

WILEY FINANCE

Stochastic simulation and applications in finance with Matlab programs

HUU TUE HUYNH
VAN SON LAI
ISSOUFF SOUMARE

This page intentionally left blank

Stochastic Simulation and Applications in Finance with MATLAB® Programs

For other titles in the Wiley Finance Series
please see www.wiley.com/finance

Stochastic Simulation and Applications in Finance with MATLAB® Programs

**Huu Tue Huynh,
Van Son Lai
and
Issouf Soumaré**

A John Wiley and Sons, Ltd, Publication

Copyright © 2008

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Road, London, EC1N 8TS, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Huynh, Huu Tue.

Stochastic simulation and applications in finance with MATLAB programs / Huu Tue Huynh, Van Son Lai, and Issouf Soumaré.

p. cm.—(The Wiley finance series)

Includes bibliographical references and index.

ISBN 978-0-470-72538-2 (cloth)

1. Finance—Mathematical models. 2. Stochastic models. I. Lai, Van Son. II. Soumaré, Issouf. III. Title.
HG106.H89 2008

332.01'51923—dc22

2008038608

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-72538-2 (HB)

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

Huu Tue Huynh: To my late parents, my wife Carole, and all members of my family.

Van Son Lai: To my parents, my wife Quynh-Trang, my son Laurent Lam, and my brothers and sisters.

Issouf Soumaré: To my wife Fatou, my son Moussa, and my daughter Candia.

This page intentionally left blank

Contents

Preface	xiii
1 Introduction to Probability	1
1.1 Intuitive Explanation	1
1.1.1 Frequencies	1
1.1.2 Number of Favorable Cases Over The Total Number of Cases	1
1.2 Axiomatic Definition	2
1.2.1 Random Experiment	2
1.2.2 Event	2
1.2.3 Algebra of Events	3
1.2.4 Probability Axioms	3
1.2.5 Conditional Probabilities	5
1.2.6 Independent Events	6
2 Introduction to Random Variables	9
2.1 Random Variables	9
2.1.1 Cumulative Distribution Function	10
2.1.2 Probability Density Function	10
2.1.3 Mean, Variance and Higher Moments of a Random Variable	14
2.1.4 Characteristic Function of a Random Variable	19
2.2 Random vectors	21
2.2.1 Cumulative Distribution Function of a Random Vector	22
2.2.2 Probability Density Function of a Random Vector	22
2.2.3 Marginal Distribution of a Random Vector	23
2.2.4 Conditional Distribution of a Random Vector	24
2.2.5 Mean, Variance and Higher Moments of a Random Vector	26
2.2.6 Characteristic Function of a Random Vector	29
2.3 Transformation of Random Variables	30
2.4 Transformation of Random Vectors	34
2.5 Approximation of the Standard Normal Cumulative Distribution Function	36

3 Random Sequences	39
3.1 Sum of Independent Random Variables	39
3.2 Law of Large Numbers	41
3.3 Central Limit Theorem	42
3.4 Convergence of Sequences of Random Variables	44
3.4.1 Sure Convergence	44
3.4.2 Almost Sure Convergence	45
3.4.3 Convergence in Probability	45
3.4.4 Convergence in Quadratic Mean	45
4 Introduction to Computer Simulation of Random Variables	47
4.1 Uniform Random Variable Generator	48
4.2 Generating Discrete Random Variables	48
4.2.1 Finite Discrete Random Variables	48
4.2.2 Infinite Discrete Random Variables: Poisson Distribution	50
4.3 Simulation of Continuous Random Variables	51
4.3.1 Cauchy Distribution	52
4.3.2 Exponential Law	52
4.3.3 Rayleigh Random Variable	53
4.3.4 Gaussian Distribution	53
4.4 Simulation of Random Vectors	56
4.4.1 Case of a Two-Dimensional Random Vector	57
4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix	57
4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix	60
4.4.4 Simulation of a Gaussian Random Vector with MATLAB	62
4.5 Acceptance-Rejection Method	62
4.6 Markov Chain Monte Carlo Method (MCMC)	65
4.6.1 Definition of a Markov Process	65
4.6.2 Description of the MCMC Technique	65
5 Foundations of Monte Carlo Simulations	67
5.1 Basic Idea	67
5.2 Introduction to the Concept of Precision	69
5.3 Quality of Monte Carlo Simulations Results	71
5.4 Improvement of the Quality of Monte Carlo Simulations or Variance Reduction Techniques	75
5.4.1 Quadratic Resampling	75
5.4.2 Reduction of the Number of Simulations Using Antithetic Variables	77
5.4.3 Reduction of the Number of Simulations Using Control Variates	79
5.4.4 Importance Sampling	80
5.5 Application Cases of Random Variables Simulations	84
5.5.1 Application Case: Generation of Random Variables as a Function of the Number of Simulations	84
5.5.2 Application Case: Simulations and Improvement of the Simulations' Quality	87

6 Fundamentals of Quasi Monte Carlo (QMC) Simulations	91
6.1 Van Der Corput Sequence (Basic Sequence)	92
6.2 Halton Sequence	93
6.3 Faure Sequence	95
6.4 Sobol Sequence	97
6.5 Latin Hypercube Sampling	101
6.6 Comparison of the Different Sequences	102
7 Introduction to Random Processes	109
7.1 Characterization	109
7.1.1 Statistics	109
7.1.2 Stationarity	110
7.1.3 Ergodicity	111
7.2 Notion of Continuity, Differentiability and Integrability	111
7.2.1 Continuity	112
7.2.2 Differentiability	112
7.2.3 Integrability	113
7.3 Examples of Random Processes	113
7.3.1 Gaussian Process	113
7.3.2 Random Walk	114
7.3.3 Wiener Process	116
7.3.4 Brownian Bridge	118
7.3.5 Fourier Transform of a Brownian Bridge	119
7.3.6 Example of a Brownian Bridge	120
8 Solution of Stochastic Differential Equations	123
8.1 Introduction to Stochastic Calculus	124
8.2 Introduction to Stochastic Differential Equations	126
8.2.1 Ito's Integral	126
8.2.2 Ito's Lemma	126
8.2.3 Ito's Lemma in the Multi-Dimensional Case	130
8.2.4 Solutions of Some Stochastic Differential Equations	130
8.3 Introduction to Stochastic Processes with Jumps	132
8.4 Numerical Solutions of some Stochastic Differential Equations (SDE)	133
8.4.1 Ordinary Differential Equations	134
8.4.2 Stochastic Differential Equations	135
8.5 Application Case: Generation of a Stochastic Differential Equation using the Euler and Milstein Schemes	138
8.5.1 Sensitivity with Respect to the Number of Simulated Series	139
8.5.2 Sensitivity with Respect to the Confidence Interval	141
8.5.3 Sensitivity with Respect to the Number of Simulations	141
8.5.4 Sensitivity with Respect to the Time Step	142
8.6 Application Case: Simulation of a Stochastic Differential Equation with Control and Antithetic Variables	142
8.6.1 Simple Simulations	143
8.6.2 Simulations with Control Variables	143
8.6.3 Simulations with Antithetic Variables	145

8.7 Application Case: Generation of a Stochastic Differential Equation with Jumps	146
9 General Approach to the Valuation of Contingent Claims	149
9.1 The Cox, Ross and Rubinstein (1979) Binomial Model of Option Pricing	150
9.1.1 Assumptions	150
9.1.2 Price of a Call Option	151
9.1.3 Extension To N Periods	153
9.2 Black and Scholes (1973) and Merton (1973) Option Pricing Model	156
9.2.1 Fundamental Equation for the Valuation of Contingent Claims	156
9.2.2 Exact Analytical Value of European Call and Put Options	158
9.2.3 Hedging Ratios and the Sensitivity Coefficients	160
9.3 Derivation of the Black-Scholes Formula using the Risk-Neutral Valuation Principle	164
9.3.1 The Girsanov Theorem and the Risk-Neutral Probability	164
9.3.2 Derivation of the Black and Scholes Formula Under The Risk Neutralized or Equivalent Martingale Principle	165
10 Pricing Options using Monte Carlo Simulations	169
10.1 Plain Vanilla Options: European put and Call	169
10.1.1 Simple Simulations	169
10.1.2 Simulations with Antithetic Variables	171
10.1.3 Simulations with Control Variates	172
10.1.4 Simulations with Stochastic Interest Rate	177
10.1.5 Simulations with Stochastic Interest Rate and Stochastic Volatility	180
10.2 American options	182
10.2.1 Simulations Using The Least-Squares Method of Longstaff and Schwartz (2001)	183
10.2.2 Simulations Using The Dynamic Programming Technique of Barraquand and Martineau (1995)	193
10.3 Asian options	201
10.3.1 Asian Options on Arithmetic Mean	201
10.3.2 Asian Options on Geometric Mean	203
10.4 Barrier options	205
10.5 Estimation Methods for the Sensitivity Coefficients or Greeks	207
10.5.1 Pathwise Derivative Estimates	207
10.5.2 Likelihood Ratio Method	210
10.5.3 Retrieval of Volatility Method	213
11 Term Structure of Interest Rates and Interest Rate Derivatives	221
11.1 General Approach and the Vasicek (1977) Model	221
11.1.1 General Formulation	221
11.1.2 Risk Neutral Approach	224
11.1.3 Particular Case: One Factor Vasicek Model	224
11.2 The General Equilibrium Approach: The Cox, Ingersoll and Ross (CIR, 1985) model	227

11.3	The Affine Model of the Term Structure	229
11.4	Market Models	230
11.4.1	The Heath, Jarrow and Morton (HJM, 1992) Model	230
11.4.2	The Brace, Gatarek and Musiela (BGM, 1997) Model	237
12	Credit Risk and the Valuation of Corporate Securities	247
12.1	Valuation of Corporate Risky Debts: The Merton (1974) Model	247
12.1.1	The Black and Scholes (1973) Model Revisited	248
12.1.2	Application of the Model to the Valuation of a Risky Debt	249
12.1.3	Analysis of the Debt Risk	253
12.1.4	Relation Between The Firm's Asset Volatility and its Equity Volatility	256
12.2	Insuring Debt Against Default Risk	258
12.2.1	Isomorphism Between a Put Option and a Financial Guarantee	258
12.2.2	Insuring The Default Risk of a Risky Debt	260
12.2.3	Establishing a Lower Bound for the Price of the Insurance Strategy	262
12.3	Valuation of a Risky Debt: The Reduced-Form Approach	262
12.3.1	The Discrete Case with a Zero-Coupon Bond	262
12.3.2	General Case in Continuous Time	263
13	Valuation of Portfolios of Financial Guarantees	265
13.1	Valuation of a Portfolio of Loan Guarantees	265
13.1.1	Firms' and Guarantor's Dynamics	266
13.1.2	Value of Loss Per Unit of Debt	267
13.1.3	Value of Guarantee Per Unit of Debt	269
13.2	Valuation of Credit Insurance Portfolios using Monte Carlo Simulations	271
13.2.1	Stochastic Processes	272
13.2.2	Expected Shortfall and Credit Insurance Valuation	273
13.2.3	MATLAB Program	275
14	Risk Management and Value at Risk (VaR)	283
14.1	Types of Financial Risks	284
14.1.1	Market Risk	284
14.1.2	Liquidity Risk	284
14.1.3	Credit Risk	284
14.1.4	Operational Risk	284
14.2	Definition of the Value at Risk (VaR)	284
14.3	The Regulatory Environment of Basle	285
14.3.1	Stress Testing	286
14.3.2	Back Testing	286
14.4	Approaches to compute VaR	286
14.4.1	Non-Parametric Approach: Historical Simulations	287
14.4.2	Parametric Approaches	287
14.5	Computing VaR by Monte Carlo Simulations	288
14.5.1	Description of the Procedure	288
14.5.2	Application: VaR of a Simple Bank Account	288

14.5.3 Application: VaR of a Portfolio Composed of One Domestic Stock and One Foreign Stock	292
15 Value at Risk (VaR) and Principal Components Analysis (PCA)	297
15.1 Introduction to the Principal Components Analysis	297
15.1.1 Graphical Illustration	297
15.1.2 Analytical Illustration	298
15.1.3 Illustrative Example of the PCA	301
15.2 Computing the VaR of a Bond Portfolio	303
15.2.1 Sample Description and Methodology	303
15.2.2 Principal Components Analysis (PCA)	305
15.2.3 Linear Interpolation or Bootstrapping for the Intermediate Spot Rates	307
15.2.4 Computing VaR by MC and QMC Simulations	308
Appendix A: Review of Mathematics	315
A.1 Matrices	315
A.1.1 Elementary Operations on Matrices	316
A.1.2 Vectors	317
A.1.3 Properties	317
A.1.4 Determinants of Matrices	318
A.2 Solution of a System of Linear Equations	320
A.3 Matrix Decomposition	322
A.4 Polynomial and Linear Approximation	322
A.5 Eigenvectors and Eigenvalues of a Matrix	323
Appendix B: MATLAB® Functions	325
References and Bibliography	327
Index	333

Preface

Since the seminal works of Black-Scholes-Merton in 1973, the world of finance has been revolutionized by the emergence of a new field known as financial engineering. On the one hand, markets (foreign exchange, interest rate, commodities, etc.) have become more volatile, which creates an increase in the demand for derivatives products (options, forwards, futures, swaps, hybrids and exotics, and credit derivatives to name a few) used to measure, control, and manage risks, as well as to speculate and take advantage of arbitrage opportunities.

On the other hand, technological advances have enabled financial institutions and other markets players to create, price and launch new products and services to not only hedge against risks, but also to generate revenues from these risks. In addition to a deep grasp of advanced financial theories, the design, analysis and development of these complex products and financial services, or financial engineering, necessitate a mastering of sophisticated mathematics, statistics and numerical computations.

By way of an integrated approach, the object of this book is to teach the reader:

- to apply stochastic calculus and simulation techniques to solve financial problems;
- to develop and/or adapt the existing contingent claims models to support financial engineering platforms and applications.

There are several books in the market covering stochastic calculus and Monte Carlo simulations in finance. These books can be roughly grouped into two categories: introductory or advanced. Unfortunately, the books at the introductory level do not answer the needs of upper-level undergraduate and graduate students and finance professionals and practitioners. Advanced books, being very sophisticated and specialized, are tailored for researchers and users with solid and esoteric scientific backgrounds in mathematics and statistics. Furthermore, these books are often biased towards the research interests of the authors, hence their scope is narrowed and their applications in finance limited. By and large, the existing books are less suitable for day-to-day use which is why there is a need for a book that can be used equally by beginners and established researchers wishing to acquire an adequate knowledge of stochastic processes and simulation techniques and to learn how to formulate and solve problems in finance.

This book, which has developed from the master programme in financial engineering at Laval University in Canada first offered in 1999, aims to reinforce several aspects of simulation techniques and their applications in finance. Building on an integrated approach, the book

provides a pedagogical treatment of the material for senior undergrad and graduate students as well as professionals working in risk management and financial engineering. While initiating students into basic concepts, it covers current up-to-date problems. It is written in a clear, concise and rigorous pedagogical language, which widens accessibility to a larger audience without sacrificing mathematical rigor. By way of a gradual learning of existing theories and new developments, our goal is also to provide an approach to help the reader follow the relevant literature which continually expands at a rapid pace.

This book is intended for students in business, economics, actuarial sciences, computer sciences, general sciences, and engineering, programmers and practitioners in financial, investment/asset and risk management industries. The prerequisites for the book are some familiarity in linear algebra, differential calculus and programming.

The book introduces and trains users in the formulation and resolution of financial problems. As exercises, it provides computer programs for use with the practical examples, exercises and case studies, which give the reader specific recipes for solving problems involving stochastic processes in finance. The programming language is the MATLAB[®]¹ software which is easy to learn and popular among professionals and practitioners. Moreover, the programs could be readily converted for use with the platform C++. Note that, unlike the MATLAB financial toolboxes which are still limited in scope, our proposed exercises and case studies tackle the complex problems encountered routinely in finance.

Overall, the general philosophy of the book can be summarized as follows:

- keep mathematical rigor by minimizing abstracts and unnecessary jargon;
- each concept, either in finance or in computation, leads to algorithms and is illustrated by concrete examples in finance.

Therefore, after they are discussed, the topics are presented in algorithmic forms. Furthermore, some of the examples which treat current financial problems are expounded in case studies, enabling students to better comprehend the underlying financial theory and related quantitative methods.

Every effort has been made to structure the chapters in a logical and coherent manner, with a clear thread and linkage between the chapters which is not apparent in most existing books. Each chapter has been written with regard to the following four principles: pedagogy, rigor, relevance and application. Advanced readers can skip the chapters they are familiar with and go straight to those of interest.

The book starts with a refresher of basic probability and statistics which underpin random processes and computer simulation techniques introduced later. Most of the developed tools are used later to study computational problems of derivative products and risk management. The text is divided into the following four major parts. The first part (Chapters 1 to 3) reviews basic probability and statistics principles. The second part (Chapters 4 to 6) introduces the Monte Carlo and Quasi Monte Carlo simulations topics and techniques. In addition to the other commonly used variance reduction techniques, we introduce the quadratic resampling technique of Barraquand (1995) to obtain the prescribed distribution characteristics of the simulated samples, which is important to improve the quality of the simulations. We also present the Markov Chain Monte Carlo (MCMC) and important sampling methods. The third part (Chapters 7 and 8) treats random processes, stochastic calculus, Brownian bridges, jump

¹ MATLAB is a registered trademark of The MathWorks, Inc. For more information, see <http://www.mathworks.com>.

processes and stochastic differential equations. Finally, the fourth part (Chapters 9 to 15) develops the applications in finance.

To price contingent claims, two equivalent approaches are used in finance: the state variables approach consisting of solving partial differential equations and the probabilistic or equivalent martingale approach. The equivalence between the two approaches is established via the Feynman-Kac theorem. Our purpose is to teach how to solve numerically stochastic differential equations using Monte Carlo simulations, which essentially constitutes the pedagogical contribution of our book.

The fourth part of the book presents different applications of stochastic processes and simulation techniques to solve problems frequently encountered in finance. This part is structured as follows. Chapter 9 lays the foundation to price and replicate contingent claims. Chapter 10 prices European, American and other complex and exotic options using Monte Carlo simulations. Chapter 11 presents modern continuous-time models of the term structure of interest rates and the pricing of interest rate derivatives. Chapters 12 and 13 develop valuation models of corporate securities and credit risk. Chapters 14 and 15 overview risk management and develop estimations of Value at Risk (VaR) by combining Monte Carlo and Quasi Monte Carlo simulations with Principal Components Analysis.

Although this is an introductory and pedagogical book, nonetheless, in Chapter 10 we explain many useful and modern simulation techniques such as the Least-Squares Method (LSM) of Longstaff and Schwartz (2001) and the dynamic programming with Stratified State Aggregation of Barraquand and Martineau (1995) to price American options, the extreme value simulation technique proposed by El Babsiri and Noel (1998) to price exotic options and the Retrieval of Volatility Method proposed by Cvitanic, Goukassian and Zapatero (2002) to estimate the option sensitivity coefficients or hedge ratios (the Greeks). Note that, to our knowledge, with the exception of LSM, this is the first book to bring to the fore these important techniques. In Chapter 11 on term structure of interest rates modeling and pricing of interest rate derivatives, we present the interest rate model of Heath, Jarrow and Morton (1992) and the industry-standard Market Model of Brace, Gatarek and Musiela (2001). An extensive treatment of corporate securities valuation and credit risk based on the structural approach of Merton (1974) is presented in chapter 12. Chapter 13 gives case studies on financial guarantees to show how the simulations techniques can be implemented, and this chapter is inspired from the research publications of the authors. As such, Chapters 12 and 13 provide indispensable fundamentals for a reader to embark on the study of structured products design and credit derivatives.

To perform a sound simulation experiment, one has to undertake roughly the following three steps: (1) modeling of the problem to be studied, (2) calibration/estimation of the model parameters, and (3) backtesting using real data and recalibration. This book focuses on the use of Monte Carlo and Quasi Monte Carlo simulations in finance for the sake of pricing and risk management assuming the dynamics of the underlying variables are known.

We do not pretend that the book provides complete coverage of all topics and issues; future editions would include application examples of the Markov Chain Monte Carlo (MCMC) simulation technique, estimation techniques of the parameters of the diffusion processes and the determination of the assets variance-covariance matrix, the spectral analysis, real options, volatility derivatives, etc.

We would like to thank Pete Baker from Wiley, our copy-editor Rachael Wilkie and anonymous reviewers for their very constructive comments which help improve this book. We also thank Noël Amenc, Didier Cossin, Rose-Anne Dana, Catherine Hersent, Lionel Martellini,

Thierry Roncalli and Yves Simon for their various contributions and comments during the gestation of this book. We reserve a special thank-you to Yves Langlois and Jean-François Carter for their valuable assistance. We extend our gratitude to André Gascon (Associate Dean Academics), Michel Gendron (Head of the Department of Finance and Insurance), Maurice Gosselin (former Associate Dean Research), Faye Boctor (current Associate Dean Research) and Robert Mantha (Dean), all from the Faculty of Business Administration of Laval University, for their continual support and financial contribution to the production of the book.

Introduction to Probability

Since financial markets are very volatile, in order to model financial variables we need to characterize randomness. Therefore, to study financial phenomena, we have to use probabilities.

Once defined, we will see how to use probabilities to describe the evolution of random parameters that we later call random processes. The key step here is the quantitative construction of the events' probabilities. First, one must define the events and then the probabilities associated to these events. This is the objective of this first chapter.

1.1 INTUITIVE EXPLANATION

1.1.1 Frequencies

Here is an example to illustrate the notion of relative frequency. We toss a dice N times and observe the outcomes. We suppose that the 6 faces are identified by letters A, B, C, D, E and F . We are interested in the probability of obtaining face A . For that purpose, we count the number of times that face A appears and denote it by $n(A)$. This number represents the frequency of appearance of face A .

Intuitively, we see that the division of the number of times that face A appears, $n(A)$, by the total number N of throws, $\frac{n(A)}{N}$, is a fraction that represents the probability of obtaining face A each time that we toss the dice. In the first series of experiments when we toss the dice N times we get $n_1(A)$ and if we repeat this series of experiments another time by tossing it again N times, we obtain $n_2(A)$ of outcomes A .

It is likely that $n_1(A)$ and $n_2(A)$ are different. The fractions $\frac{n_1(A)}{N}$ and $\frac{n_2(A)}{N}$ are then different. Therefore, how can we say that this fraction quantifies the probability of obtaining face A ? To find an answer, we need to continue the experiment. Even if the fractions are different, when the number N of throws becomes very large, we observe that these two fractions converge to the same value of $\frac{1}{6}$.

Intuitively, this fraction measures the probability of obtaining face A , and when N is large, this fraction goes to $\frac{1}{6}$. Thus, each time we toss the dice, it is natural to take $\frac{1}{6}$ as the probability of obtaining face A .

Later, we will see that from the law of large numbers these fractions converge to this limit. This limit, $\frac{1}{6}$, corresponds to the concept of the ratio of the number of favorable cases over the total number of cases.

1.1.2 Number of Favorable Cases Over The Total Number of Cases

When we toss a dice, there is a total of 6 possible outcomes, $\{1, 2, 3, 4, 5, 6\}$, corresponding to the letters on faces $\{A, B, C, D, E, F\}$. If we wish to obtain face A and we have only one such case, then the probability of getting face A is quantified by the fraction $\frac{1}{6}$. However, we may be interested in the event $\{\text{“the observed face is even”}\}$. What does this mean? The even face can be 2, 4 or 6. Each time that one of these three faces appears, we have a realization of the event $\{\text{“the observed face is even”}\}$. This means that when we toss a dice, the total number

of possible cases is always 6 and the number of favorable cases associated to even events is 3. Therefore, the probability of obtaining an even face is simply $\frac{3}{6}$ and intuitively this appears to be correct.

From this consideration, in the following section we construct in an axiomatic way the mechanics of what is happening. However, we must first establish what is an event, and then we must define the probabilities associated with an event.

1.2 AXIOMATIC DEFINITION

Let's define an universe in which we can embed all these intuitive considerations in an axiomatic way.

1.2.1 Random Experiment

A random experiment is an experiment in which we cannot precisely predict the outcome. Each result obtained from this experiment is random *a priori* (before the realization of the experiment). Each of these results is called a simple event. This means that each time that we realize this experiment we can obtain only one simple event. Further we say that all simple events are exclusive.

Example 2.1 Tossing a dice is a random experiment because before the toss, we cannot exactly predict the future result. The face that is shown can be 1, 2, 3, 4, 5 or 6. Each of these results is thus a simple event. All these 6 simple events are mutually exclusive.

We denote by Ω the set of all simple events. The number of elements in Ω can be finite, countably infinite, uncountably infinite, etc. The example with the dice corresponds to the first case (the case of a “finite number of results”, $\Omega = \{1, 2, 3, 4, 5, 6\}$).

Example 2.2 We count the number of phone calls to one center during one hour. The number of calls can be 0, 1, 2, 3, etc. up to infinity. An infinite number of calls is evidently an event that will never occur. However, to consider it in the theoretical development allows us to build useful models in a relatively simple fashion. This phone calls example corresponds to the countably infinite case ($\Omega = \{0, 1, 2, 3, \dots, \infty\}$).

Example 2.3 When we throw a marble on the floor of a room, the position on which the marble will stop is a simple event of the experiment. However, the number of simple events is infinite and uncountable. It corresponds to the set of all points on the floor.

Building a probability theory for the case of finite experiments is relatively easy, the generalization to the countably infinite case is straightforward. However, the uncountably infinite case is different. We will point out these differences and technicalities but we will not dwell on the complex mathematical aspects.

1.2.2 Event

We consider the experiment of a dice toss. We want to study the “even face” event. This event happens when the face shown is even, that is, one of 2, 4, or 6.

Thus, we can say that this event “even face” contains three simple events $\{2, 4, 6\}$. This brings us to the definition:

Definition 2.4 *Let Ω be the set of simple events of a given random experiment. Ω is called the sample space or the universe. An event is simply a sub-set of Ω .*

Is any subset of Ω an event? This question will be answered below. We must not forget that an event occurs if the realized simple event belongs to this event.

1.2.3 Algebra of Events

We saw that an event is a subset of Ω . We would like to construct events from Ω . Let Ω be the universe and let ξ be the set of events we are interested in. We consider the set of all events. ξ is an algebra of events if the following axioms are satisfied:

- A1:** $\Omega \in \xi$,
- A2:** $\forall A \in \xi, A^c = \Omega \setminus A \in \xi$ (where $\Omega \setminus A$, called the complementary of A , is the set of all elements of Ω which do not belong to A),
- A3:** $\forall A_1, A_2, \dots, A_n \in \xi, A_1 \cup A_2 \cup \dots \cup A_n \in \xi$.

Axiom A1 says that the universe is an event. This event is certain since it happens each time that we undertake the experiment. Axiom A1 and axiom A2 imply that the empty set, denoted by \emptyset , is also an event but it is impossible since it never happens. Axiom A3 says that the union of a finite number of events is also an event. To be able to build an algebra of events associated with a random experiment encompassing a countable infinity of simple events, axiom A3 will be replaced by:

- A3':** $\cup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup \dots \cup A_n \cup \dots \in \xi$.

This algebra of events plays a very important role in the construction of the probability of events. The probabilities that we derive should follow the intuition developed previously.

1.2.4 Probability Axioms

Let Ω be the universe associated with a given random experiment on which we build the algebra of events ξ . We associate to each event $A \in \xi$ a probability noted $\text{Prob}(A)$, representing the probability of event A occurring when we realize the experiment. From our intuitive setup, this probability must satisfy the following axioms:

- P1:** $\text{Prob}(\Omega) = 1$,
- P2:** $\forall A \in \xi, 0 \leq \text{Prob}(A) \leq 1$,
- P3:** if $A_1, A_2, \dots, A_n, \dots$ is a series of mutually exclusive events, that is: $\forall i \neq j, A_i \cap A_j = \emptyset$, then

$$\text{Prob}(\cup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \text{Prob}(A_n). \quad (1.1)$$

Axiom P3 is called σ —additivity of probabilities. This axiom allows us to consider random experiments with an infinity of possible outcomes. From these axioms, we can see that

$$\text{Prob}(\emptyset) = 0 \quad \text{and} \quad \text{Prob}(A^c) = 1 - \text{Prob}(A) \quad (1.2)$$

which are intuitively true.

A very important property easy to derive is presented below.

Property 2.5 Consider two events A and B , then

$$\text{Prob}(A \cup B) = \text{Prob}(A) + \text{Prob}(B) - \text{Prob}(A \cap B). \quad (1.3)$$

The mathematical proof is immediate.

Proof: Let $A \setminus C$ be the event built from elements of A that do not belong to C .

$$A = (A \setminus C) \cup C \quad \text{where} \quad C = A \cap B. \quad (1.4)$$

Since $A \setminus C$ and C are disjoint, from axiom P3,

$$\text{Prob}(A) = \text{Prob}(A \setminus C) + \text{Prob}(C). \quad (1.5)$$

Similarly

$$\text{Prob}(B) = \text{Prob}(B \setminus C) + \text{Prob}(C). \quad (1.6)$$

Adding these two equations yields:

$$\text{Prob}(A \setminus C) + \text{Prob}(B \setminus C) + \text{Prob}(C) = \text{Prob}(A) + \text{Prob}(B) - \text{Prob}(C). \quad (1.7)$$

Moreover,

$$A \cup B = (A \setminus C) \cup (B \setminus C) \cup C, \quad (1.8)$$

and since $A \setminus C$, $B \setminus C$ and C are disjoint, we have

$$\text{Prob}(A \cup B) = \text{Prob}(A \setminus C) + \text{Prob}(B \setminus C) + \text{Prob}(C), \quad (1.9)$$

thus,

$$\text{Prob}(A \cup B) = \text{Prob}(A) + \text{Prob}(B) - \text{Prob}(C). \quad (1.10)$$

Example 2.6 Let's go back to the dice toss experiment with

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

and consider the events:

(a) $A = \{\text{“face smaller than 5”}\} = \{1, 2, 3, 4\}$.

Since events $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$ are mutually exclusive, we know from axiom P3 that:

$$\text{Prob}(A) = \text{Prob}(\{1\}) + \text{Prob}(\{2\}) + \text{Prob}(\{3\}) + \text{Prob}(\{4\}) = \frac{4}{6}.$$

(b) $B = \{\text{"even faces"}\} = \{2, 4, 6\}$.

Thus, $A \cup B = \{1, 2, 3, 4, 6\}$ and $A \cap B = \{2, 4\}$. We also have, $\text{Prob}(A) = \frac{4}{6}$, $\text{Prob}(B) = \frac{3}{6}$, $\text{Prob}(A \cap B) = \text{Prob}(\{2, 4\}) = \frac{2}{6}$, which implies

$$\text{Prob}(A \cup B) = \text{Prob}(A) + \text{Prob}(B) - \text{Prob}(A \cap B) = \frac{4}{6} + \frac{3}{6} - \frac{2}{6} = \frac{5}{6}.$$

Next, we discuss events that may be considered as independent. To present this, we must first discuss the concept of conditional probability, i.e., the probability of an event occurring given that another event already happened.

1.2.5 Conditional Probabilities

Let A and B be any two events belonging to the same algebra of events. We suppose that B has occurred. We are interested in the probability of getting event A . To define it, we must look back to the construction of the algebras of events.

Within the universe Ω in which A and B are two well-defined events, if B has already happened, the elementary event associated with the result of this random experiment must be an element belonging to event B . This means that given B has already happened, the result of the experiment is an element of event B .

Intuitively, the probability of A occurring is simply the probability that this result is also an event of B . If B has already happened, the probability of getting A knowing B is the probability of $A \cap B$ divided by the probability of B . Therefore, we obtain

$$\text{Prob}(A|B) = \frac{\text{Prob}(A \cap B)}{\text{Prob}(B)}. \quad (1.11)$$

This definition of the conditional probability is called Bayes' rule.

This probability satisfies the set of axioms for probabilities introduced at the beginning of the section:

$$\text{Prob}(\Omega|B) = 1, \quad (1.12)$$

$$0 \leq \text{Prob}(A|B) \leq 1, \quad (1.13)$$

$$\text{Prob}(A^c|B) = 1 - \text{Prob}(A|B), \quad (1.14)$$

and

$$\text{Prob}(\bigcup_{n=1}^{\infty} A_n|B) = \sum_{n=1}^{\infty} \text{Prob}(A_n|B), \quad \forall i \neq j, \quad A_i \cap A_j = \emptyset. \quad (1.15)$$

This definition is illustrated next by way of examples.

Example 2.7 Consider the dice toss experiment with event

$$A = \{\text{"face smaller than 5"}\} = \{1, 2, 3, 4\}$$

and event

$$B = \{\text{"even face"}\} = \{2, 4, 6\}.$$

We know that

$$\text{Prob}(B) = \text{Prob}(\{2, 4, 6\}) = \frac{3}{6}$$

and

$$\text{Prob}(A) = \text{Prob}(\{1, 2, 3, 4\}) = \frac{4}{6}.$$

However, we want to know what is the probability of obtaining an even face knowing that the face is smaller than 5 (in other words, A has already happened). From Bayes' rule:

$$\begin{aligned} \text{Prob}(B|A) &= \frac{\text{Prob}(A \cap B)}{\text{Prob}(A)} \\ &= \frac{\text{Prob}(\{2, 4\})}{\text{Prob}(\{1, 2, 3, 4\})} \\ &= \frac{2/6}{4/6} \\ &= \frac{1}{2}. \end{aligned}$$

Example 2.8 From a population of N persons, we observe n_s smokers and n_c people with cancer. From these n_s smokers we observe $n_{s,c}$ individuals suffering from cancer. For this population, we can say that the probability that a person is a smoker is $\frac{n_s}{N}$ and the probability that a person has cancer is $\frac{n_c}{N}$. The probability that a person has cancer given that he is already a smoker is:

$$\text{Prob}(\text{cancer}|\text{smoker}) = \frac{\text{Prob}(\text{smoker and cancer})}{\text{Prob}(\text{smoker})} = \frac{n_{s,c}}{n_s}.$$

From this experiment, we note that the conditional probability can be smaller or greater than the probability considered *a priori*. Following this definition of the conditional probability, we examine next the independence of two events.

1.2.6 Independent Events

Two events are said to be statistically independent when the occurrence of one of them doesn't affect the probability of getting the other. A and B are said to be statistically independent if

$$\text{Prob}(A|B) = \text{Prob}(A). \quad (1.16)$$

From Bayes' rule, if A and B are two independent events then

$$\text{Prob}(A \cap B) = \text{Prob}(A)\text{Prob}(B). \quad (1.17)$$

Example 2.9 Consider the experiment of tossing a dice twice. Intuitively, we hope that the result of the first toss would be independent of the second one. From our preceding exposition, we can establish this independence as follows. Indeed, the universe of this experiment contains 36 simple events denoted by $(R1, R2)$ where $R1$ and $R2$ are respectively the results of the first and second tosses, with $(R1, R2)$ taking values (n, m) in

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}.$$

The probability the first element $R1$ equals n is

$$\text{Prob}(R1 = n) = \frac{1}{6}, \quad \forall n \in \{1, 2, 3, 4, 5, 6\}$$

and the probability the second element $R2$ equals m is

$$\text{Prob}(R2 = m) = \frac{1}{6}, \quad \forall m \in \{1, 2, 3, 4, 5, 6\}.$$

Since $\text{Prob}(R1 = n, R2 = m) = \frac{1}{36}$, then the conditional probability

$$\begin{aligned} \text{Prob}(R2 = m|R1 = n) &= \frac{\text{Prob}(R1 = n, R2 = m)}{\text{Prob}(R1 = n)} \\ &= \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}, \end{aligned}$$

which gives us $\text{Prob}(R2 = m|R1 = n) = \text{Prob}(R2 = m) = \frac{1}{6}$. Hence, we conclude that $R2$ and $R1$ are independent.

Notes and Complementary Readings

The concepts presented in this chapter are fundamentals of the theory of probabilities. The reader could refer to the books written by Ross (2002 a and b) for example.

This page intentionally left blank

Introduction to Random Variables

In the previous chapter, we introduced some concepts of events and defined probabilities on sets of events. In this chapter, we will focus on the representation of realized events on the real axis and probability space in order to provide a quantification to be used in financial problems.

A random variable is a function mapping the sample space Ω to the real axis. Afterwards, a complete characterization of such random variables will be given by introducing the probability density function, the cumulative distribution function and the characteristic function. We will show examples of the most frequently-encountered random variables in finance. The characteristic function will be presented in order to give the reader a better understanding of random variables. We will not use it extensively later in the book, but it is useful to be familiar with it to enable us to follow some proofs.

We will also introduce the concept of transformation of random variables. This concept is the basis of random variables simulation under known distributions and will be used in subsequent chapters.

2.1 RANDOM VARIABLES

We have defined random events and the probabilities associated with these events. In finance, as in the sciences, random events are always associated with quantities such as indices, costs and interest rates which vary in a random way. This means that we could link these experiments' random effects to the real axis. In other words, we associate a real number with the result given by the experiment.

Before realizing the experiment, this number is not known – it behaves as a random result from a random experiment. This approach means that we are looking to create a random experiment on the real axis the results of which are what we will call a random variable.

Mathematically, the random experiment on the real axis is created by using a function (denoted by X) from the universe of events Ω on the real axis. The random results observed on the axis under this function are used as the basis to define the random events on the real axis. This representation on the real axis obeys the same rules or is subject to the same constraints as the original events.

This function, or transformation X , must satisfy the following condition: let x be any real value, the set of all elementary events ω such that $\{X(\omega) \leq x\}$ is an event associated with the original random experiment

$$A = \{\omega \text{ such that } X(\omega) \leq x\}. \quad (2.1)$$

In mathematical terms, this function is said to be measurable.

Now, using this random variable, we only need to look at the universe of events as the real axis and the events as a subset of the real line. The most simple events are open or closed intervals and open or closed half axes. The constructed algebra of events based on these

natural events is known as the Borel Algebra of the real axis. One simple way to describe the Borel Algebra of the real axis is to construct events by combining the simple open and closed intervals and open and closed half axis of the real axis. Since Borel Algebra is not really necessary to follow the text, we will not dwell on it further.

2.1.1 Cumulative Distribution Function

Let X be a real-valued random variable, by definition its cumulative distribution function, noted $F_X(x)$, is:

$$F_X(x) = \text{Prob}(A) \quad \text{where} \quad A = \{\omega \text{ such that } X(\omega) \leq x\}. \quad (2.2)$$

Based on the previous definition of probability, we deduce the following properties:

- (a) $0 \leq F_X(x) \leq 1$,
- (b) $F_X(x)$ is monotone, non decreasing, i.e., if $x_1 < x_2$ then we have $F_X(x_1) \leq F_X(x_2)$,
- (c) $F_X(-\infty) = 0$ and $F_X(+\infty) = 1$.

Properties (a), (b) and (c) follow from the probability axioms. When $F_X(x)$ is continuous, X is said to be a continuous random variable. When it is the case, it can take any value on the real axis as the result of the experiment. However, when $F_X(x)$ is a step function, X is said to be a discrete random variable. X may be a combination of continuous and discrete segments.

2.1.2 Probability Density Function

To keep it simple, consider X to be a continuous random variable. By analogy with the physical world, we can define its probability density function such that the integral of such a function on the event defined on the real axis gives the probability of this event.

This density function can be obtained from the cumulative distribution function when looking at an infinitely small event. To see that, consider the event

$$A = \{x < X \leq x + \Delta x\}. \quad (2.3)$$

On the one hand, the cumulative function gives

$$\text{Prob}(A) = F_X(x + \Delta x) - F_X(x), \quad (2.4)$$

and on the other hand we have

$$\text{Prob}(A) = \int_x^{x+\Delta x} f_X(\alpha) d\alpha, \quad (2.5)$$

where f_X is the probability density function of the random variable X .

On the infinitesimal interval $[x, x + \Delta x]$, since $f_X(\cdot)$ is continuous, it remains constant so that we have:

$$f_X(x)\Delta x \approx \text{Prob}(A) = F_X(x + \Delta x) - F_X(x), \quad (2.6)$$

where

$$f_X(x) \approx \frac{F_X(x + \Delta x) - F_X(x)}{\Delta x}. \quad (2.7)$$

When Δx becomes infinitesimal, we see that the probability density function is the derivative of the cumulative distribution function:

$$f_X(x) = \frac{dF_X(x)}{dx}. \quad (2.8)$$

Property 1.1 *Function $f_X(x)$ is non negative. Since integrating the density function on an event gives us the probability of the event, if it were negative on a particular interval, integrating on this interval would give us a negative probability. This would violate our probability axioms. This property can be proved easily since the probability density function is the derivative of the cumulative distribution function. This cumulative function being a non decreasing function, its derivative can never be negative.*

Property 1.2

$$F_X(x) = \int_{-\infty}^x f_X(\alpha) d\alpha \leq 1, \quad (2.9)$$

$$F_X(-\infty) = 0 \quad \text{and} \quad F_X(+\infty) = 1, \quad (2.10)$$

which leads to

$$f_X(x) \xrightarrow{|x| \rightarrow \infty} 0 \quad (2.11)$$

and

$$\int_{-\infty}^{+\infty} f_X(\alpha) d\alpha = 1. \quad (2.12)$$

For a discrete random variable X , since X takes values in a finite (or countably-infinite) set, we prefer to use the term probability mass function. The probability mass is the probability that X takes a precise value in this finite or countably-infinite set:

$$\text{Prob}(X = k). \quad (2.13)$$

We present below examples of widely used random variables.

Example 1.3 We toss a dice and the random variable is defined by the face which is shown on the dice. We define the random variable X taking the values 1, 2, 3, 4, 5, and 6. We have

$$\text{Prob}(X = k) = \frac{1}{6}, \quad \forall k \in \{1, 2, 3, 4, 5, 6\}. \quad (2.14)$$

Example 1.4 We discussed above the number of calls received at a telephone exchange. Let X be this random variable. Then X can be $0, 1, 2, \dots, \infty$. This phenomenon follows a distribution known as the Poisson distribution and its probability density function is defined by

$$\text{Prob}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad (2.15)$$

with $k = 0, 1, 2, \dots, \infty$, where λ is a positive constant depicting the average number of calls observed.

This distribution is often used in finance in credit risk modeling, especially to describe credit default. In that case X can be the number of defaults in a given period and λ is the average number of defaults.

Example 1.5 The most common probability density functions are

(i) The Gaussian normal distribution having the probability density function

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right), \quad (2.16)$$

where μ and σ are constants, σ being positive. We show in the next section that μ and σ are respectively the mean and standard deviation of the random variable X . This distribution is often used in finance to represent asset returns. It is also a key distribution in statistical inference. Figure 2.1 plots the probability density function for a variable following a normal distribution.

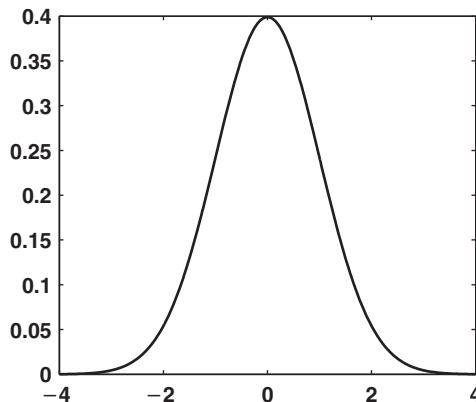


Figure 2.1 Gaussian density function

(ii) The exponential density:

$$f_X(x) = \alpha e^{-\alpha x}, \quad \forall x \in [0, +\infty], \quad (2.17)$$

where α is a positive constant. Figure 2.2 plots the probability density function for a variable following an exponential distribution.