Includes bibliographical references and index.

ISBN 978-0-470-05771-1 (cloth: alk. paper)

 Mass spectrometry.
 Chemistry, Analytic—Quantitative. I. Bethem, Robert. II. Basic, Cecilia. III. Title. QD272.S6B69 2008

543'.65-dc22

2007046641

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN Cloth 978-0-470-05771-1

Typeset in 9/11pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

The authors dedicate this book to all of our mentors and colleagues, too many to mention by name, with whom we have had the privilege of working over many years and who have taught us so much.

Contents

П	erace	:		XVII
A	cknov	vledgeme	ents	xxiii
1	Mea	asuremei	nt, Dimensions and Units	1
	1.1	Introduc	ction	1
	1.2	The Inte	ernational System of Units (SI)	3
	1.3	'Mass-t	o-Charge Ratio' in Mass Spectrometry	6
	1.4	Achieva	able Precision in Measurement of SI Base Quantities	9
			lar Mass Limit for Trace Quantitation by Mass Spectrometry	11
	1.6	Summa	ry of Key Concepts	14
2	Too	ols of the	Trade I. The Classical Tools	17
	2.1	Introduc	ction	17
	2.2	-	cal and Internal Standards: Reference Materials	18
		2.2.1	Analytical Standard (Reference Standard) and its Traceability	18
		2.2.2	Certified (Standard) Reference Materials (CRMs)	20
		2.2.3	Surrogate Internal Standard (SIS)	21
		2.2.4	Volumetric Internal Standard (VIS)	25
	2.3		alytical Balance	25
		2.3.1	Balance Calibration	27
		2.3.2	Sources of Uncertainty in Weighing	27
		2.3.3	Weighing the Analytical Standard	31
	2.4		ement and Dispensing of Volume	32
		2.4.1	Standard Volumetric Flasks	32
		2.4.2	Pipets	33
			2.4.2a Classical Pipets	33
			2.4.2b Micropipets	33
		2.4.3	Loop Injectors for High Performance Liquid Chromatography (HPLC)	35
	2.5	2.4.4	Syringes	38
	2.5		tion of Solutions for Calibration	39
		2.5.1	Matrix-Free Calibration Solutions	40
		2.5.2	Matrix Matched Calibrators	40
		2.5.3	Quality Control (QC) Samples	41
			2.5.3a QCs in Method Development and Validation	41
	26	Intuo d	2.5.3b QCs in Sample Analysis	41
	2.0	2.6.1	ction to Calibration Methods for Quantitative Analysis	42 42
			Calibration Using an External Standard Calibration for the Method of Standard Additions	42

		2.6.3	Calibration Using a Surrogate Internal Standard	44
		2.6.4	Curves used in Conjunction with 'Continuing Calibration Verification Standards'	46
	2.7	Summa	ry of Key Concepts	47
3	Too	ls of the	Trade II. Theory of Chromatography	51
•	3.1			51
			Principles of Chemical Separations	53
	3.3		ry of Important Concepts	55
			neory of Chromatography	58
		3.4.1	Elution Equation for the Plate Theory	59
		3.4.2	Retention Volume and Time	61
		3.4.3	The Separation Ratio (Selectivity Factor) for Two Solutes	62
		3.4.4	Capacity Factor (Ratio) of a Solute	62
		3.4.5	Column Efficiency and Height Equivalent of the Theoretical Plate	63
		3.4.6	Chromatographic Resolution	64
		3.4.7	Effective Plate Number	65
		3.4.8	Maximum Sample Injection Volume for a Specific Column	65
		3.4.9	Peak Capacity of a Column	66
		3.4.10	Gaussian Form of the Plate Theory Elution Equation	67
	3.5	Nonequ	ilibrium Effects in Chromatography: the van Deemter Equation	69
		3.5.1	Multipath Dispersion	70
		3.5.2	Longitudinal Diffusion	71
		3.5.3	Resistance to Mass Transfer in the Mobile and Stationary Phases	71
		3.5.4	Optimization to Maximize Column Efficiency	72
		3.5.5	Relationships for Estimating Optimized Conditions	74
		3.5.6	Numerical Estimates for Optimized Parameters	76
		3.5.7	Ultra-Small Stationary Phase Particles	77
		3.5.8	Monolithic Columns	80
		3.5.9	Ultra High Flow Rate Liquid Chromatography	81
		3.5.10		81
			3.5.10a The Knox Equation	84
			3.5.10b Chromatographic Dilution	87
			3.5.10c Flow Impedance Parameter and Separation Impedance	87
		3.5.11		88
			3.5.11a Effect of Gas Compressibility on Elution Equation for Packed Columns	88
			3.5.11b Open Tubular Columns and the Golay Equation	89
		3.5.12	Peak Asymmetry	90
			t Elution	92
	3.7		y Electrophoresis and Capillary Electrochromatography	97
			Derivation of the Plate Theory Equation for Chromatographic Elution	102
			2 Transformation of the Plate Theory Elution Equation from Poisson to Gaussian Form	103
			A Brief Introduction to Snyder's Theory of Gradient Elution ols Used in Chapter 3	104 105
		J		
4			Trade III. Separation Practicalities	109
	4.1	Introduc		109
	4.2		alyte and the Matrix	110
	4.3		on and Clean-Up: Sample Preparation Methods	111
		4.3.1	Liquid-Liquid Extraction (LLE)	112
			4.3.1a Solid-Supported Liquid–Liquid Extraction (SLE) 4.3.1b Simple Drop Microsytraction (SDMF)	114
			4.3.1b Single Drop Microextraction (SDME) 4.3.1c Dispersive Liquid–Liquid Microextraction (DLLE)	114 115
			7.3.10 Dispersive Liquia-Liquia Microexiraciion (DLLE)	113

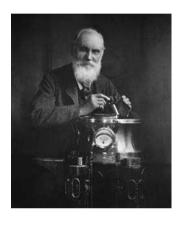
		4.3.1d Flow Injection Liquid–Liquid Extraction	115
		4.3.1e Membrane Extraction	115
		4.3.1f Protein Precipitation from Biological Fluids	117
	4.3.2	Liquid Extraction of Analytes from Solid Matrices	117
		4.3.2a Soxhlet Extraction	117
		4.3.2b Pressurized Solvent Extraction	117
		4.3.2c Sonication Assisted Liquid Extraction (SAE)	119
		4.3.2d Microwave Assisted Extraction (MAE)	120
		4.3.2e Supercritical Fluid Extraction (SFE)	121
	4.3.3	Solid Phase Extraction from Liquids and Gases	124
		4.3.3a Flash Chromatography	124
		4.3.3b Purge-and-Trap Analysis for Volatile Organic Compounds	124
		4.3.3c Solid Phase Extraction (SPE)	125
		4.3.3d Turbulent Flow Chromatography	128
		4.3.3e Molecularly Imprinted Polymers (MIPs)	130
		4.3.3f Solid Phase Microextraction (SPME)	132
		4.3.3g Stir-Bar Sorptive Extraction (SBSE)	133
4.4		atographic Practicalities	133
	4.4.1	Stationary Phases for SPE and Liquid Chromatography	133
		4.4.1a Alumina and Silica Particles	134
		4.4.1b Derivatization of Silica for Normal and Reverse Phase Chromatography	136
		4.4.1c Ion Exchange Media	137
		4.4.1d Chiral Separations	137
	4.4.0	4.4.1e Affinity Media	143
	4.4.2	Mobile Phases Used in SPE and Liquid Chromatography	144
		4.4.2a Solvent Polarity and Elution Strength	145
		4.4.2b Reverse Phase Chromatography	146
	112	4.4.2c Hydrophilic Interaction Chromatography (HILIC)	146
	4.4.3	Mobile and Stationary Phases for Gas Chromatography 4.4.3a GC Mobile Phase	147 147
		4.4.3b Temperature Programming	150
		4.4.3c GC Stationary Phases	150
	4.4.4	Sample Injection Devices for Chromatography	150
	7.7.7	4.4.4a Automated Loop Injectors for HPLC	152
		4.4.4b GC Injectors	152
	4.4.5	Pumps for HPLC	154
	4.4.6	Capillary Electrophoresis and Electrochromatography	157
	4.4.7	Micro Total Analysis Systems (Lab-on-a-Chip)	160
	4.4.8	General Comments on Detectors for Chromatography	163
4.5		ary of Key Concepts	166
		1 Responses of Chromatographic Detectors: Concentration vs Mass–Flux	100
PF	Depend		169
	r		
Too	ols of the	Trade IV. Interfaces and Ion Sources for Chromatography–Mass Spectrometry	173
5.1	Introdu		174
	5.1.1	Matrix Effects	175
5.2		arces that can Require a Discrete Interface Between Chromatograph and Source	176
	5.2.1	Electron Ionization and Chemical Ionization	176
		5.2.1a Discrete Chromatograph-Ion Source Interfaces	180
		5.2.1b Chemical Derivatization for EI and CI	182
	5.2.2	Matrix Assisted Laser Desorption/Ionization (MALDI)	184
	5.2.3	'Lab-on-a-Chip'	195

5

	5.3	Ion Sources not Requiring a Discrete Interface	196			
		5.3.1 Flow Fast Atom Bombardment (Flow-FAB)	196			
		5.3.2 Thermospray Ionization	197			
		5.3.3 Atmospheric Pressure Ionization (API)	198			
		5.3.3a Coupling of API Sources to Mass Spectrometers	199			
		5.3.4 Atmospheric Pressure Chemical Ionization (APCI)	203			
		5.3.5 Atmospheric Pressure Photoionization (APPI)	206			
		5.3.6 Electrospray Ionization (ESI)	211			
		5.3.6a Ionization Suppression/Enhancement: Matrix Effects	221			
		5.3.6b ESI-MS: Concentration or Mass Flow Dependent?	230			
		5.3.7 Atmospheric Pressure Desorption Methods	236			
	5.4	Source-Analyzer Interfaces Based on Ion Mobility	237			
	5.5	Summary of Key Concepts	238			
	5.1	Appendix 5.1: Methods of Sample Preparation for Analysis by MALDI	242			
6	Too	ols of the Trade V. Mass Analyzers for Quantitation: Separation of Ions by m/z Values	245			
	6.1	Introduction	245			
	6.2	Mass Analyzer Operation Modes and Tandem Mass Spectrometry	248			
		6.2.1 The Selectivity–Sensitivity Compromise	249			
		6.2.2 Tandem Mass Spectrometry (MS/MS)	251			
		6.2.3 Figures of Merit for Mass Analyzers	255			
		6.2.3a Accessible m/z Range	255			
		6.2.3b Resolving Power	256			
		6.2.3c Accuracy and Precision of Mass Measurement	257			
		6.2.3d Transmission Efficiency	258			
		6.2.3e Duty Cycle	259			
		6.2.3f Data Acquisition Rate	259			
		6.2.3g Dynamic Range (Range of Reliable Response)	261			
		6.2.3h Versatility for Tandem Mass Spectrometry	261			
		6.2.3i Ease of Use	261			
		6.2.3j Capital and Maintenance Costs	261			
	6.3	e e e e e e e e e e e e e e e e e e e	261			
		6.3.1 Introduction to Interactions of Electric and Magnetic Fields with Ions				
		6.3.2 Ion Optics and Lenses: Instrument Tuning				
	6.4		266			
		6.4.1 Calibration of the m/z Axis ('Mass Calibration')	266			
		6.4.2 Quadrupole Mass Filters	267			
		6.4.2a RF-Only Quadrupoles	276			
		6.4.3 Triple Quadrupole Instruments	277			
		6.4.4 Magnetic Sector Analyzers	280			
		6.4.5 Quadrupole Ion Traps	284			
		6.4.5a Three-Dimensional (Paul) Traps	285			
		6.4.5b Two-Dimensional (Linear) Traps	301			
		6.4.6 The QqQ_{trap} Analyzer	309			
		6.4.7 Time of Flight and QqTOF Analyzers	311			
		6.4.8 FTICR and Orbitrap Analyzers	320			
	6.5		320			
	6.6	, and the second	326			
		6.6.1 Pumping Speed, Conductance and Gas Flow	327			
		6.6.2 Vacuum Pumps	329			
		6.6.2a Rotary Vane Pumps	329			
		6.6.2b Diffusion Pumps	330			

			6.6.2c Turbomolecular Pumps	330
			6.6.2d Differential Pumping	332
		6.6.3	Vacuum Gauges	334
			6.6.3a Capacitance Manometer	334
			6.6.3b Pirani Gauge	334
			6.6.3c Thermocouple Gauge	335
			6.6.3d Ionization Gauge	335
			ry of Key Concepts	336
			1 Interaction of Electric and Magnetic Fields with Charged Particles	339
			2 Leak Detection	340
	App	endix 6.3	3 List of Symbols Used in Chapter 6	341
7	Too	ls of the	Trade VI. Ion Detection and Data Processing	345
	7.1	Introdu		345
		7.1.1	Signal:Noise vs Signal:Background	347
			7.1.1a Shot Noise in the Ion Beam	350
			7.1.1b Data Smoothing Before Integration	352
			7.1.1c Integration and Experimental Determination of Signal:Background	353
	7.2	Faraday	Cup Detectors	353
	7.3	Electron	n Multipliers	354
		7.3.1	Discrete Dynode Secondary Electron Multipliers	354
			7.3.1a Off-Axis Conversion Dynodes	357
		7.3.2	Channel Electron Multipliers	359
			7.3.2a Single Channel Electron Multipliers	359
			7.3.2b Channel Electron Multiplier Arrays	362
	7.4	Post-De	etector Electronics	365
		7.4.1	Analog Signal Processing	365
		7.4.2	Digital Electronics for Ion Counting Detectors	366
		7.4.3	Computer-Based Data Systems	367
	7.5	Summa	ry of Key Concepts	368
8	Too	ls of the	Trade VII: Statistics of Calibration, Measurement and Sampling	373
	8.1	Introdu	ction	374
		8.1.1	Systematic and Random Errors: Accuracy and Precision	375
	8.2	Univari	ate Data: Tools and Tests for Determining Accuracy and Precision	377
		8.2.1	Mean, Median, Standard Deviation, Standard Error	377
		8.2.2	Significant Figures and Propagation of Error	379
		8.2.3	Normal (Gaussian) Distribution	382
		8.2.4	Hypothesis Tests: False Positives and False Negatives	385
		8.2.5	Student's t-Test and Fisher F-Test for Comparison of Means and Variances: Applications	
			to Two Data Sets	387
		8.2.6	Statistical Testing of More Than Two Data Sets: Bartlett Test and ANOVA	394
		8.2.7	Multiple-Range Test and Huber-Davies Test for Outliers	398
	8.3		te Data: Tools and Tests for Regression and Correlation	398
		8.3.1	Correlation Analysis	401
		8.3.2	Simple Linear Regression for Homoscedastic Data	401
		8.3.3	Test for Goodness of Fit: Irreproducibility, Heteroscedacity and Nonlinearity	407
		8.3.4	Inversion of the Calibration Equation	410
		8.3.5	Weighted Linear Regression	411
		8.3.6	Regression for Nonlinear Data: the Quadratic Fitting Function	415
		8.3.7 8.3.8	Summarized Procedure to Determine Best-Fit Calibration Curve Nonlinear Least-Squares Regression	416 418
		0.2.8	Nonnical Least-Squares Regression	418

	8.4	Limits		tion and Quantitation	418	
		8.4.1	Limit o	of Detection	419	
		8.4.2		of Quantitation	427	
	8.5	Calibra		Measurement: Systematic and Random Errors	428	
		8.5.1	Analys	es Without Internal Standards	428	
				External Linear Calibration With a Zero Intercept	428	
			8.5.1b	Method of Standard Additions	430	
				External Linear Calibration With a Nonzero Intercept	432	
				Systematic Errors in the Method of Standard Additions: Youden Plots	434	
				Strategies When Analytical Standards are not Available	435	
		8.5.2		es Using Internal Standards	436	
				Volumetric Internal Standards for GC Analyses	437	
				Use of Surrogate Internal Standards	439	
			8.5.2c	Cross-Contributions Between Analyte and Internal Standard – a Need for		
			2.5	Nonlinear Regression	444	
				npling of Heterogeneous Matrices	448	
				y Concepts	453	
				f Statistics Glossary	455	
	App	enaix 8.	2 Symbo	ols Used in Discussion of Calibration Methods	458	
9	Met	hod Dev	elopmer	nt and Fitness for Purpose	461	
	9.1	Introdu	ction		461	
	9.2	Fitness	for Purp	ose and Managing Uncertainty	461	
	9.3	Issues I		Analyst and Client: Examining What's at Stake	463	
		9.3.1		the Analytical Problem	463	
		9.3.2		er the Needs of all Interested Parties	463	
				Client's Perspective vs Analyst's Perspective	463	
		9.3.3		Uncertainty Tolerance	465	
				Setting Targets for Quantitation	466	
				Setting Targets for Identification	466	
		9.3.4		ing Thoroughness vs Time and Resources	472	
		9.3.5		nalyst as Expert Witness	474 474	
	9.4	5 · · · · · · · · · · · · · · · · · · ·				
		9.4.1		ng the Scope and Method Requirements	474	
		9.4.2		ering Prevailing Guidelines or Regulatory Requirements	476	
				Good Laboratory Practice	476	
				Laboratory Accreditation	478	
			9.4.2c	Method Development and Validation Without Established	470	
		9.4.3	The Ar	Guidance	478 478	
		9.4.3		Structures and Chemical Properties – MS Considerations	478	
			9.4.3 <i>a</i>	Structures and Chemical Properties – Ms Considerations Structures and Chemical Properties – Analytical Considerations	479	
		9.4.4		eference Standard	479	
		2.4.4		Availability and Source	479	
				Receipt and Documentation	480	
				Certificate of Analysis	481	
				Assigned Purity	481	
				Chiral Purity	482	
			9.4.4f	·	482	
		9.4.5		urrogate Internal Standard (SIS)	482	
				General Considerations	482	
				Stable Isotope Internal Standards	482	


		9.4.5c Analog or Homolog Internal Standards	484
		9.4.5d SIS for Multi-analyte Assays	484
	9.4.6	The Analytical Sample	484
		9.4.6a Sample Availability vs Method Requirements	485
		9.4.6b Documentation of Sample Receipt, Storage and Use	485
	9.4.7	The Control Matrix	486
		9.4.7a Obtaining a Suitable Control Matrix	486
		9.4.7b Using the Control Matrix to Assess Selectivity	486
		9.4.7c Surrogate Matrices	489
	9.4.8	Evaluate Analytical Options	489
		9.4.8a Reviewing The Literature and Previous Methodologies	489
		9.4.8b Review Existing Laboratory SOPs	490
9.5	Method	Development	490
	9.5.1	Instrument Qualification, Calibration and Maintenance	490
		9.5.1a Equipment Qualification	491
		9.5.1b Mass Spectrometer Calibration	494
		9.5.1c Maintenance	494
		9.5.1d Validation of Computerized Laboratory Instruments and Equipment	494
	9.5.2	Instrument Optimization	496
	9.5.3	LC-MS/MS Optimization for MRM Analysis Using QqQ	497
		9.5.3a API Interface and Q_1 Optimization	498
		9.5.3b Selecting Product Ions and CID Conditions	502
		9.5.3c Final MRM Optimization	503
	9.5.4	Preparation of Stock and Spiking Solutions	504
		9.5.4a Primary Stock Solutions	504
		9.5.4b Sub-Stocks and Spiking Solutions	506
		9.5.4c Miscellaneous Considerations	506
	9.5.5	Chromatography Method Development	507
		9.5.5a General Considerations	507
		9.5.5b Sample Throughput and Selectivity	507
		9.5.5c Multi-dimensional Separations	508
		9.5.5d Miscellaneous Components	510
	9.5.6	Sample Preparation – Extraction and Clean-Up	511
		9.5.6a Evaluating Options	512
		9.5.6b Use of Blanks During Method Development and Analysis	513
		9.5.6c Using Spikes and 'Recovery Samples'	513
	9.5.7	Evaluating Sensitivity and Linearity in Matrix	515
9.6	Matrix	Effects	517
	9.6.1	Evaluating Ion Suppression in Method Development	518
	9.6.2	Addressing Ion Suppression/Enhancement	519
	9.6.3	Interferences	520
9.7	Contam	nination and Carryover	522
	9.7.1	Laboratory Contamination	522
		9.7.1a Common Causes and Impact	522
		9.7.1b Monitoring Contamination in the Laboratory	522
	9.7.2	Carryover	523
		9.7.2a Evaluating Carryover During Method Development	524
		9.7.2b Addressing Carryover in the Method	525
9.8	Establis	shing the Final Method	527
	9.8.1	Curve Preparation	527
		9.8.1a Calibration Solutions	527
		9.8.1b Matrix Matched Calibrators	528

		9.8.2	Preparation of QCs	530
		9.8.3	System Suitability	531
		9.8.4	Testing Method Robustness and Ruggedness	533
		9.8.5	Establishing Final Stepwise Procedure	535
		9.8.6	Final Method Qualification/Assessment	536
10	Metl	hod Vali	dation and Sample Analysis in a Controlled Laboratory Environment	539
	10.1	Introduc	tion	539
	10.2	Method	Validation	540
		10.2.1	Figures of Merit for Full Validation	540
		10.2.2	•	540
		10.2.3	Sensitivity, Range of Reliable Response and Linearity	542
		10.2.4	Accuracy and Precision	543
		10.2.5	Reproducibility	543
		10.2.6	•	544
		10.2.7	Stability in Solution	544
		10.2.8	Stability in Matrix	545
			10.2.8a In-Process Stability (Room Temperature Stability)	545
			10.2.8b Freeze–Thaw Stability	546
		10.20	10.2.8c Long Term Storage Stability (Sample Stability)	546
		10.2.9	Other Special Validation Requirements	547
			10.2.9a Extract and Re-Injection Stability	547
			10.2.9b Assessing Carryover and Potential for Laboratory Contamination	£40
				548
			10.2.9c Incurred Sample Re-Analysis and Stability 10.2.9d Integrity of Dilution	548 549
		10.2.10	Abbreviated and Partial Validation	549
			Cross Validations	550
	10.3		of the Validaton	551
	10.5		Validation Plan or Protocol	551
		10.3.1		552
		10.5.2	10.3.2a Data Review	552
			10.3.2b Addressing Validation Run Failures	553
		10.3.3	Documentation of Supporting Data	553
			10.3.3a Assay Procedure	553
			10.3.3b Standards and Stock Solutions	553
			10.3.3c Preparation of Calibrators and QCs	553
			10.3.3d Acceptance Criteria	553
			10.3.3e Sample Analysis	554
			10.3.3f Run Summary Sheets	555
			10.3.3g Chromatograms	555
			10.3.3h Communications	555
		10.3.4	The Validation Report and Scientific Review	555
			10.3.4a Reference Standard and Solutions	556
			10.3.4b QCs and Calibrators	556
			10.3.4c Assay Procedures	556
			10.3.4d Run Acceptance Criteria	556
			10.3.4e Sample Analysis Tables	556
			10.3.4f Failed Runs	557
			10.3.4g Deviations From Method or SOPs	558
			10.3.4h Chromatograms	558
			10.3.4i Amendments	558

	10.4	Example	es of Methods and Validations Fit for Purpose	559
		10.4.1	Bioanalytical Method Validation	559
			10.4.1a Sensitivity and the Calibration/Standard Curve	560
			10.4.1b Accuracy and Precision	561
			10.4.1c Selectivity	562
			10.4.1d Matrix Effects	562
			10.4.1e Recovery	563
			10.4.1f Reproducibility	563
			10.4.1g Stability – Overview	563
			10.4.1h Stock Solution Stability	563
			10.4.1i Freeze and Thaw Stability	564
			10.4.1j Short Term Temperature Stability	564
			10.4.1k Long Term Stability	564
			10.4.11 Incurred Sample Re-Analysis	565
		10.4.2	Risk Assessment Methods	567
		10.4.3	Enforcement Methods	567
			10.4.3a FDA Enforcement Methods for Drug Residues in Animal Food Products	568
	10.5	Validate	ed Sample Analysis	570
		10.5.1	Sample Batch Preparation and Extraction	570
		10.5.2	Sample Analysis	570
			10.5.2a Analytical Run Lists	570
			10.5.2b Instrument Set-Up and System Suitability	571
			10.5.2c Failed Runs and Re-Analysis	571
		10.5.3	Data Review	572
			10.5.3a Evaluating Chromatography and Instrument Response	572
			10.5.3b Evaluating the Curve and QCs	575
			10.5.3c Rejection of Data	576
		10.5.4		577
		10.5.5		578
		10.5.6	Investigation and Corrective Action	580
	10.6	Docume		582
		10.6.1	Sample Tracking	582
		10.6.2	Sample Analytical Report	583
	10.7	Traceab	ility	583
11	Exa	mples fr	om the Literature	585
	11.1	Introduc	ction	585
	11.2	Food Co	ontaminants	585
		11.2.1	•	586
			Paralytic Shellfish Poisons	598
	11.3	_	ogenic Pollutants in Water	605
		11.3.1	Disinfection By-Products	605
			11.3.1a MX [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone]	607
			11.3.1b N-nitrosodialkylamines	612
		11.3.2	Multi-residue Methods for Pharmaceutical Residues	616
			11.3.2a Validated Method for Macrolide Antibiotics	617
			11.3.2b Extraction/Clean-up for Multi-residue Analysis of Compounds of Widely	
			Different Polarity etc.	620
			11.3.2c Screening Method for Multiclass Antibiotics	621
	11.4		Analyses of Persistent Environmental Pollutants	623
		11.4.1	'Dioxin-like' Compounds	623
		11.4.2	Other Persistent Pollutants	636

1		lytical Applications	637
	11.5.1	Drug Discovery Methods	638
		11.5.1a Passive Permeability Test (Caco-2 Assays)	639
		11.5.1b Drug-Drug Interaction Studies (CYP450 Assays)	641
		11.5.1c Clearance Rate Tests (Metabolic Stability)	643
		11.5.1d Pharmacokinetics and ADME Studies	646
		11.5.1e Metabolite Identification and Quantitation	648
	11.5.2	Drug Development Phase Validated Methods	654
		11.5.2a Enantiomer-Specific Analyses	655
		11.5.2b Methods for Two Concentration Ranges	660
1	1.6 Quantit	ative Proteomics	661
	11.6.1	Identification of Proteins by Mass Spectrometry	664
	11.6.2	Relative (Comparative) Quantitation	667
		11.6.2a Isotope-Coded Affinity Tag (ICAT)	669
		11.6.2b Isotope Tagging for Relative and Absolute Quantitation (ITRAQ)	669
		11.6.2c Other Chemical Labeling Methods	671
		11.6.2d Proteolytic Labeling Methods	672
		11.6.2e Culture-Based Labeling Methods	673
	11.6.3	Absolute Quantitation	675
		11.6.3a AQUA	675
		11.6.3b QCAT Peptides	676
		11.6.3c Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA)	677
1	1.7 Analys	is of Endogenous Analytes	680
Epil	og		683
Refe	erences		685
Inde	ex		709

Preface

'When you can measure what you are speaking about and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind...'
William Thomson (Lord Kelvin), Lecture to the Institution of Civil Engineers, 3 May 1883.

The discipline devoted to careful measurement of specific properties of the universe around us is known as *metrology*. The famous statement by William Thomson, quoted above, summarizes the importance of quantitative measurements for the testing of scientific hypotheses; indeed, without such quantitative testing, it is fair to say that hypotheses can not be regarded as scientific at all. Missing from Thomson's comment, however, is a mention of the importance of careful evaluation of the uncertainties that are present in any quantitative measurements and the resulting degree of confidence that can be placed in them and any conclusions drawn from them. These uncertainties are just as important as the 'best' quantitative measured value itself.

This book is devoted to the science and art of *chemical metrology*, taken here to mean the quantitative measurement of amounts of specific (known) chemical compounds

present at trace levels (roughly defined as one part in 10^6-10^{12}) in complex matrices. Examples are drugs and their metabolites in body fluids, pesticide residues in foodstuffs, contaminants in drinking water etc. Such measurements are extremely demanding, and involve the use of a wide range of apparatus and of experimental procedures and methods of data evaluation, all of which must be used properly if reliable estimates of chemical concentrations and their associated uncertainties are to be obtained. While this is true of any chemical analysis, the modern advances in trace-level analysis are critically dependent on developments in mass spectrometry.

For several decades before its application to chemical analysis, mass spectrometry was a major tool in fundamental physics. The invention of mass spectrometry is usually attributed to Joseph John Thomson, no relative to William Thomson (Lord Kelvin) whose picture appears above. In 1897 J.J. Thomson measured the ratio of the charge of an electron to its mass, thus confirming for the first time that this then-mysterious entity possessed properties characteristic of a particle. (It is interesting that his son G.P. Thomson later emulated his father by winning a Nobel Prize, but for demonstrating that the electron *also* possesses properties characteristic of a wave!). An account of the life and work of J.J. Thomson was published (Griffiths 1997) to commemorate the centenary of the first measurement of mass-to-charge of an elementary particle.

F.W. Aston, a student of Thomson, won a Nobel Prize for using mass spectrometry to demonstrate the existence of the isotopes of the elements (Aston 1919), and for developing a higher resolution mass spectrometer that permitted measurement of atomic masses with sufficient accuracy and precision for the first reliable estimates of so-called mass defects, i.e., deviations of actual (measured) atomic masses from those predicted from the sums of the masses of the constituent elementary particles (protons, neutrons and electrons). Later, this work was extended by K.T. Bainbridge whose measurements of mass defects (Bainbridge 1932, 1936) were of sufficient accuracy and precision to confirm for the first time the

famous relationship derived by Albert Einstein concerning the equivalence of mass (in this case the mass defect) and energy (in this case the binding energy of protons and neutrons within an atomic nucleus).

The first analysis of positive ions is attributed to Wien, who used a magnetic field to separate ions of different mass-to-charge ratios (Wien 1898), but the first appreciation of the potential of the new technique in chemical analysis appears to have again resulted from the work of Thomson in his famous book *Rays of Positive Electricity and Their Application to Chemical Analysis* (Thomson 1913). The present book is intended as an introduction to the use of mass spectrometry for quantitative measurements of the amounts of specific (known) chemical compounds (so-called 'target analytes') present at trace levels in complex matrices. This modern day meaning of 'quantitative mass spectrometry' is rather different from its much more specialized historical meaning in the earliest days of application of the technique to chemistry.

In the two decades spanning about 1940-1960, the petroleum industry was the major proponent of mass spectrometry as a tool of analytical chemistry, and indeed the first few issues of Advances in Mass Spectrometry (essentially the proceedings of the International Conferences on Mass Spectrometry) were sponsored and published by the Petroleum Institute. Raw petroleum and its distillate fractions are incredibly complex mixtures of chemical compounds, mainly corresponding to chemical compositions C_cH_bN_nO_oS_s, and it is impossible to devise a complete chemical analysis of such an extremely large number of components at concentrations covering a dynamic range of many orders of magnitude. However, some knowledge of chemical composition is required by chemical engineers for optimization of the industrial processes required to produce end products with the desired properties. To this end petroleum chemists devised the concepts of compound class, i.e., compounds with a specified composition with respect to heteroatoms only $(N_n O_0 S_s)$, and compound type, i.e., compounds with a specified value of Z when the composition is expressed as $C_cH_{2c+Z}N_nO_oS_s$. Clearly the parameter Z is related to the degree of unsaturation. Reviews of this application of mass spectrometry have been published (Grayson 2002; Roussis 1999). The earliest methods yielded information on relative amounts of hydrocarbon compounds in a distillate, i.e. type analyses for the compound class with n = o = s = zero. A high resolution adaptation of the original low resolution mass spectral methods was first published in 1967, and permitted determinations of 18 saturated- and aromatic-hydrocarbon types and four aromatic types containing sulfur.

Essentially, the general approach first identified specific mass-to-charge ratio (m/z) values in the electron ionization mass spectra that are characteristic of each compound type, and obtained a calibration based on analysis of mixtures of known composition:

$$S = R.C$$

where **S** is a vector containing the appropriate sums of signal intensities at the m/z values that are characteristic for each compound type, **C** is a vector whose elements are the concentrations of these compound types, and **R** is the (square) matrix of mass spectrometric response factors determined from the calibration experiments (average response coefficients for each type are on the diagonal of the matrix and the off-diagonal elements take into account inter-type contributions to signal intensities at the characteristic m/z values). Quantitative analysis of an unknown thus requires inversion of the response matrix:

$$C = R^{-1}.S$$

An example of such a type analysis for the class $C_cH_{2c+Z}S$, for both a raw petroleum feedstock and one of its products from a refinery process designed to remove the sulfur content, is shown in Figure P.1 (here the carbon number c is replaced by n). Modern developments in quantitative petroleum analysis incorporate new advances in separation science as well as in mass spectrometric technologies, especially ionization techniques and ultrahigh resolving power (Marshall 2004) and improved calibration of the response matrix (Fafet 1999).

This early and narrow interpretation of the phrase 'quantitative mass spectrometry' is now badly outdated, although petroleum analysis is still an important branch of analytical chemistry that is still being developed. However, apart from its historical importance it introduced important concepts, including calibration and response factor, that will appear throughout this book. Nowadays, quantitation by mass spectrometry generally refers to determination of target analytes (known and specified chemical species, rather than groups of compounds defined within 'classes' or 'types' as in the petroleum case), present in a complex matrix at trace levels. This book is intended as an introduction to this demanding branch of measurement science, one that is crucial for meaningful studies of a wide range of phenomena including environmental, pharmacological and biomedical studies.

The approach adopted throughout the book is to emphasize the fundamentals underlying the scientific

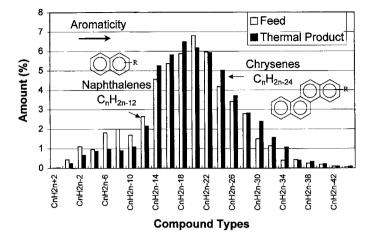


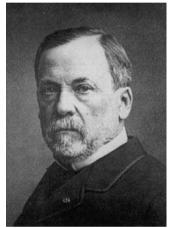
Figure P.1 Type analysis of a petroleum feedstock and its hydrocracked product for compound class $C_nH_{2n+Z}S$. Reproduced with permission from S. Roussis, *Rapid Commun. Mass Spectrom.* 13, 1031–1051 (1999).

instruments and methodologies, illustrated by historically important developments as well as innovations that were current at the time of completing the manuscript (late summer 2007). Hopefully this will prove to be of more lasting value for the reader. However, a discussion of 'fundamentals' without any description of how 'the fundamental things apply' (see text box) to real-world problems is unlikely to be of much use to anyone, so the final chapter discusses some illustrative examples from the literature.

As mentioned above, although this book is devoted to quantitative analysis of specified 'target' analytes, the analyst must have a degree of confidence that the signals being measured do indeed arise from the presence of that target analyte (confirmation of analyte identity), and only from that analyte (signal purity). Therefore, even quantitative analyses inevitably involve some degree of confirmation of analyte structure and identity, and also a check for potential contributions to the recorded instrumental signals from other compounds. The degree to which such checking of analyte identity and of signal purity is necessary will vary from case to case, e.g., analysis of a synthetic pharmaceutical drug in blood plasma following a clinical dose is much less likely to require a high degree of identity confirmation than that of a chlorinated pollutant in an environmental sample. Determination of the appropriate degree of such checks is an example of application of the concept of 'Fitness for Purpose', another major theme of this book. This principle is discussed more fully in Chapter 9.2, but will appear in several intervening chapters so a very brief introduction to the concept is presented here, based on a discussion (Bethem 2003) of its applicability to mass spectrometric analyses. The following principles are quotations from this work (Bethem 2003):

- Ultimately it is the responsibility of the analyst to make choices, provide supporting data, and interpret results according to scientific principles and qualified judgment.
- Analysts should use methods which are Fit for Purpose. Analysts should be able to show that their methods are Fit for Purpose.
- Fitness for Purpose means that the uncertainty inherent in a given method is tolerable given the needs of the application area.
- 4. Targets for measurement uncertainty describe how accurate and precise the measurements need to be. Targets for identification confidence describe how certain one needs to be that the correct analyte has been identified.
- Establishing method fitness consists of showing that the targets for measurement uncertainty and identification confidence have been met.

In its simplest terms, the 'Fitness for Purpose' principle corresponds to the commonsense notion that an analytical method must provide answers with sufficiently low uncertainties that the requirements of the user of the data are fully met within specified constraints of time, cost etc. On the other hand there is no point in developing, validating and using an analytical method with extremely low uncertainties in the data (high precision and accuracy) if a considerably less demanding method (generally less expensive in terms of money, time and effort) will suffice.


'The Fundamental Things Apply —'

with apologies to 'As time goes by' by Herman Hupfeld (1931); Warner Bros. Music Corp.

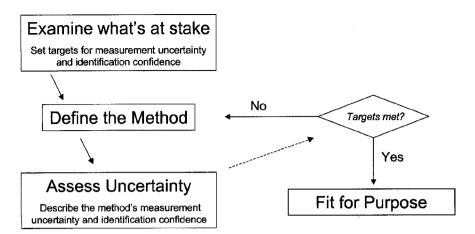
This famous song was featured in the films *Casablanca* and *Sleepless in Seattle*, as well as the well-known British TV comedy series of the same name. This is a long stretch from the subject of this book, but the above quotation from the lyrics seems appropriate.

A distinction between 'fundamental' and 'applied' science is drawn by some, including (alas) by some funding agencies! One of the themes of this book is best expressed by quoting one of the giants of 19th century science:

'There does not exist a category of science to which one can give the name applied science. There are science and the applications of science, bound together as the fruit of the tree'. Louis Pasteur, 'Revue Scientifique,' Paris, 1871.

Louis Pasteur

It is not essential for an experimental scientist to be familiar with and understand every detail of the theoretical underpinnings of his/her laboratory work. However, to be able to properly plan an experimental investigation so that the results can be meaningfully interpreted, it *is* essential that he/she should understand the background of the relevant theory, its basic assumptions, and the limits of its applicability and the magnitude of the consequences of the approximations involved. This general theme was a guiding principle in writing this book, and hopefully this approach will ensure that the book will have a reasonably long useful lifetime. However, fundamentals without much discussion of how they apply to real-world problems in trace analytical chemistry are not of themselves very useful, and discussions of how the 'fundamental things apply' will appear later in the book.


A specific example of the continuity between 'applied' and 'fundamental' research, of direct relevance to the subject of this book (see Chapter 5), is provided by the direct line of development starting from an electrostatic paint sprayer designed for industrial use, through attempts by materials scientists to prepare single molecules of synthetic polymers in the gas phase to enable fundamental studies, to the eventual award of a Nobel Prize to John B. Fenn

for the invention of electrospray ionization mass spectrometry and its application to biochemistry and molecular biology.

Figure P.2 shows a generalized procedure for achieving Fitness for Purpose.

This book is not intended to cover important branches of mass spectrometry that provide accurate and precise quantitative measurements of *relative* concentrations, e.g., of variations in isotopic ratios of an element by isotope ratio mass spectrometry (IRMS) and accelerator mass spectrometry (AMS). Rather, this book is mainly concerned with determinations of absolute *amount of substance* (see Chapter 1 for a definition and explanation), particularly for compounds present at trace levels in complex matrices. (The only exception is the inclusion of a brief description of methods used to determine *differences* in levels of proteins in living cells or organisms subjected to different stimuli, e.g., disease state vs normal state).

The book covers analysis of 'small' (< 2000 Da) organic molecules, in environmental and biomedical matrices. The first book exclusively devoted to this subject (Millard 1977) is now rather out of date as a result of more recent spectacular advances in mass spectrometric technology. Very recently two excellent introductions to the subject have appeared (Duncan 2006; Lavagnini 2006). The present book differs from these with regard to their respective lengths; the present book is much longer, as a result of the attempt to provide a comprehensive introduction to all the many ancillary techniques and tools that must be coordinated to provide a reliable result for a trace-level quantitative analysis by mass spectrometry. Thus, many of the present chapters discuss matters that are common to any quantitative analytical method, not only to those in which mass spectrometry is the key component providing the final analytical signal

Figure P.2 Outline of a general recommended process for achieving Fitness for Purpose. Reproduced from Bethem *et al.*, *J. Amer. Soc. Mass Spectrom.* **14**, 528 (2003), with permission, copyright (2003) Elsevier.

used to estimate the concentration of the target analyte. The present book is written at a level that presupposes some basic undergraduate-level knowledge of chemistry, physics, and mathematics and statistics.

This book also treats the more recent developments of quantitative analysis of specific proteins in biological systems, even though these hardly qualify as 'small molecules'. However, it does *not* cover the important aspect of analysis of trace level metals by, e.g., ICP–MS; an excellent book covering this subject has appeared recently (Nelms 2005).

It must be emphasized that any book such as this can only be regarded as a preparation for the real learning process in this demanding practical art, namely, exposure to working on real-life problems in a real laboratory. The kinds of measurements that are addressed here really do push the various technologies involved to their current limits, and 'learning by doing' is the only truly meaningful method. This principle is well illustrated by a quotation from what might be described as 'the older literature':

Those who are good at archery learnt from the bow and not from Yi the Archer. Those who know how to manage boats learnt from boats and not from Wo (the legendary boatman). Those who can think learned for themselves and not from the Sages. Kuan Yin Tze, 8th century.

The dangers involved in a sole reliance on 'learning by reading', in a practical discipline like analytical chemistry, are summarized in the following advice:

Il ne faut pas laisser les intellectuals jouer avec les allumettes. (Don't let the intellectuals play with the matches). Jacques Prévert, 1900–1977.

However, it is hoped that reading this book will be useful both in providing enough background information that the first exposure to the 'learning by doing' process will not seem quite so daunting, and also will provide a useful reference thereafter. The book attempts to cover a wide range of subdisciplines, and inevitably some errors of both omission and commission will remain despite extensive checking. The authors would greatly appreciate assistance from colleagues in identifying and correcting these errors.

Robert K. Boyd, Cecilia Basic, Robert A. Bethem October 2007

Acknowledgements

While all errors and obfuscations remain the responsibility of the authors, this book has benefited from advice and contributions generously provided by several colleagues, including Keith Gallicano, Lynn Heiman, David Heller, Bob Peterson, Eric Reiner and Vince Taguchi. We are indebted to the family of Dr A.J.P. Martin for permission to reproduce his photograph in Chapter 3 and to the Rowett Institute in Aberdeen, Scotland, for permission to reproduce the photograph of Dr R.L.M. Synge. The photographs of Dr J.J. van Deemter and Dr M.J.E. Golay were kindly provided by Drs Ted Adlard and L.S. Ettre, and the pictures of

M.S. Tswett and his apparatus by Dr Klaus Beneke of the University of Kiel. The portrait of William Thomson (Lord Kelvin) was kindly provided by the Department of Physics, Strathclyde University, Scotland, and that of Joseph Black by the Department of Chemistry, University of Glasgow, Scotland. Dr Ron Majors generously sent us the original graphics from several of his articles in *LCGC* magazine.

Finally, the authors thank their families and friends for their unwavering patience, support and encouragement in the face of our often obsessive burning of midnight oil while writing this book.

Measurement, Dimensions and Units

Standards of Comparison

The US standard railroad gauge (distance between the rails) is 4 feet, 8.5 inches. That's a very strange number, why was it used? Because the first railroads were built in Britain, and the North American railroads were built by British immigrants.

Why did they build them like that? Because the first railways (lines and rolling stock) were built by the same companies that built the pre-railroad tramways, and they used the same old gauge. All right, why did 'they' use that gauge? Because the tramways used the same jigs and tools that had been used for building wagons, and the wagons used that wheel spacing.

Are we getting anywhere? Why did the wagons use that strange wheel spacing? Well, if they tried to use any other spacing the wagons would break down on some of the old long distance roads, because that's the spacing of the old wheel ruts.

So who built these old rutted roads? The first long distance roads in Europe were built by Imperial Rome for the purposes of the Roman Legions. These roads were still widely used in the 19th century. And the ruts? The initial ruts, which everyone else had to match in case they destroyed their wagons, were made by Roman war chariots. Since the chariots were made for Imperial Rome they were all alike, including the wheel spacing. So now we have an answer to the original question. The US standard railroad gauge of 4 feet, 8.5 inches is derived from the original specification for an Imperial Roman army war chariot.

The next time you are struggling with conversion factors between units and wonder how we ended up with all this nonsense, you may be closer to the truth than you knew. Because the Imperial Roman chariots were made to be just wide enough to accommodate the south ends of two war horses heading north.

And this is not yet the end! The US space shuttle has two big booster rockets attached to the sides of the main fuel tank. These are solid rocket boosters (SRBs) made in a factory in Utah. It has been alleged that the engineers who designed the SRBs would have preferred to make them a bit fatter, but the SRBs had to be shipped by train from the factory to the launch site. The railroad line from the factory happens to run through a tunnel in the mountains, and the SRBs had to fit through that tunnel. The tunnel is only slightly wider than the railroad track, and we now know the story behind the width of the track!

So, limitations on the size of crucial components of the space shuttle arose from the average width of the Roman horses' rear ends.

1.1 Introduction

All quantitative measurements are really comparisons between an unknown quantity (such as the height of a person) and a measuring instrument of some kind (e.g., a measuring tape). But to be able to communicate the results of our measurements among one another we have to agree on exactly what we are comparing our measurements to. If I say that I measured my height and the reading on the tape was 72, that does not tell you much. But if I say the value was 72 inches, that does provide some meaningful

information provided that you know what an inch is (tradition tells us that the inch was originally defined as the length of part of the thumb of some long-forgotten potentate but that does not help us much). But even that information is incomplete as we do not know the uncertainty in the measurement. Most people understand in a general way the concepts of accuracy (deviation of the measured value from the 'true' value) and precision (a measure of how close is the agreement among repeated measurements of the same quantity) as different aspects of total uncertainty, and such a general understanding will suffice for the first few chapters of this book. However, the result of a measurement without an accompanying estimate of its uncertainty is of little value, and a more complete discussion of experimental uncertainty is provided in Chapter 8 in preparation for the practical discussions of Chapters 9 and 10.

Actually, the only correct answer to the question 'what is an inch' is that one inch is defined as exactly 2.54 centimeters (zero uncertainty in this defined conversion factor). So now we have to ask what is a centimeter, and most of us know that a centimeter is 1/100 of a meter. So what is a meter? This is starting to sound about as arbitrary as the Roman horses' hind quarters mentioned in the text box but in this case we can give a more useful

if less entertaining answer: The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second. Note that the effect of this definition is to fix the speed of light in vacuum at exactly 299 792 458 meters per second, and that we still have not arrived at a final definition of the meter until we have defined the second (Table 1.1). This is the internationally accepted definition of the meter, established in 1983, and forms part of the International System of Units (Système Internationale d'Unites, known as SI for short). The SI establishes the standards of comparison used by all countries when the measured values of physical and chemical properties are reported. Such an international agreement is essential not only for science and technology, but also for trade. For example, consider the potential confusion arising from the following example:

- 1 US quart (dry) = 1.10122 litres
- 1 US quart (liquid) = 0.94635 litres
- 1 Imperial (UK/Canada) quart (liquid) = 1.136523 litres

(The litre is defined in the SI as 1/1000 of a cubic meter: $1L = 10^{-3}$ m³). Many other examples of such ambiguities can be given (see, for example, the unit conversions

Table 1.1 SI Base Quantities and Units

Quantity	Name of unit	Symbol	Definition
Length	meter	m	The meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
Mass	kilogram	kg	The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
Time	second	S	The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
Electric current	ampere	A	The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed one meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length.
Thermodynamic temperature	kelvin	K	The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
Amount of substance	mole	mol	The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is 'mol.' When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
Luminous intensity	candela	cd	The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1/683$ watt per steradian.

http://www.megaconverter.com/Mega2/index.html). Such discrepancies may not seem to be very important when only a single quart is considered, but in international trade where literally millions of quarts of some commodity might be traded, the 19 % difference between the two definitions of the liquid quart could lead to extreme difficulties if the ambiguity were not recognized and taken into account. In a lecture on 'Money as the measure of value and medium of exchange', delivered in 1763 at the University of Glasgow, Adam Smith commented (Smith 1763, quoted in Ashworth 2004):

'Natural measures of quantity, such as fathoms, cubits, inches, taken from the proportion of the human body, were once in use with every nation. But by a little observation they found that one man's arm was longer or shorter than another's, and that one was not to be compared with the other; and therefore wise men who attended to these things would endeavour to fix upon some more accurate measure, that equal quantities might be of equal values. Their method became absolutely necessary when people came to deal in many commodities, and in great quantities of them.'

It is precisely this kind of uncertainty that the SI is designed to avoid in both science and in trade and commerce. In this regard it is unfortunate to note that even definitions of words used to denote numbers are still subject to ambiguity. For example, in most countries 'one billion' (or the equivalent word in a country's official language) is defined as 10^{12} (a million million), but in the USA (and increasingly in other English-speaking countries) a billion is used to represent 109 (a thousand million) and 1012 is referred to as a 'trillion'. In view of this ambiguity it is always preferable to use scientific numerical notation.

1.2 The International System of Units (SI)

An excellent source of information about the SI can be found at the website of the US National Institute for Standards and Technology (NIST): http://physics. nist.gov/cuu/Units/index.html

Here we shall be mainly concerned with those quantities that directly affect quantitative measurements of amounts of chemical substances by mass spectrometry. However, it is appropriate to briefly describe some general features of the SI.

Early History of the SI

There is a strong French connection with the SI, including its name and the location in Paris of the central organization that coordinates this international agreement (Bureau International des Poids et Mesures, or BIPM), and the international guiding body CIPM (Comité International de Poids et Mesures, i.e., International Committee for Weights and Measures). This connection was established at the time of the French Revolution when the revolutionary government decided that the chaotic state of weights and measures in France had to be fixed. The intellectual leader in this initiative, that resulted in the so-called Metric System, was the chemist Antoine Lavoisier, famous for his demonstration that combustion involves reaction with oxygen and that water is formed by combustion of two parts of hydrogen with one of oxygen. His efforts resulted in the creation of two artifacts

Antoine Lavoisier

made of platinum (chosen because of its resistance to oxidation), one representing the meter as the new unit of length between two scratch marks on the platinum bar, and the other the kilogram. These artifacts were housed in the Archives de la République in Paris in 1799, and this represents the first step taken towards establishment of the modern SI.

Sadly, Lavoisier did not live to see this realization of his ideas. Despite his fame, and his services to science and his country (he was a liberal by the standards of pre-revolutionary France and played an active role in the events leading to the Revolution and, in its early years, formulated plans for many reforms), he fell into disfavour because of his history as a former farmer-general of taxes, and was guillotined in 1794. After his arrest and a trial that lasted less than a day, Lavoisier requested postponement of his execution so that he could complete some experiments, but the presiding judge infamously refused: 'L'état n'a pas besoin de savants' (the state has no need of intellectuals).

Any system of measurement must decide what to do about the fact that there are literally thousands of physical properties that we measure, each of which is expressed as a measured number of some well-defined unit of measurement. It would be impossible to set up primary standards for the units of each and every one of these thousands of physical quantities, but fortunately there is no need to do so since there are many relationships connecting the measurable quantities to one another. A simple example that is of direct importance to the subject of this book is that of volume; as mentioned above, the SI unit of volume (cubic meter) is simply related to the SI unit for length via the physical relationship between the two quantities. So the first question to be settled concerns how many, and which, physical quantities should be defined as SI base quantities (sometimes referred to as dimensions), for which the defined units of measurement can be combined appropriately to give the SI units for all other measurable quantities.

At one time it was thought to be more 'elegant' to work with a minimum possible number of dimensions and their defined units of measurement, and this pseudo-esthetic criterion gave rise to the three-dimensional centimeter-gram-second (cgs) and meter-kilogram-second (MKS) systems. However, it soon became apparent that utility and convenience were more important than perceived elegance! As a simple example, consider Coulomb's Law for the electrostatic force F between two electric charges q_1 and q_2 separated by a distance r in a vacuum:

$$F = k_o.q_1.q_2/r^2$$

In the simple form of Coulomb's Law as used with the cgs system, the Coulomb's Law Constant k_0 is treated as a dimensionless constant with value 1. (This is not the case

in the SI, where $k = 1/(4\pi\epsilon_o)$ where ϵ_o is the permittivity of free space = $8.854187817 \times 10^{-12} \,\mathrm{s}^4 \mathrm{A}^2 \mathrm{kg}^{-1} \mathrm{m}^{-3}$). By Newton's Second Law of Motion, force is given as (mass \times acceleration), i.e., (mass \times length \times time⁻²), so in the cgs system $q_1 \cdot q_2$ corresponds to (mass × length³ × time⁻²); thus, in such a three-dimensional measurement system, electrical charge q corresponds to $(\text{mass}^{\frac{1}{2}} \times$ length $\frac{3}{2} \times \text{time}^{-1}$). This very awkward (and inelegant!) result involving fractional exponents becomes even more cumbersome when magnetism is considered. Once it was accepted that usefulness was the only criterion for deciding on the base physical quantities (dimensions) and their units of measurement, it was finally agreed that the most useful number of dimensions for the SI was seven. Some of these seven are of little or no direct consequence for this book, but for the sake of completeness they are all listed in Table 1.1. Some important SI units, that are derived from the base units but have special names and symbols, are listed in Table 1.2.

The two base quantities (and their associated SI units) that are most important for quantitative chemical analysis are amount of substance (mole) and mass (kilogram), although length (meter) is also important via its derived quantity volume in view of the convenience introduced by our common use of volume concentrations for liquid solutions. (Note, however, that the latter will in principle vary with temperature as a result of expansion or contraction of the liquid).

The kilogram is unique among the SI base units for two reasons. Firstly, the unit of mass is the only one whose name contains a prefix (this is a historical accident arising from the old centimeter-gram-second system of measurement mentioned above). Names and symbols for decimal multiples and submultiples of the unit of mass are formed

Table 1.2	Some SI Derived	units with special	names and symbols ^a
-----------	-----------------	--------------------	--------------------------------

Derived quantity	Name of unit	Symbol	Relationship to SI base units	Relationship to other SI units
Plane angle	radian	rad	$m.m^{-1} (= 1)$	
Solid angle	steradian	sr	$m^2 \cdot m^{-2} = 1$	_
Frequency	hertz	Hz	s^{-1}	_
Force	newton	N	$m.kg.s^{-2}$	_
Pressure	pascal	Pa	m^{-1} .kg.s ⁻²	$N.m^{-2}$
Energy	joule	J	m^2 .kg.s ⁻²	N.m; Pa.m ³
Power	watt	W	$m^2.kg.s^{-3}$	$J.s^{-1}$
Electric charge	coulomb	C	A.s	_
Electric potential difference	volt	V	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$	$W.A^{-1}$
Electric resistance	ohm	Ω	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$	$V.A^{-1}$
Magnetic flux density	tesla	В	$kg \cdot s^{-2} \cdot A^{-1}$	
Celsius temperature	degree Celsius	°C	K^b	_

a for a complete list and discussion, see Taylor (1995) and Taylor (2001).

b the size of the two units is the same, but Celsius temperature ($^{\circ}$ C) = thermodynamic temperature (K) – 273.15 (the ice point).