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Preface
This book deals with the combination-based approach to permutation hypothesis testing in several
complex problems frequently encountered in practice. It also deals with a wide range of difficult
applications in easy-to-check conditions. The key underlying idea, on which the large majority of
testing solutions in multidimensional settings are based, is the nonparametric combination (NPC) of
a set of dependent partial tests. This methodology assumes that a testing problem is properly broken
down into a set of simpler sub-problems, each provided with a proper permutation solution, and that
these sub-problems can be jointly analysed in order to maintain underlying unknown dependence
relations.

The first four chapters are devoted to the theory of univariate and multivariate permutation
tests, which has been updated. The remaining chapters present real case studies (mainly obser-
vational studies) along with recent developments in permutation solutions. Observational studies
have enjoyed increasing popularity in recent years for several reasons, including low costs and
availability of large data sets, but they differ from experiments because there is no control of
the assignment of treatments to subjects. In observational studies the experimenter’s main con-
cern is usually to discover an association among variables of interest, possibly indicating one or
more causal effects. The robustness of the nonparametric methodology against departures from
normality and random sampling are much more relevant in observational studies than in controlled
clinical trials. Hence, in this context, the NPC method is particularly suitable. Moreover, given
that the NPC method is conditional on a set of sufficient statistics, it shows good general power
behaviour, and the Fisher, Liptak or direct combining functions often have power functions which
are quite close to the best parametric counterparts, when the latter are applicable, even for mod-
erate sample sizes. Thus NPC tests are relatively efficient and much less demanding in terms of
underlying assumptions with respect to parametric competitors and to traditional distribution-free
methods based on ranks, which are generally not conditional on sufficient statistics and so rarely
present better unconditional power behaviour. One major feature of the NPC with dependent tests,
provided that the permutation principle applies, is that we must pay attention to a set of partial
tests, each appropriate to the related sub-hypotheses, because the underlying dependence relation
structure is nonparametrically and implicitly captured by the combining procedure. In particular,
the researcher is not explicitly required to specify the dependence structure on response variables.
This aspect is of great importance particularly for non-normal and categorical variables in which
dependence relations are generally too difficult to define, and, even when well defined, are hard
to cope with. Furthermore, in the presence of a stratification variable, NPC through a multi-phase
procedure allows for quite flexible solutions. For instance, we can firstly combine partial tests with
respect to variables within each stratum and then combine the combined tests with respect to strata.
Alternatively, we can first combine partial tests related to each variable with respect to strata and
then combine the combined tests with respect to variables. Moreover, once a global inference is
found significant, while controlling for multiplicity it is possible to recover which partial inferences
are mostly responsible of that result.
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Although dealing with essentially the same methodology as contained in Pesarin (2001), almost
all the material included in this book is new, specifically with reference to underlying theory and
case studies.

Chapter 1 contains an introduction to general aspects and principles concerning the permutation
approach. The main emphasis is on the principles of conditionality, sufficiency and similarity,
relationships between conditional and unconditional inferences, why and when conditioning may
be necessary, why the permutation approach results from both conditioning with respect to the data
set and exchangeability of data in the null hypothesis, etc. Moreover, permutation techniques are
discussed along with computational aspects. Basic notation is then introduced. Through a heuristic
discussion of simple examples on univariate problems with paired data, two-sample and multi-
sample (one-way ANOVA) designs, the practice of permutation testing is introduced. Moreover,
discussions on conditional Monte Carlo (CMC) methods for estimating the distribution of a test
statistic and some comparisons with parametric and nonparametric counterparts are also presented.

Chapters 2 and 3 formally present: the theory of permutation tests for one-sample and multi-
sample problems; proof and related properties of conditional and unconditional unbiasedness; the
definition and derivation of conditional and unconditional power functions; confidence intervals for
treatment effect δ; the extension of conditional inferences to unconditional counterparts; and a brief
discussion on optimal permutation tests and of the permutation central limit theorem.

Chapter 4 presents multivariate permutation testing with the NPC methodology. It includes a
discussion on assumptions, properties, sufficient conditions for a complete theory of the NPC of
dependent tests, and practical suggestions for making a reasonable selection of the combining
function to be used when dealing with practical problems. Also discussed are: the concept of
finite-sample consistency, especially useful when the number of observed variables in each subject
exceeds that of subjects in the study; the multi-aspect approach; separate testing for two-sided
alternatives; testing for multi-sided alternatives; the Behrens–Fisher problem, etc.

Chapter 5 deals with multiple comparisons and multiple testing issues. A brief overview of
multiple comparison procedures (MCPs) is presented. The main focus is on closed testing procedures
for multiple comparisons and multiple testing. Some hints are also given with reference to weighted
methods for controlling family-wise error (FWE) and false discovery rate (FDR), adjustment of
stepwise p-values, and optimal subset procedures.

Chapter 6 concerns multivariate permutation approaches for categorical data. A natural multi-
variate extension of McNemar’s test is presented along with the multivariate goodness-of-fit test
for ordered variables, the multivariate analysis of variance (MANOVA) test with nominal categor-
ical data, and the issue of stochastic ordering in the presence of multivariate categorical ordinal
variables. A permutation approach to test allelic association and genotype-specific effects in the
genetic study of a disease is also discussed. An application concerning how to establish whether the
distribution of a categorical variable is more heterogeneous (less homogeneous) in one population
than in another is presented as well.

Chapter 7 discusses some quite particular problems with repeated measurements and/or missing
data. Carry-over effects in repeated measures designs, modelling and inferential issues are treated
extensively. Moreover, testing hypothesis problems for repeated measurements and missing data
are examined. The rest of the chapter is devoted to permutation testing solutions with missing data.

Chapter 8 refers to permutation approaches for hypothesis testing when a multivariate monotonic
stochastic ordering is present (with continuous and/or categorical variables). Umbrella testing prob-
lems are also presented. Moreover, two applications are discussed: one concerning the comparison
of cancer growth patterns in laboratory animals and the other referring to a functional observational
battery study designed to measure the neurotoxicity of perchloroethylene, a solvent used in dry
cleaning (Moser, 1989, 1992).

Chapter 9 is concerned with permutation methods for problems of hypothesis testing in the
framework of survival analysis.
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Chapter 10 deals with statistical shape analysis. Most of the inferential methods known in the
shape analysis literature are parametric in nature. They are based on quite stringent assumptions,
such as the equality of covariance matrices, the independency of variation within and among
landmarks or the multinormality of the model describing landmarks. But, as is well known, the
assumption of equal covariance matrices may be unreasonable in certain applications, the multi-
normal model in the tangent space may be doubted and sometimes there are fewer individuals than
landmarks, implying over-dimensioned spaces and loss of power. On the strength of these consid-
erations, an extension of NPC methodology to shape analysis is suggested. Focusing on the case
of two independent samples, through an exhaustive comparative simulation study, the behaviour
of traditional tests along with nonparametric permutation tests using multi-aspect procedures and
domain combinations is evaluated. The case of heterogeneous and dependent variation at each
landmark is also analysed, along with the effect of superimposition on the power of NPC tests.

Chapter 11 presents two interesting real case studies in ophthalmology, concerning complex
repeated measures problems. For each data set, different analyses have been proposed in order to
highlight particular aspects of the data structure itself. In this way we enable the reader to choose the
most appropriate analysis for his/her research purposes. The autofluorescence case study concerns
a clinical trial in which patients with bilateral age-related macular degeneration were evaluated.
In particular, their eyes were observed at several different and fixed positions. Hence, repeated
measures issues arise. Five outcome variables were recorded and analysed. The confocal case
study concerns a clinical trial with a five-year follow-up period, aiming to evaluate the long-term
side-effects of a drug. Fourteen variables and four domains in total were analysed.

Chapter 12 deals with case studies in the field of survival analysis and epidemiology. NPC Test
R10 software, SAS, MATLAB� and R codes have been used to perform the analyses. A comparison
between logistic regression and NPC methodology in exploratory studies is then provided.

One of the main features of this book is the provision of several different software programs for
performing permutation analysis. Various programs have been specifically developed. In particular:

• NPC Lib MATLAB library has been developed by Livio Finos, with consulting team Rosa
Arboretti, Francesco Bertoluzzo, Stefano Bonnini, Chiara Brombin, Livio Corain, Fortunato
Pesarin, Luigi Salmaso and Aldo Solari. For updates on the NPC Lib MATLAB library we
refer to http://homes.stat.unipd.it/livio.

• NPC Test Release 10 (R10) standalone software (which is an extended version of the former
NPC Test 2.0 produced by Methodologica S.r.l. and designed by Luigi Salmaso) has been
updated by Luigi Salmaso, Andrey Pepelyshev, Livio Finos and Livio Corain, with consulting
team Rosa Arboretti, Stefano Bonnini, Federico Campigotto and Fortunato Pesarin. For further
updates to the NPC Test software we refer to http://www.gest.unipd.it/∼salmaso.

• R code developed by Dario Basso, with consulting team Stefano Bonnini, Chiara Brombin,
Fortunato Pesarin and Luigi Salmaso.

• SAS macros developed by Rosa Arboretti and Luigi Salmaso, with consulting team Stefano
Bonnini, Federico Campigotto, Livio Corain and Fortunato Pesarin.

The above software is available from the book’s website, http://www.wiley.com/go/npc. Raw
data for all examples presented in the book, along with corresponding software routines, are also
available from the website. Any errata, corrigenda or updates related to theory and software will
be posted at http://www.gest.unipd.it/∼salmaso.

We would like to express our thanks to the members of the Nonparametric Research Group at
the University of Padua for their research collaboration on different topics included in this book:
Rosa Arboretti, Dario Basso, Stefano Bonnini, Francesco Bertoluzzo, Chiara Brombin, Federico
Campigotto, Livio Corain, Francesco Dalla Valle, Livio Finos, Patrizia Furlan, Susanna Ragazzi,
Monjed Samuh, Aldo Solari and Francesca Solmi. We also wish to thank Susan Barclay, Richard
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Davies, Beth Dufour, Heather Kay, Prachi Sinha-Sahay and the John Wiley & Sons Group in
Chichester for their valuable publishing suggestions. Moreover, we owe a debt of thanks to our
colleagues in different scientific fields: Ermanno Ancona, PierFrancesco Bassi, Fabio Bellotto,
Patrizio Bianchi, Mario Bolzan, Carlo Castoro, Bruno Cozzi, Giovanni Fava, Roberto Filippini,
Annarosa Floreani, Alessandro Frigiola, Luca Guarda-Nardini, Franco Grego, Lorenzo Menicanti,
Edoardo Midena, Bruno Mozzanega, Virginia Moser, Andrea Peserico, Stefano Piaserico, Alberto
Ruol, Luigi Sedea, Luca Spadoni, Tiziano Tempesta, Catherine Tveit, Carla Villanova, and several
others with whom we have had stimulating discussions related to complex case studies; some of
them are included on the book’s website.

We wish to acknowledge Chiara Brombin for her valuable help through all stages of the produc-
tion of this book and Professors N. Balakrishnan, O. Cucconi, P. Good, S. Kounias, V. Seshadri
and J. Stoyanov as well as several colleagues for stimulating us in various ways to do research on
multivariate permutation topics and to write the book. We also thank Stefania Galimberti, Ludwig
Hothorn and Maria Grazia Valsecchi for revising some chapters.

In addition, we would like to acknowledge the University of Padua (CPDA088513/08) and the
Italian Ministry of University and Research (PRIN 2008_2008WKHJPK_002) for providing the
financial support for the necessary research and the development of part of the software.

Both authors share full responsibility for any errors or ambiguities, as well as for the ideas
expressed throughout the book. A large part of the material presented in the book has been compiled
from several publications and real case studies have been fully developed with the proposed different
software codes. Although we have tried to detect and correct errors and eliminate ambiguities, there
may well be others that have escaped our scrutiny. We take responsibility for and would warmly
welcome notification of any that remain.

Finally, the second author (LS) wishes to acknowledge the first author (FP) as an inspiration for
his open-mindedness and deep passion for innovative research in permutation methods during the
course of our long-lasting collaboration and throughout the writing of this book.

We welcome any suggestions to the improvement of the book and would be very pleased if the
book provides users with new insights into the analysis of their data.

Fortunato Pesarin Luigi Salmaso
Department of Statistical Sciences Department of Management and Engineering
University of Padua University of Padua

Padova, January 2010



Notation and Abbreviations

A: an event belonging to the collection A of events

A: a collection (algebra) of events

A/A = A
⋂

A: a collection of events conditional on A

ANCOVA: analysis of covariance

ANOVA: analysis of variance

AUC: area under the curve

B : the number of conditional Monte Carlo iterations

Bn(n, θ): binomial distribution with n trials and probability θ of success in one trial

CDF: cumulative distribution function

CLT: central limit theorem

CMC: conditional Monte Carlo

Cov(X, Y ) = E(X · Y )− E(X) · E(Y ): the covariance operator on (X, Y )

CSP: constrained synchronized permutations

Cy(η, σ ): Cauchy distribution with location η and scale σ

d.f.: degrees of freedom

δ = ∫X δ(x) · dFX(x): the fixed treatment effect (same as δ-functional or pseudo-parameter), δ ∈ �

�: stochastic treatment effect

EDF: empirical distribution function: F̂X(t) = F̂ (t |X/X) =
∑

i I(Xi ≤ t)/n, t ∈ R1

EPM: empirical probability measure: P̂X(A) = P̂ (A|X/X) =
∑

i I(Xi ∈ A)/n, A ∈ A
ESF: empirical survival function (same as significance level): L̂X(t) = L̂(t |X/X) =

∑
i I(Xi ≥

t)/n, t ∈ R1

E(X) = ∫X x · dFX(x): the expectation operator (mean value) of X

EA[X)] = E[X|A] = ∫
A
x · dFX(x|A): the conditional expectation of X given A

d=: equality in distribution: X
d= Y ↔ FX(z) = FY (z), ∀z ∈ R1

d
>: stochastic dominance: X

d
>Y ↔ FX(z) ≤ FY (z), ∀z and ∃A : FX(z) < FY (z), z ∈ A, with

Pr(A)> 0

< 	= >: means ‘<’, or ‘	=’, or ‘>’

∼: distributed as: e.g. X ∼ N0, 1) means X follows ths standard normal distribution

≈: permutationally equivalent to

FDR: false discovery rate

FWER: family-wise error rate

fP (z) = f (z): the density of a variable X, with respect to a dominating measure ξ and related to
the probability P
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FX(z) = F(z) = Pr {X ≤ z}: the CDF of X

FX|A(z) = Pr{X ≤ z|A}: the conditional CDF of (X|X ∈ A)

F ∗T (z) = F ∗(z) = Pr{T ∗ ≤ z|X/X}: the permutation CDF of T given X
HG(N, θ, n): hypergeometric distribution with N the number of units, θ ·N the number of units

of interest, n the sample size

i.i.d.: independent and identically distributed

I(A): the indicator function, i.e. I(A) = 1 if A is true, and 0 otherwise

ITT: intention-to-treat principle

λ = Pr
{
T ≥ T o|X/X

}
: the attained p-value of test T on data set X

LX(t) = L(t) = Pr {X ≥ t}: the significance level function (same as the survival function)

µ = E(X): the mean value of vector X
MAD: median of absolute deviations from the median

MANOVA: multivariate analysis of variance

MC: number of Monte Carlo iterations

MCP: multiple comparison procedure

MCAR: missing completely at random

Md(X) = µ̃: the median operator on variable X such that Pr{X < µ̃} = Pr{X>µ̃}
#(X ∈ A) =∑i I(Xi ∈ A): number of points Xi belonging to A

n: the (finite) sample size

MNAR: missing not at random

MTP: multiple testing problem

N(µ, σ 2): Gaussian or normal variable with mean µ and variance σ 2

NV (µ,�): V -dimensional normal variable (V ≥ 1) with mean vector µ and covariance matrix �

O(dn) = cn: given two sequences {cn} and {dn}, O(dn) = cn if cn/dn is bounded as n→∞
o(dn) = cn: given two sequences {cn} and {dn}, o(dn) = cn if cn/dn → 0 as n→∞
�: the set of possible values for δ

π(δ): the prior distribution of δ ∈ �

PCLT: permutation central limit theorem

P : a probability distribution on (X,A)

P: a family of probability distributions

P(A) = ∫
A
dP (z): the probability of event A ∈ A with respect to P

p-FWE: adjusted p-value from a closed testing procedure

Pr {A}: a probability statement relative to A ∈ A
Rn: the set of n-dimensional real numbers

R : the rank operator

Ri = R(Xi) =
∑

1≤j≤n I(Xj ≤ Xi): the rank of Xi within {X1, . . . , Xn}
SLF: sgnificance level function

UMP: uniformly most powerful

UMPS: uniformly most powerful similar

UMPU: uniformly most powerful unbiased

USP: unconstrained synchronized permutations

V(X) = E(X−µ)2 = σ 2: the variance operator on variable X

WORE: without replacement random experiment
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WRE: with replacement random experiment

X: a univariate or multivariate random variable

X: a sample of n units, X = {Xi, i = 1, . . . , n}
X∗: a permutation of X
|X| = {|Xi |, i = 1, . . . , n}: a vector of absolute values

XOR: exclusive or relationship: (A XOR B) means one but not both

X: the sample space (or support) of variable X

(X,A): a measurable space

(X,A,P): a probability space

X/X: the orbit or permutation sample space given X
(X/X, A/X): a permutation measurable space

T÷X→ R1: a statistic

T o = T (X): the observed value of test statistic T evaluated on X
U∗�: the transpose of U∗

U(a, b): uniform distribution in the interval (a, b)
�X�: the integer part of X⊎

: the operator for pooling (concatenation) of two data sets: X = X1
⊎

X2

Z: the unobservable random deviates or errors: X = µ+ Z





1
Introduction

1.1 On Permutation Analysis
This book deals with the permutation approach to a variety of univariate and multivariate problems
of hypothesis testing in a typical nonparametric framework. A large number of univariate problems
may be usefully and effectively solved using traditional parametric or rank-based nonparamet-
ric methods as well, although under relatively mild conditions their permutation counterparts are
generally asymptotically as good as the best parametric ones (Lehmann, 2009). It should also be
noted that permutation methods are essentially of a nonparametric exact nature in a conditional
context (see Proposition 2, 3.1.1 and Remarks 1, 2.2.4 and 1, 2.7). In addition, there are a number
of parametric tests the distributional behaviour of which is only known asymptotically. Thus, for
most sample sizes of practical interest, the relative lack of efficiency of permutation solutions may
sometimes be compensated by the lack of approximation of parametric asymptotic counterparts.
Even when responses follow the multivariate normal distribution and there are too many nuisance
parameters to estimate and remove, due to the fact that each estimate implies a reduction of the
degrees of freedom in the overall analysis, it is possible for the permutation solution to be more
efficient than its parametric counterpart (note that ‘responses’, ‘variables’, ‘outcomes’, and ‘end
points’ are often used as synonyms). In addition, assumptions regarding the validity of most para-
metric methods (such as homoscedasticity, normality, regular exponential family, random sampling,
etc.) rarely occur in real contexts; so that consequent inferences, when not improper, are necessarily
approximated and their approximations are often difficult to assess.

In practice parametric methods reflect a modelling approach and generally require the introduction
of a set of stringent assumptions, which are often quite unrealistic, unclear, and difficult to justify.
Sometimes these assumptions are merely set on an ad hoc basis for specific inferential analyses.
Thus they appear to be mostly related to the availability of the methods one wishes to apply rather
than to well-discussed necessities obtained from a rational analysis of reality, in accordance with the
idea of modifying a problem so that a known method is applicable rather than that of modifying
methods in order to properly deal with the problem. For instance, too often and without any
justification researchers assume multivariate normality, random sampling from a given population,
homoscedasticity of responses also in the alternative, etc., so that it becomes possible to write down
a likelihood function and to estimate a variance–covariance matrix and so consequent inferences
are without real credibility. In contrast, nonparametric approaches try to keep assumptions at a
lower workable level, avoiding those that are difficult to justify or interpret, and possibly without
excessive loss of inferential efficiency. Thus, they are based on more realistic foundations for
statistical inference. And so they are intrinsically robust and resulting inferences are credible.
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However, there are many complex multivariate problems (commonly in areas such as agricul-
ture, biology, business statistics, clinical trials, engineering, the environment, experimental data,
finance data, genetics, industrial statistics, marketing, pharmacology, psychology, quality control,
social sciences, zoology, etc.) that are difficult to solve outside the conditional framework and, in
particular, outside the method of nonparametric combination (NPC) of dependent permutation tests
(solutions to several complex problems are discussed in Chapter 4 and beyond).

Moreover, within parametric approaches it is sometimes difficult, if not impossible, to obtain
proper solutions even under the assumption of normal errors. Some examples are:

1. problems with paired observations when scale coefficients depend on units;
2. two-sample designs when treatment is effective only on some of the treated subjects, as may

occur with drugs having genetic interaction;
3. two-way ANOVA;
4. separate testing in cross-over designs;
5. multivariate tests when the number of observed variables is larger than the sample size;
6. jointly testing for location and scale coefficients in some two-sample experimental problems

with positive responses;
7. exact testing for multivariate paired observations when some data are missing, even when not

at random;
8. unconditional testing procedures when subjects are randomly assigned to treatments but are

obtained by selection-bias sampling from the target population;
9. exact inference in some post-stratification designs;

10. two-sample testing when data are curves or surfaces, i.e. testing with countably many variables.

As regards problem 1, within a parametric framework it is impossible to obtain standard devi-
ation estimates for observed differences on each unit with more than zero degrees of freedom,
whereas exact and effective permutation solutions do exist (see Sections 1.9 and 2.6). A similar
impossibility also occurs with Wilcoxon’s signed rank test. In problem 2, since effects, either ran-
dom or fixed, behave as if they depend on some unobserved attitudes of the subjects, traditional
parametric approaches are not appropriate. Hints as to proper permutation solutions will be provided
in Chapters 2, 3 and 4. In problem 3 it is impossible to obtain independent or even uncorrelated
separate inferences for main factors and interactions because all related statistics are compared
to the same estimate of the error variance (see Remark 8, 2.7). In addition, it is impossible to
obtain general parametric solutions in unbalanced designs. We shall see in Example 8, 2.7 and
Chapter 11 that, within the permutation approach, it is at least possible to obtain exact, unbiased
and uncorrelated separate inferences in both balanced and unbalanced cases. Regarding problem
4, we will see in Remark 5, 2.1.2 that in a typical cross-over problem with paired data ([A,B]
in the first group and [B,A] in the second group) two separate hypotheses on treatment effect
(XB

d= XA) and on interaction due to treatment administration (XAB
d= XBA) are tested separately

and independently. In problem 5 it is impossible to find estimates of the covariance matrix with
more than zero degrees of freedom, whereas the NPC method discussed in Chapter 4 allows for
proper solutions which, in addition, are often asymptotically efficient. In problem 6, due to its close
analogy with the Behrens–Fisher problem, exact parametric solutions do not exist, whereas, based
on concurrent multi-aspect testing, an exact permutation solution does exist, provided that positive
data are assumed to be exchangeable in the null hypothesis and the two cumulative distribution
functions (CDFs) do not cross in the alternative (see Example 8, 4.6). In problem 7 general exact
parametric solutions are impossible unless missing data are missing completely at random and data
vectors with at least one missing datum are deleted. In Section 7.10, within the NPC methodology,
we will see a general approximate solution and one exact solution even when some of the data are
missing not completely at random. In problem 8 any selection-biased mechanism usually produces
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quite severe modifications to the target population distribution, hence unless the selection mech-
anism is well defined and the consequent modified distribution is known, no proper parametric
inference to the target population is possible; instead, within the permutation approach we may
properly extend conditional inferences to unconditional counterparts. Moreover, in cases where
the minimal sufficient statistic in the null hypothesis is the whole set of observed data, although
the likelihood model would depend on a finite set of parameters, univariate statistics capable of
summarizing the necessary information do not exist, so that no parametric method can be claimed
to be uniformly better than others; indeed, conditioning on the pooled data set, i.e. considering the
permutation counterpart, improves the power behaviour of any test statistics (see Cox and Hinkley,
1974; Lehmann, 1986). However, in order to attenuate the loss of information associated with using
one overall statistic, we will find solutions within the so-called multi-aspect methodology based on
the NPC of several dependent permutation test statistics, each capable of summarizing information
on a specific aspect, so that it takes account of several complementary viewpoints (see Example
3, 4.6) and improves interpretability of results. In problem 9, as far as we know, the exact para-
metric inference for post-stratification analysis is based on the combination for independent partial
tests (one test per stratum), provided that their null continuous distributions are known exactly. In
problem 10, as far as can be seen from the literature (see Ramsay and Silverman, 2002; Ferraty
and Vieu, 2006), only some regression estimate and predictive problems are solved when data are
curves; instead, within the NPC strategy, several testing problems with countably many variables
(the coefficients of suitable curve representations) can be efficiently solved.

Although authoritative, we agree only partially with opinions such as that expressed by
Kempthorne (1955): ‘When one considers the whole problem of experimental inference, that
is of tests of significance, estimation of treatment differences and estimation of the errors of
estimated differences, there seems little point in the present state of knowledge in using a method
of inference other than randomization analysis.’

We agree with the part that stresses the importance for statisticians of referring to conditional
procedures of inference and, in particular, to randomization (i.e. permutation) methods. Indeed,
there is a wide range of inferential problems which are correctly and effectively solved within
a permutation framework; however, there are others which are difficult or perhaps impossible to
solve outside it.

We partially disagree, however, because there are very important families of inferential problems,
especially connected to unconditional parametric estimation and testing, or to nonparametric pre-
diction, classification, kernel estimation, or more generally within the statistical decision approach,
which cannot be dealt with and/or solved in a permutation framework. These are often connected to
violations of the so-called exchangeability condition (see Chapter 2) or are related to analysis of too
few observed subjects. Moreover, all procedures of exploratory data analysis and all testing meth-
ods for which we cannot assume exchangeability of the data with respect to groups (i.e. samples)
in the null hypothesis, generally lie outside the permutation approach. In addition, the traditional
Bayesian inference (see Remark 4, 3.4, for suggestions on a permutation Bayesian approach) also
lies outside the permutation approach.

Thus, although we think that permutation methods should be in the tool-kit of every statistician
interested in applications, methodology or theory, we disagree because we do not believe that all
inferential problems of interest for analysis of real problems fall within the permutation approach.
In order to apply permutation methods properly, a set of initial conditions must be assumed, and
if these conditions are not satisfied, their use may become erroneous.

However, and following remarks made by Berger (2000), these arguments support our decision to
develop methods in the area of permutation testing, especially for multivariate complex problems.
In this sense, this book attempts to go deeper into the main aspects of conditional methods of
inference based on the permutation approach and to systematically study proper solutions to a set
of important problems of practical interest. Section 1.4 lists a brief set of circumstances in which
conditional testing procedures may be effective or even unavoidable.
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1.2 The Permutation Testing Principle
For most problems of hypothesis testing, the observed data set x = {x1, . . . , xn} is usually obtained
by a symbolic experiment performed n times on a population variable X, and taking values in the
sample space X. We sometimes add the word ‘symbolic’ to names such as experiments, treatments,
treatment effects, etc., in order to refer to experimental, pseudo-experimental and observational
contexts. For the purposes of analysis, the data set x is generally partitioned into groups or sam-
ples , according to the so-called treatment levels of the symbolic experiment. In the context of the
discussion up to and including Section 1.6, we use capital letters for random variables and lower-
case for the observed data set. From Section 1.7 onwards, we shall dispense with this distinction,
in that only capital letters will be used because the context is always sufficiently clear. Of course,
when a data set is observed at its x value, it is presumed that a sampling experiment on a given
underlying population has been performed, so that the resulting sample distribution is related to
that of the parent population P . This is, of course, common to any statistical problem, and not
peculiar to the permutation framework.

For any general testing problem in the null hypothesis, denoted by H0, which typically assumes
that data come from only one (with respect to groups) unknown population distribution P , H0 :
{X ∼ P ∈ P}, say, the whole set of observed data x is considered to be a random sample, taking
values in the sample space Xn, where x is one observation of the n-dimensional sample variable X(n)

and where this random sample does not necessarily possess independent and identically distributed
(i.i.d.) components (see Chapters 2 and 3 for more details).

We note that the observed data set x is always a set of sufficient statistics in H0 for whatever
underlying distribution. In order to see this in a simple way, let us assume that H0 is true and all
members of a nonparametric family P of non-degenerate and distinct distributions are dominated
by one dominating measure ξP; moreover, let fP denote the density of P with respect to ξP, and
f

(n)
P (x) denote the density of the sample variable X(n). As the identity f

(n)
P (x) = f

(n)
P (x) · 1 is true

for all x ∈ Xn, except for points such that f (n)
P (x) = 0, due to the well-known factorization theorem,

any data set x is therefore a sufficient set of statistics for whatever member P of the nonparametric
family P.

1.2.1 Nonparametric Family of Distributions

Let us consider the following definition.

Definition 1. A family of distributions P is said to behave nonparametrically when it is not possible
to find a finite-dimensional space 
 such that there is a one-to-one relationship between 
 and P,
in the sense that each member P of P cannot be identified by only one member θ of 
, and vice
versa .

If of course such a one-to-one relationship exists, θ is called a parameter, 
 is the parame-
ter space, and P the corresponding parametric family. Families of distributions which are either
unspecified or specified except for an infinite number of unknown parameters do satisfy the defini-
tion and so are nonparametric. Definition 1 also includes all those situations where the sample size
n is smaller than the number of parameters, even though this is finite. All nonparametric families P
which are of interest in permutation analysis are assumed to be sufficiently rich in such a way that
if x and x ′ are any two distinct points of X, then x 	= x ′ implies fP (x) 	= fP (x

′) for at least one
P ∈ P, except for points with null density for P . Also note that the characterization of a family
P as being nonparametric essentially depends on the knowledge we assume about it. When we
assume that the underlying family P contains all continuous distributions, then the data set x is
complete minimal sufficient .
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Permutation tests are known to be conditional procedures of inference, where conditioning is
done with respect to a set of sufficient statistics in the null hypothesis. Thus consequent inferences
at least concern the sample data x actually observed and the related observed subjects. The act
of conditioning on a set of sufficient statistics in H0, and the assumption of exchangeability with
respect to groups (samples) for observed data, make permutation tests independent of the underlying
likelihood model related to P (see Section 2.1.3). As a consequence, P may be unknown or
unspecified, either in some or all of its parameters, or even in its analytic form. We specify this
concept in the permutation testing principle.

1.2.2 The Permutation Testing Principle

Let us consider the following definition.

Definition 2. If two experiments, taking values on the same sample space X and respectively with
underlying distributions P1 and P2, both members of P, give the same data set x, then the two
inferences conditional on x and obtained using the same test statistic must be the same, provided that
the exchangeability of data with respect to groups is satisfied in the null hypothesis. Consequently,
if two experiments, with underlying distributions P1 and P2, give respectively x1 and x2, and
x1 	= x2, then the two conditional inferences may be different.

One of the most important features of the permutation testing principle is that in theory and under
a set of mild conditions conditional inferences can be extended unconditionally to all distributions
P of P for which the density with respect to a suitable dominating measure ξ is positive, i.e.
dP (x)/dξn > 0 (see Section 3.5). It should be emphasized, however, that this feature derives from
the sufficiency and conditionality principles of inference (see Cox and Hinkley, 1974; Lehmann,
1986; Berger and Wolpert, 1988), by which inferences are related to all populations sharing the
same value of conditioning statistics, particularly those which are sufficient for underlying nuisance
entities. For instance, Student’s t extends inference to all normal populations which assign positive
density to the variance estimate σ̂ 2 and so its inference is for a family of distributions. Therefore,
such unconditional extensions should be carried out carefully. Another important feature occurs in
multivariate problems, when solved through NPC methods. For these kinds of problems, especially
when they are complex and in very mild and easy-to-check conditions (see Chapter 4), it is not
necessary to specify or to model the structure of dependence relations for the variables in the
underlying population distribution. In this way analysis becomes feasible and results are easy to
interpret. For instance, it is known that, for multivariate categorical variables, it is extremely difficult
to properly model dependence relations among variables (see Joe, 1997). In practice, therefore,
except for very particular cases, only univariate (or component variable by component variable)
problems are considered in the literature. From Chapter 4 onwards we will see that, within the
permutation testing principle and the NPC of dependent partial tests, a number of rather difficult
problems can be effectively and easily solved, provided that partial tests are marginally unbiased
and consistent (see Section 4.2.1). Also of interest is an application of this principle in the context
of the Bayesian permutation approach (see Remark 4, 3.4).

However, the conditioning on sufficient statistics provides permutation tests with good general
properties. Among the most important of these, when exchangeability is satisfied in the null hypoth-
esis, is that permutation tests are always exact procedures (see Remark 1, 2.2.4 and Proposition
2, 3.1.1). Another property is that their conditional rejection regions are similar, as intended by
Scheffé (1943a, 1943b). The former means that, at least in principle, the null rejection probability
can be calculated exactly in all circumstances. The latter means that, if data comes from continuous
distributions (where the probability of finding ties in the data set is zero), the null rejection prob-
ability is invariant with respect to observed data set x, for almost all x ∈ Xn, and with respect to
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the underlying population distribution P (see Chapter 2). As a consequence, conditional rejection
regions are similar to the unconditional region. When data comes from non-continuous distributions,
unless referring to randomized tests (see Section 2.2), the similarity property is only asymptotically
valid. Moreover, if the stochastic dominance condition is satisfied in H1, permutation tests based on
divergence of suitable statistics are conditionally unbiased procedures, since the rejection probability
of any test T , for all data sets x ∈ Xn, satisfies the relation Pr{λ(x(δ)) ≤ α|x} = W(δ, α, T |x) ≥ α,
where λ(x(δ)) indicates the p-value and W(δ, α, T |x) indicates the conditional power of T given
x with fixed treatment effect δ and significance level α (see Section 3.2).

It is worth noting that when exchangeability may be assumed in H0, the similarity and unbi-
asedness properties allow for a kind of weak extension of conditional to unconditional inferences,
irrespective of the underlying population distribution and the way sample data are collected. There-
fore, this weak extension may be made for any sample data, even if they are not collected by
well-designed sampling procedures, in which each unit is truly selected at random from a given
population and subject to an experiment. Conversely, parametric solutions permit proper exten-
sions only when data comes from well-designed sampling procedures on well-specified parent
populations. Specifically, a general situation for unconditional extensions in parametric contexts
occurs when likelihood functions are known except for nuisance parameters, and these are removed
by invariant statistics or by conditioning on boundedly complete estimates (see Section 3.5 and
Remark 2 therein).

For this reason, permutation inferences are proper with most observational data (sometimes
called non-experimental), with experimental data, with selection-biased sampling procedures, and
with well-designed sampling procedures. However, we must note that well-designed sampling
procedures are quite rare even in most experimental problems (see Ludbrook and Dudley, 1998).
For instance, if we want to investigate the effects of a drug on rats, the units to be treated are
usually not randomly chosen from the population of all rats, but are selected in some way among
those available in a laboratory and are randomly assigned to the established treatment levels. The
same occurs in most clinical trials, where some patients, present in a hospital and that comply with
the experiment, are randomly assigned to one of the pre-established treatment levels.

In one sense, the concept of random sampling is rarely achieved in real applications because, for
various reasons, real samples are quite often obtained by selection-bias procedures. This implies
that most of the forms of unconditional inferences usually associated with parametric tests, being
based on the concept of random sampling, are rarely applicable in real situations. In addition, due to
the similarity and unbiasedness properties, permutation solutions allow for relaxation of most of the
common assumptions needed by parametric counterparts, such as the existence of mean values and
variances, and the homoscedasticity of responses in the alternative hypothesis (see also Section 1.4).
This is why permutation inferences are so important for both theoretical and application purposes,
not only for their potential exactness.

Many authors have emphasized these aspects. A review of the relevant arguments is given in
Edgington (1995), Edgington and Onghena (2007), and in Good (2000, 2005). One of these relates
to the fact that reference null distributions of ordinary parametric tests are explicitly based on
the concept of infinitely repeated and well-designed random sampling from a given well-specified
population, the existence of which is often merely virtual. Another argument relates to the fact that,
as occurs in many experimental problems, it is often too unrealistic to assume that treatment does
not also influence scale coefficients or other distributional aspects, so that traditional parametric
solutions may become improper.

Conversely, when exchangeability may be assumed in H0, reference null distributions of per-
mutation tests always exist because, at least in principle, they are obtained by enumerating all
permutations of available data (see Chapter 2). In addition, permutation comparisons of means or
of other functionals do not require homoscedasticity in the alternative, provided that underlying
CDFs are ordered so that they do not cross each other (see Section 2.1.1). For these reasons, on the


