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Issouf Soumaré: To my wife Fatou, my son Moussa, and my daughter
Candia.



This page intentionally left blank



Contents

Preface xiii

1 Introduction to Probability 1
1.1 Intuitive Explanation 1

1.1.1 Frequencies 1
1.1.2 Number of Favorable Cases Over The Total Number of Cases 1

1.2 Axiomatic Definition 2
1.2.1 Random Experiment 2
1.2.2 Event 2
1.2.3 Algebra of Events 3
1.2.4 Probability Axioms 3
1.2.5 Conditional Probabilities 5
1.2.6 Independent Events 6

2 Introduction to Random Variables 9
2.1 Random Variables 9

2.1.1 Cumulative Distribution Function 10
2.1.2 Probability Density Function 10
2.1.3 Mean, Variance and Higher Moments of a Random Variable 14
2.1.4 Characteristic Function of a Random Variable 19

2.2 Random vectors 21
2.2.1 Cumulative Distribution Function of a Random Vector 22
2.2.2 Probability Density Function of a Random Vector 22
2.2.3 Marginal Distribution of a Random Vector 23
2.2.4 Conditional Distribution of a Random Vector 24
2.2.5 Mean, Variance and Higher Moments of a Random Vector 26
2.2.6 Characteristic Function of a Random Vector 29

2.3 Transformation of Random Variables 30
2.4 Transformation of Random Vectors 34
2.5 Approximation of the Standard Normal Cumulative

Distribution Function 36



viii Contents

3 Random Sequences 39
3.1 Sum of Independent Random Variables 39
3.2 Law of Large Numbers 41
3.3 Central Limit Theorem 42
3.4 Convergence of Sequences of Random Variables 44

3.4.1 Sure Convergence 44
3.4.2 Almost Sure Convergence 45
3.4.3 Convergence in Probability 45
3.4.4 Convergence in Quadratic Mean 45

4 Introduction to Computer Simulation of Random Variables 47
4.1 Uniform Random Variable Generator 48
4.2 Generating Discrete Random Variables 48

4.2.1 Finite Discrete Random Variables 48
4.2.2 Infinite Discrete Random Variables: Poisson Distribution 50

4.3 Simulation of Continuous Random Variables 51
4.3.1 Cauchy Distribution 52
4.3.2 Exponential Law 52
4.3.3 Rayleigh Random Variable 53
4.3.4 Gaussian Distribution 53

4.4 Simulation of Random Vectors 56
4.4.1 Case of a Two-Dimensional Random Vector 57
4.4.2 Cholesky Decomposition of the Variance-Covariance Matrix 57
4.4.3 Eigenvalue Decomposition of the Variance-Covariance Matrix 60
4.4.4 Simulation of a Gaussian Random Vector with MATLAB 62

4.5 Acceptance-Rejection Method 62
4.6 Markov Chain Monte Carlo Method (MCMC) 65

4.6.1 Definition of a Markov Process 65
4.6.2 Description of the MCMC Technique 65

5 Foundations of Monte Carlo Simulations 67
5.1 Basic Idea 67
5.2 Introduction to the Concept of Precision 69
5.3 Quality of Monte Carlo Simulations Results 71
5.4 Improvement of the Quality of Monte Carlo Simulations or Variance

Reduction Techniques 75
5.4.1 Quadratic Resampling 75
5.4.2 Reduction of the Number of Simulations Using

Antithetic Variables 77
5.4.3 Reduction of the Number of Simulations Using Control Variates 79
5.4.4 Importance Sampling 80

5.5 Application Cases of Random Variables Simulations 84
5.5.1 Application Case: Generation of Random Variables as a Function

of the Number of Simulations 84
5.5.2 Application Case: Simulations and Improvement of the

Simulations’ Quality 87



Contents ix

6 Fundamentals of Quasi Monte Carlo (QMC) Simulations 91
6.1 Van Der Corput Sequence (Basic Sequence) 92
6.2 Halton Sequence 93
6.3 Faure Sequence 95
6.4 Sobol Sequence 97
6.5 Latin Hypercube Sampling 101
6.6 Comparison of the Different Sequences 102

7 Introduction to Random Processes 109
7.1 Characterization 109

7.1.1 Statistics 109
7.1.2 Stationarity 110
7.1.3 Ergodicity 111

7.2 Notion of Continuity, Differentiability and Integrability 111
7.2.1 Continuity 112
7.2.2 Differentiability 112
7.2.3 Integrability 113

7.3 Examples of Random Processes 113
7.3.1 Gaussian Process 113
7.3.2 Random Walk 114
7.3.3 Wiener Process 116
7.3.4 Brownian Bridge 118
7.3.5 Fourier Transform of a Brownian Bridge 119
7.3.6 Example of a Brownian Bridge 120

8 Solution of Stochastic Differential Equations 123
8.1 Introduction to Stochastic Calculus 124
8.2 Introduction to Stochastic Differential Equations 126

8.2.1 Ito’s Integral 126
8.2.2 Ito’s Lemma 126
8.2.3 Ito’s Lemma in the Multi-Dimensional Case 130
8.2.4 Solutions of Some Stochastic Differential Equations 130

8.3 Introduction to Stochastic Processes with Jumps 132
8.4 Numerical Solutions of some Stochastic Differential Equations (SDE) 133

8.4.1 Ordinary Differential Equations 134
8.4.2 Stochastic Differential Equations 135

8.5 Application Case: Generation of a Stochastic Differential Equation using
the Euler and Milstein Schemes 138
8.5.1 Sensitivity with Respect to the Number of Simulated Series 139
8.5.2 Sensitivity with Respect to the Confidence Interval 141
8.5.3 Sensitivity with Respect to the Number of Simulations 141
8.5.4 Sensitivity with Respect to the Time Step 142

8.6 Application Case: Simulation of a Stochastic Differential Equation with
Control and Antithetic Variables 142
8.6.1 Simple Simulations 143
8.6.2 Simulations with Control Variables 143
8.6.3 Simulations with Antithetic Variables 145



x Contents

8.7 Application Case: Generation of a Stochastic Differential Equation
with Jumps 146

9 General Approach to the Valuation of Contingent Claims 149
9.1 The Cox, Ross and Rubinstein (1979) Binomial Model of Option Pricing 150

9.1.1 Assumptions 150
9.1.2 Price of a Call Option 151
9.1.3 Extension To N Periods 153

9.2 Black and Scholes (1973) and Merton (1973) Option Pricing Model 156
9.2.1 Fundamental Equation for the Valuation of Contingent Claims 156
9.2.2 Exact Analytical Value of European Call and Put Options 158
9.2.3 Hedging Ratios and the Sensitivity Coefficients 160

9.3 Derivation of the Black-Scholes Formula using the Risk-Neutral
Valuation Principle 164
9.3.1 The Girsanov Theorem and the Risk-Neutral Probability 164
9.3.2 Derivation of the Black and Scholes Formula Under The Risk

Neutralized or Equivalent Martingale Principle 165

10 Pricing Options using Monte Carlo Simulations 169
10.1 Plain Vanilla Options: European put and Call 169

10.1.1 Simple Simulations 169
10.1.2 Simulations with Antithetic Variables 171
10.1.3 Simulations with Control Variates 172
10.1.4 Simulations with Stochastic Interest Rate 177
10.1.5 Simulations with Stochastic Interest Rate and Stochastic

Volatility 180
10.2 American options 182

10.2.1 Simulations Using The Least-Squares Method of Longstaff
and Schwartz (2001) 183

10.2.2 Simulations Using The Dynamic Programming Technique
of Barraquand and Martineau (1995) 193

10.3 Asian options 201
10.3.1 Asian Options on Arithmetic Mean 201
10.3.2 Asian Options on Geometric Mean 203

10.4 Barrier options 205
10.5 Estimation Methods for the Sensitivity Coefficients or Greeks 207

10.5.1 Pathwise Derivative Estimates 207
10.5.2 Likelihood Ratio Method 210
10.5.3 Retrieval of Volatility Method 213

11 Term Structure of Interest Rates and Interest Rate Derivatives 221
11.1 General Approach and the Vasicek (1977) Model 221

11.1.1 General Formulation 221
11.1.2 Risk Neutral Approach 224
11.1.3 Particular Case: One Factor Vasicek Model 224

11.2 The General Equilibrium Approach: The Cox, Ingersoll and Ross
(CIR, 1985) model 227



Contents xi

11.3 The Affine Model of the Term Structure 229
11.4 Market Models 230

11.4.1 The Heath, Jarrow and Morton (HJM, 1992) Model 230
11.4.2 The Brace, Gatarek and Musiela (BGM, 1997) Model 237

12 Credit Risk and the Valuation of Corporate Securities 247
12.1 Valuation of Corporate Risky Debts: The Merton (1974) Model 247

12.1.1 The Black and Scholes (1973) Model Revisited 248
12.1.2 Application of the Model to the Valuation of a Risky Debt 249
12.1.3 Analysis of the Debt Risk 253
12.1.4 Relation Between The Firm’s Asset Volatility and its

Equity Volatility 256
12.2 Insuring Debt Against Default Risk 258

12.2.1 Isomorphism Between a Put Option and a Financial Guarantee 258
12.2.2 Insuring The Default Risk of a Risky Debt 260
12.2.3 Establishing a Lower Bound for the Price of the

Insurance Strategy 262
12.3 Valuation of a Risky Debt: The Reduced-Form Approach 262

12.3.1 The Discrete Case with a Zero-Coupon Bond 262
12.3.2 General Case in Continuous Time 263

13 Valuation of Portfolios of Financial Guarantees 265
13.1 Valuation of a Portfolio of Loan Guarantees 265

13.1.1 Firms’ and Guarantor’s Dynamics 266
13.1.2 Value of Loss Per Unit of Debt 267
13.1.3 Value of Guarantee Per Unit of Debt 269

13.2 Valuation of Credit Insurance Portfolios using Monte Carlo Simulations 271
13.2.1 Stochastic Processes 272
13.2.2 Expected Shortfall and Credit Insurance Valuation 273
13.2.3 MATLAB Program 275

14 Risk Management and Value at Risk (VaR) 283
14.1 Types of Financial Risks 284

14.1.1 Market Risk 284
14.1.2 Liquidity Risk 284
14.1.3 Credit Risk 284
14.1.4 Operational Risk 284

14.2 Definition of the Value at Risk (VaR) 284
14.3 The Regulatory Environment of Basle 285

14.3.1 Stress Testing 286
14.3.2 Back Testing 286

14.4 Approaches to compute VaR 286
14.4.1 Non-Parametric Approach: Historical Simulations 287
14.4.2 Parametric Approaches 287

14.5 Computing VaR by Monte Carlo Simulations 288
14.5.1 Description of the Procedure 288
14.5.2 Application: VaR of a Simple Bank Account 288



xii Contents

14.5.3 Application: VaR of a Portfolio Composed of One Domestic
Stock and One Foreign Stock 292

15 Value at Risk (VaR) and Principal Components Analysis (PCA) 297
15.1 Introduction to the Principal Components Analysis 297

15.1.1 Graphical Illustration 297
15.1.2 Analytical Illustration 298
15.1.3 Illustrative Example of the PCA 301

15.2 Computing the VaR of a Bond Portfolio 303
15.2.1 Sample Description and Methodology 303
15.2.2 Principal Components Analysis (PCA) 305
15.2.3 Linear Interpolation or Bootstrapping for the Intermediate

Spot Rates 307
15.2.4 Computing VaR by MC and QMC Simulations 308

Appendix A: Review of Mathematics 315
A.1 Matrices 315

A.1.1 Elementary Operations on Matrices 316
A.1.2 Vectors 317
A.1.3 Properties 317
A.1.4 Determinants of Matrices 318

A.2 Solution of a System of Linear Equations 320
A.3 Matrix Decomposition 322
A.4 Polynomial and Linear Approximation 322
A.5 Eigenvectors and Eigenvalues of a Matrix 323

Appendix B: MATLAB R© Functions 325

References and Bibliography 327

Index 333



Preface

Since the seminal works of Black-Scholes-Merton in 1973, the world of finance has been
revolutionized by the emergence of a new field known as financial engineering. On the one
hand, markets (foreign exchange, interest rate, commodities, etc.) have become more volatile,
which creates an increase in the demand for derivatives products (options, forwards, futures,
swaps, hybrids and exotics, and credit derivatives to name a few) used to measure, control,
and manage risks, as well as to speculate and take advantage of arbitrage opportunities.

On the other hand, technological advances have enabled financial institutions and other mar-
kets players to create, price and launch new products and services to not only hedge against
risks, but also to generate revenues from these risks. In addition to a deep grasp of advanced
financial theories, the design, analysis and development of these complex products and finan-
cial services, or financial engineering, necessitate a mastering of sophisticated mathematics,
statistics and numerical computations.

By way of an integrated approach, the object of this book is to teach the reader:

� to apply stochastic calculus and simulation techniques to solve financial problems;
� to develop and/or adapt the existing contingent claims models to support financial engineer-

ing platforms and applications.

There are several books in the market covering stochastic calculus and Monte Carlo simulations
in finance. These books can be roughly grouped into two categories: introductory or advanced.
Unfortunately, the books at the introductory level do not answer the needs of upper-level
undergraduate and graduate students and finance professionals and practitioners. Advanced
books, being very sophisticated and specialized, are tailored for researchers and users with
solid and esoteric scientific backgrounds in mathematics and statistics. Furthermore, these
books are often biased towards the research interests of the authors, hence their scope is
narrowed and their applications in finance limited. By and large, the existing books are less
suitable for day-to-day use which is why there is a need for a book that can be used equally by
beginners and established researchers wishing to acquire an adequate knowledge of stochastic
processes and simulation techniques and to learn how to formulate and solve problems in
finance.

This book, which has developed from the master programme in financial engineering at
Laval University in Canada first offered in 1999, aims to reinforce several aspects of simulation
techniques and their applications in finance. Building on an integrated approach, the book
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provides a pedagogical treatment of the material for senior undergrad and graduate students as
well as professionals working in risk management and financial engineering. While initiating
students into basic concepts, it covers current up-to-date problems. It is written in a clear,
concise and rigorous pedagogical language, which widens accessibility to a larger audience
without sacrificing mathematical rigor. By way of a gradual learning of existing theories and
new developments, our goal is also to provide an approach to help the reader follow the relevant
literature which continually expands at a rapid pace.

This book is intended for students in business, economics, actuarial sciences, computer
sciences, general sciences, and engineering, programmers and practitioners in financial, in-
vestment/asset and risk management industries. The prerequisites for the book are some
familiarity in linear algebra, differential calculus and programming.

The book introduces and trains users in the formulation and resolution of financial problems.
As exercises, it provides computer programs for use with the practical examples, exercises and
case studies, which give the reader specific recipes for solving problems involving stochastic
processes in finance. The programming language is the MATLAB R©1 software which is easy
to learn and popular among professionals and practitioners. Moreover, the programs could be
readily converted for use with the platform C++. Note that, unlike the MATLAB financial
toolboxes which are still limited in scope, our proposed exercises and case studies tackle the
complex problems encountered routinely in finance.

Overall, the general philosophy of the book can be summarized as follows:

� keep mathematical rigor by minimizing abstracts and unnecessary jargon;
� each concept, either in finance or in computation, leads to algorithms and is illustrated by

concrete examples in finance.

Therefore, after they are discussed, the topics are presented in algorithmic forms. Furthermore,
some of the examples which treat current financial problems are expounded in case studies,
enabling students to better comprehend the underlying financial theory and related quantitative
methods.

Every effort has been made to structure the chapters in a logical and coherent manner, with
a clear thread and linkage between the chapters which is not apparent in most existing books.
Each chapter has been written with regard to the following four principles: pedagogy, rigor,
relevance and application. Advanced readers can skip the chapters they are familiar with and
go straight to those of interest.

The book starts with a refresher of basic probability and statistics which underpin random
processes and computer simulation techniques introduced later. Most of the developed tools
are used later to study computational problems of derivative products and risk management.
The text is divided into the following four major parts. The first part (Chapters 1 to 3) reviews
basic probability and statistics principles. The second part (Chapters 4 to 6) introduces the
Monte Carlo and Quasi Monte Carlo simulations topics and techniques. In addition to the
other commonly used variance reduction techniques, we introduce the quadratic resampling
technique of Barraquand (1995) to obtain the prescribed distribution characteristics of the
simulated samples, which is important to improve the quality of the simulations. We also
present the Markov Chain Monte Carlo (MCMC) and important sampling methods. The third
part (Chapters 7 and 8) treats random processes, stochastic calculus, Brownian bridges, jump

1 MATLAB is a registered trademark of The MathWorks, Inc. For more information, see htt://www.mathworks.com.
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processes and stochastic differential equations. Finally, the fourth part (Chapters 9 to 15)
develops the applications in finance.

To price contingent claims, two equivalent approaches are used in finance: the state variables
approach consisting of solving partial differential equations and the probabilistic or equiv-
alent martingale approach. The equivalence between the two approaches is established via the
Feynman-Kac theorem. Our purpose is to teach how to solve numerically stochastic differen-
tial equations using Monte Carlo simulations, which essentially constitutes the pedagogical
contribution of our book.

The fourth part of the book presents different applications of stochastic processes and simu-
lation techniques to solve problems frequently encountered in finance. This part is structured
as follows. Chapter 9 lays the foundation to price and replicate contingent claims. Chapter
10 prices European, American and other complex and exotic options using Monte Carlo
simulations. Chapter 11 presents modern continuous-time models of the term structure of
interest rates and the pricing of interest rate derivatives. Chapters 12 and 13 develop valuation
models of corporate securities and credit risk. Chapters 14 and 15 overview risk management
and develop estimations of Value at Risk (VaR) by combining Monte Carlo and Quasi Monte
Carlo simulations with Principal Components Analysis.

Although this is an introductory and pedagogical book, nonetheless, in Chapter 10 we
explain many useful and modern simulation techniques such as the Least-Squares Method
(LSM) of Longstaff and Schwartz (2001) and the dynamic programming with Stratified State
Aggregation of Barraquand and Martineau (1995) to price American options, the extreme
value simulation technique proposed by El Babsiri and Noel (1998) to price exotic options
and the Retrieval of Volatility Method proposed by Cvitanic, Goukassian and Zapatero (2002)
to estimate the option sensitivity coefficients or hedge ratios (the Greeks). Note that, to our
knowledge, with the exception of LSM, this is the first book to bring to the fore these important
techniques. In Chapter 11 on term structure of interest rates modeling and pricing of interest
rate derivatives, we present the interest rate model of Heath, Jarrow and Morton (1992) and the
industry-standard Market Model of Brace, Gatarek and Musiela (2001). An extensive treatment
of corporate securities valuation and credit risk based on the structural approach of Merton
(1974) is presented in chapter 12. Chapter 13 gives case studies on financial guarantees to
show how the simulations techniques can be implemented, and this chapter is inspired from the
research publications of the authors. As such, Chapters 12 and 13 provide indispensable funda-
mentals for a reader to embark on the study of structured products design and credit derivatives.

To perform a sound simulation experiment, one has to undertake roughly the following
three steps: (1) modeling of the problem to be studied, (2) calibration/estimation of the model
parameters, and (3) backtesting using real data and recalibration. This book focuses on the use
of Monte Carlo and Quasi Monte Carlo simulations in finance for the sake of pricing and risk
management assuming the dynamics of the underlying variables are known.

We do not pretend that the book provides complete coverage of all topics and issues; future
editions would include application examples of the Markov Chain Monte Carlo (MCMC)
simulation technique, estimation techniques of the parameters of the diffusion processes and
the determination of the assets variance-covariance matrix, the spectral analysis, real options,
volatility derivatives, etc.

We would like to thank Pete Baker from Wiley, our copy-editor Rachael Wilkie and anony-
mous reviewers for their very constructive comments which help improve this book. We also
thank Noël Amenc, Didier Cossin, Rose-Anne Dana, Catherine Hersent, Lionel Martellini,
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Thierry Roncalli and Yves Simon for their various contributions and comments during the
gestation of this book. We reserve a special thank-you to Yves Langlois and Jean-François
Carter for their valuable assistance. We extend our gratitude to André Gascon (Associate Dean
Academics), Michel Gendron (Head of the Department of Finance and Insurance), Maurice
Gosselin (former Associate Dean Research), Fayez Boctor (current Associate Dean Research)
and Robert Mantha (Dean), all from the Faculty of Business Administration of Laval Univer-
sity, for their continual support and financial contribution to the production of the book.
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Introduction to Probability

Since financial markets are very volatile, in order to model financial variables we need to char-
acterize randomness. Therefore, to study financial phenomena, we have to use probabilities.

Once defined, we will see how to use probabilities to describe the evolution of random
parameters that we later call random processes. The key step here is the quantitative construc-
tion of the events’ probabilities. First, one must define the events and then the probabilities
associated to these events. This is the objective of this first chapter.

1.1 INTUITIVE EXPLANATION

1.1.1 Frequencies

Here is an example to illustrate the notion of relative frequency. We toss a dice N times and
observe the outcomes. We suppose that the 6 faces are identified by letters A, B, C, D, E and F.
We are interested in the probability of obtaining face A. For that purpose, we count the number
of times that face A appears and denote it by n(A). This number represents the frequency of
appearance of face A.

Intuitively, we see that the division of the number of times that face A appears, n(A), by the
total number N of throws, n(A)

N , is a fraction that represents the probability of obtaining face
A each time that we toss the dice. In the first series of experiments when we toss the dice N
times we get n1(A) and if we repeat this series of experiments another time by tossing it again
N times, we obtain n2(A) of outcomes A.

It is likely that n1(A) and n2(A) are different. The fractions n1(A)
N and n2(A)

N are then different.
Therefore, how can we say that this fraction quantifies the probability of obtaining face A? To
find an answer, we need to continue the experiment. Even if the fractions are different, when
the number N of throws becomes very large, we observe that these two fractions converge to
the same value of 1

6 .
Intuitively, this fraction measures the probability of obtaining face A, and when N is large,

this fraction goes to 1
6 . Thus, each time we toss the dice, it is natural to take 1

6 as the probability
of obtaining face A.

Later, we will see that from the law of large numbers these fractions converge to this limit.
This limit, 1

6 , corresponds to the concept of the ratio of the number of favorable cases over the
total number of cases.

1.1.2 Number of Favorable Cases Over The Total Number of Cases

When we toss a dice, there is a total of 6 possible outcomes, {1, 2, 3, 4, 5, 6}, corresponding
to the letters on faces {A, B, C, D, E, F}. If we wish to obtain face A and we have only one
such case, then the probability of getting face A is quantified by the fraction 1

6 . However, we
may be interested in the event {“the observed face is even”}. What does this mean? The even
face can be 2, 4 or 6. Each time that one of these three faces appears, we have a realization of
the event {“the observed face is even”}. This means that when we toss a dice, the total number
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of possible cases is always 6 and the number of favorable cases associated to even events is 3.
Therefore, the probability of obtaining an even face is simply 3

6 and intuitively this appears to
be correct.

From this consideration, in the following section we construct in an axiomatic way the
mechanics of what is happening. However, we must first establish what is an event, and then
we must define the probabilities associated with an event.

1.2 AXIOMATIC DEFINITION

Let’s define an universe in which we can embed all these intuitive considerations in an
axiomatic way.

1.2.1 Random Experiment

A random experiment is an experiment in which we cannot precisely predict the outcome.
Each result obtained from this experiment is random a priori (before the realization of the
experiment). Each of these results is called a simple event. This means that each time that we
realize this experiment we can obtain only one simple event. Further we say that all simple
events are exclusive.

Example 2.1 Tossing a dice is a random experiment because before the toss, we cannot
exactly predict the future result. The face that is shown can be 1, 2, 3, 4, 5 or 6. Each of
these results is thus a simple event. All these 6 simple events are mutually exclusive.

We denote by Ω the set of all simple events. The number of elements in Ω can be finite,
countably infinite, uncountably infinite, etc. The example with the dice corresponds to the first
case (the case of a “finite number of results”, Ω = {1, 2, 3, 4, 5, 6}).

Example 2.2 We count the number of phone calls to one center during one hour. The
number of calls can be 0, 1, 2, 3, etc. up to infinity. An infinite number of calls is evidently
an event that will never occur. However, to consider it in the theoretical development
allows us to build useful models in a relatively simple fashion. This phone calls example
corresponds to the countably infinite case (Ω = { 0, 1, 2, 3, . . ., ∞}).

Example 2.3 When we throw a marble on the floor of a room, the position on which the
marble will stop is a simple event of the experiment. However, the number of simple events
is infinite and uncountable. It corresponds to the set of all points on the floor.

Building a probability theory for the case of finite experiments is relatively easy, the gener-
alization to the countably infinite case is straightforward. However, the uncountably infinite
case is different. We will point out these differences and technicalities but we will not dwell
on the complex mathematical aspects.

1.2.2 Event

We consider the experiment of a dice toss. We want to study the “even face” event. This event
happens when the face shown is even, that is, one of 2, 4, or 6.
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Thus, we can say that this event “even face” contains three simple events {2, 4, 6}. This
brings us to the definition:

Definition 2.4 Let Ω be the set of simple events of a given random experiment. Ω is called
the sample space or the universe. An event is simply a sub-set of Ω.

Is any subset of Ω an event? This question will be answered below. We must not forget that
an event occurs if the realized simple event belongs to this event.

1.2.3 Algebra of Events

We saw that an event is a subset of Ω. We would like to construct events from Ω. Let Ω be the
universe and let ξ be the set of events we are interested in. We consider the set of all events. ξ

is an algebra of events if the following axioms are satisfied:

A1: Ω ∈ ξ ,
A2: ∀A ∈ ξ , Ac = Ω\A ∈ ξ (where Ω\A, called the complementary of A, is the set of all

elements of Ω which do not belong to A),
A3: ∀A1, A2, . . ., An ∈ ξ , A1 ∪ A2 ∪ . . . ∪ An ∈ ξ .

Axiom A1 says that the universe is an event. This event is certain since it happens each time
that we undertake the experiment. Axiom A1 and axiom A2 imply that the empty set, denoted
by ∅, is also an event but it is impossible since it never happens. Axiom A3 says that the union
of a finite number of events is also an event. To be able to build an algebra of events associated
with a random experiment encompassing a countable infinity of simple events, axiom A3 will
be replaced by:

A3’: ∪∞
n=1 An = A1 ∪ A2 ∪ . . . ∪ An ∪ . . . ∈ ξ .

This algebra of events plays a very important role in the construction of the probability of
events. The probabilities that we derive should follow the intuition developed previously.

1.2.4 Probability Axioms

Let Ω be the universe associated with a given random experiment on which we build the
algebra of events ξ . We associate to each event A ∈ ξ a probability noted Prob(A), representing
the probability of event A occurring when we realize the experiment. From our intuitive setup,
this probability must satisfy the following axioms:

P1: Prob(Ω) = 1,
P2: ∀A ∈ ξ , 0 ≤ Prob(A) ≤ 1,
P3: if A1, A2, . . ., An, . . . is a series of mutually exclusive events, that is: ∀i 
= j, Ai∩Aj = ∅,

then

Prob(∪∞
n=1 An) =

∞∑
n=1

Prob(An). (1.1)
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Axiom P3 is called σ−additivity of probabilities. This axiom allows us to consider random
experiments with an infinity of possible outcomes. From these axioms, we can see that

Prob(∅) = 0 and Prob(Ac) = 1 − Prob(A) (1.2)

which are intuitively true.
A very important property easy to derive is presented below.

Property 2.5 Consider two events A and B, then

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(A ∩ B). (1.3)

The mathematical proof is immediate.

Proof: Let A \ C be the event built from elements of A that do not belong to C.

A = (A \ C) ∪ C where C = A ∩ B. (1.4)

Since A \ C and C are disjoint, from axiom P3,

Prob(A) = Prob(A \ C) + Prob(C). (1.5)

Similarly

Prob(B) = Prob(B \ C) + Prob(C). (1.6)

Adding these two equations yields:

Prob(A \ C) + Prob(B \ C) + Prob(C) = Prob(A) + Prob(B) − Prob(C). (1.7)

Moreover,

A ∪ B = (A \ C) ∪ (B \ C) ∪ C, (1.8)

and since A \ C, B \ C and C are disjoint, we have

Prob(A ∪ B) = Prob(A \ C) + Prob(B \ C) + Prob(C), (1.9)

thus,

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(C). (1.10)

Example 2.6 Let’s go back to the dice toss experiment with

� = {1, 2, 3, 4, 5, 6}
and consider the events:

(a) A = {“face smaller than 5”} = {1, 2, 3, 4}.
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Since events {1}, {2}, {3}, and {4} are mutually exclusive, we know from axiom
P3 that:

Prob(A) = Prob({1}) + Prob({2}) + Prob({3}) + Prob({4}) = 4

6
.

(b) B = {“even faces”} = {2, 4, 6}.

Thus, A ∪ B = {1, 2, 3, 4, 6} and A ∩ B = {2, 4}. We also have, Prob(A) = 4
6 ,

Prob(B) = 3
6 , Prob(A ∩ B) = Prob({2, 4}) = 2

6 , which implies

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(A ∩ B) = 4

6
+ 3

6
− 2

6
= 5

6
.

Next, we discuss events that may be considered as independent. To present this, we must
first discuss the concept of conditional probability, i.e., the probability of an event occurring
given that another event already happened.

1.2.5 Conditional Probabilities

Let A and B be any two events belonging to the same algebra of events. We suppose that B has
occurred. We are interested in the probability of getting event A. To define it, we must look
back to the construction of the algebras of events.

Within the universe Ω in which A and B are two well-defined events, if B has already
happened, the elementary event associated with the result of this random experiment must be
an element belonging to event B. This means that given B has already happened, the result of
the experiment is an element of event B.

Intuitively, the probability of A occurring is simply the probability that this result is also an
event of B. If B has already happened, the probability of getting A knowing B is the probability
of A ∩ B divided by the probability of B. Therefore, we obtain

Prob(A|B) = Prob(A ∩ B)

Prob(B)
. (1.11)

This definition of the conditional probability is called Bayes’ rule.
This probability satisfies the set of axioms for probabilities introduced at the beginning of

the section:

Prob(�|B) = 1, (1.12)

0 ≤ Prob(A|B) ≤ 1, (1.13)

Prob(Ac|B) = 1 − Prob(A|B), (1.14)

and

Prob(∪∞
n=1 An|B) =

∞∑
n=1

Prob(An|B), ∀i 
= j, Ai ∩ A j = ∅. (1.15)

This definition is illustrated next by way of examples.
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Example 2.7 Consider the dice toss experiment with event

A = {“face smaller than 5"} = {1, 2, 3, 4}
and event

B = {“even face"} = {2, 4, 6}.
We know that

Prob(B) = Prob({2, 4, 6}) = 3

6

and

Prob(A) = Prob({1, 2, 3, 4}) = 4

6
.

However, we want to know what is the probability of obtaining an even face knowing that
the face is smaller than 5 (in other words, A has already happened). From Bayes’ rule:

Prob(B|A) = Prob(A ∩ B)

Prob(A)

= Prob({2, 4})
Prob({1, 2, 3, 4})

= 2/6

4/6

= 1

2
.

Example 2.8 From a population of N persons, we observe ns smokers and nc people
with cancer. From these ns smokers we observe ns,c individuals suffering from cancer. For
this population, we can say that the probability that a person is a smoker is ns

N and the
probability that a person has cancer is nc

N . The probability that a person has cancer given
that he is already a smoker is:

Prob(cancer|smoker) = Prob(smoker and cancer)

Prob(smoker)
= ns,c

ns
.

From this experiment, we note that the conditional probability can be smaller or greater than
the probability considered a priori. Following this definition of the conditional probability, we
examine next the independence of two events.

1.2.6 Independent Events

Two events are said to be statistically independent when the occurrence of one of them doesn’t
affect the probability of getting the other. A and B are said to be statistically independent if

Prob(A|B) = Prob(A). (1.16)
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From Bayes’ rule, if A and B are two independent events then

Prob(A ∩ B) = Prob(A)Prob(B). (1.17)

Example 2.9 Consider the experiment of tossing a dice twice. Intuitively, we hope that
the result of the first toss would be independent of the second one. From our preceding
exposition, we can establish this independence as follows. Indeed, the universe of this
experiment contains 36 simple events denoted by (R1, R2) where R1 and R2 are respectively
the results of the first and second tosses, with (R1, R2) taking values (n, m) in

� = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.
The probability the first element R1 equals n is

Prob(R1 = n) = 1

6
, ∀n ∈ {1, 2, 3, 4, 5, 6}

and the probability the second element R2 equals m is

Prob(R2 = m) = 1

6
, ∀m ∈ {1, 2, 3, 4, 5, 6}.

Since Prob(R1 = n, R2 = m) = 1
36 , then the conditional probability

Prob(R2 = m|R1 = n) = Prob(R1 = n, R2 = m)

Prob(R1 = n)

=
1
36
1
6

= 1

6
,

which gives us Prob(R2 = m|R1 = n) = Prob(R2 = m) = 1
6 . Hence, we conclude that R2

and R1 are independent.

Notes and Complementary Readings

The concepts presented in this chapter are fundamentals of the theory of probabilities. The
reader could refer to the books written by Ross (2002 a and b) for example.
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2

Introduction to Random Variables

In the previous chapter, we introduced some concepts of events and defined probabilities on
sets of events. In this chapter, we will focus on the representation of realized events on the
real axis and probability space in order to provide a quantification to be used in financial
problems.

A random variable is a function mapping the sample space Ω to the real axis. Afterwards, a
complete characterization of such random variables will be given by introducing the probability
density function, the cumulative distribution function and the characteristic function. We
will show examples of the most frequently-encountered random variables in finance. The
characteristic function will be presented in order to give the reader a better understanding of
random variables. We will not use it extensively later in the book, but it is useful to be familiar
with it to enable us to follow some proofs.

We will also introduce the concept of transformation of random variables. This concept
is the basis of random variables simulation under known distributions and will be used in
subsequent chapters.

2.1 RANDOM VARIABLES

We have defined random events and the probabilities associated with these events. In finance, as
in the sciences, random events are always associated with quantities such as indices, costs and
interest rates which vary in a random way. This means that we could link these experiments’
random effects to the real axis. In other words, we associate a real number with the result
given by the experiment.

Before realizing the experiment, this number is not known – it behaves as a random result
from a random experiment. This approach means that we are looking to create a random
experiment on the real axis the results of which are what we will call a random variable.

Mathematically, the random experiment on the real axis is created by using a function
(denoted by X) from the universe of events Ω on the real axis. The random results observed on
the axis under this function are used as the basis to define the random events on the real axis.
This representation on the real axis obeys the same rules or is subject to the same constraints
as the original events.

This function, or transformation X, must satisfy the following condition: let x be any real
value, the set of all elementary events ω such that {X(ω) ≤ x} is an event associated with the
original random experiment

A = {ω such that X (ω) ≤ x}. (2.1)

In mathematical terms, this function is said to be measurable.
Now, using this random variable, we only need to look at the universe of events as the real

axis and the events as a subset of the real line. The most simple events are open or closed
intervals and open or closed half axes. The constructed algebra of events based on these
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natural events is known as the Borel Algebra of the real axis. One simple way to describe
the Borel Algebra of the real axis is to construct events by combining the simple open and
closed intervals and open and closed half axis of the real axis. Since Borel Algebra is not
really necessary to follow the text, we will not dwell on it further.

2.1.1 Cumulative Distribution Function

Let X be a real-valued random variable, by definition its cumulative distribution function,
noted FX(x), is:

FX (x) = Prob(A) where A = {ω such that X (ω) ≤ x}. (2.2)

Based on the previous definition of probability, we deduce the following properties:

(a) 0 ≤ FX(x) ≤ 1,
(b) FX(x) is monotone, non decreasing, i.e., if x1 < x2 then we have FX(x1) ≤ FX(x2),
(c) FX(−∞) = 0 and FX(+∞) = 1.

Properties (a), (b) and (c) follow from the probability axioms. When FX(x) is continuous, X is
said to be a continuous random variable. When it is the case, it can take any value on the real
axis as the result of the experiment. However, when FX(x) is a step function, X is said to be a
discrete random variable. X may be a combination of continuous and discrete segments.

2.1.2 Probability Density Function

To keep it simple, consider X to be a continuous random variable. By analogy with the physical
world, we can define its probability density function such that the integral of such a function
on the event defined on the real axis gives the probability of this event.

This density function can be obtained from the cumulative distribution function when
looking at an infinitely small event. To see that, consider the event

A = {x < X ≤ x + �x}. (2.3)

On the one hand, the cumulative function gives

Prob(A) = FX (x + �x) − FX (x), (2.4)

and on the other hand we have

Prob(A) =
∫ x+�x

x
fX (α)dα, (2.5)

where fX is the probability density function of the random variable X.
On the infinitesimal interval [x, x + �x], since fX(.) is continuous, it remains constant so

that we have:

fX (x)�x ≈ Prob(A) = FX (x + �x) − FX (x), (2.6)
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where

fX (x) ≈ FX (x + �x) − FX (x)

�x
. (2.7)

When �x becomes infinitesimal, we see that the probability density function is the derivative
of the cumulative distribution function:

fX (x) = d FX (x)

dx
. (2.8)

Property 1.1 Function fX(x) is non negative. Since integrating the density function on an event
gives us the probability of the event, if it were negative on a particular interval, integrating on
this interval would give us a negative probability. This would violate our probability axioms.
This property can be proved easily since the probability density function is the derivative of the
cumulative distribution function. This cumulative function being a non decreasing function,
its derivative can never be negative.

Property 1.2

FX (x) =
∫ x

−∞
fX (α)dα ≤ 1, (2.9)

FX (−∞) = 0 and FX (+∞) = 1, (2.10)

which leads to

fX (x) −→
|x |→∞

0 (2.11)

and ∫ +∞

−∞
fX (α)dα = 1. (2.12)

For a discrete random variable X, since X takes values in a finite (or countably-infinite) set,
we prefer to use the term probability mass function. The probability mass is the probability
that X takes a precise value in this finite or countably-infinite set:

Prob(X = k). (2.13)

We present below examples of widely used random variables.

Example 1.3 We toss a dice and the random variable is defined by the face which is
shown on the dice. We define the random variable X taking the values 1, 2, 3, 4, 5, and 6.
We have

Prob(X = k) = 1

6
, ∀k ∈ {1, 2, 3, 4, 5, 6}. (2.14)
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Example 1.4 We discussed above the number of calls received at a telephone exchange.
Let X be this random variable. Then X can be 0, 1, 2, . . ., ∞. This phenomenon follows a
distribution known as the Poisson distribution and its probability density function is defined
by

Prob(X = k) = e−λ λk

k!
, (2.15)

with k = 0, 1, 2, . . . , ∞, where λ is a positive constant depicting the average number of
calls observed.

This distribution is often used in finance in credit risk modeling, especially to describe
credit default. In that case X can be the number of defaults in a given period and λ is the
average number of defaults.

Example 1.5 The most common probability density functions are

(i) The Gaussian normal distribution having the probability density function

fX (x) = 1√
2πσ

exp

(
− (x − μ)2

2σ 2

)
, (2.16)

where μ and σ are constants, σ being positive. We show in the next section that μ

and σ are respectively the mean and standard deviation of the random variable X.
This distribution is often used in finance to represent asset returns. It is also a key
distribution in statistical inference. Figure 2.1 plots the probability density function
for a variable following a normal distribution.
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Figure 2.1 Gaussian density function

(ii) The exponential density:

fX (x) = αe−αx , ∀x ∈ [0,+∞], (2.17)

where α is a positive constant. Figure 2.2 plots the probability density function for a
variable following an exponential distribution.


