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Preface

The idea for this book came in part from teaching quantitative drug
design to B.Sc. and M.Sc. students at the Universities of Sussex and
Portsmouth. I have also needed to describe a number of mathemati-
cal and statistical methods to my friends and colleagues in medicinal
(and physical) chemistry, biochemistry, and pharmacology departments
at Wellcome Research and SmithKline Beecham Pharmaceuticals. I have
looked for a textbook which I could recommend which gives practical
guidance in the use and interpretation of the apparently esoteric meth-
ods of multivariate statistics, otherwise known as pattern recognition. I
would have found such a book useful when I was learning the trade, and
so this is intended to be that sort of guide.

There are, of course, many fine textbooks of statistics and these are
referred to as appropriate for further reading. However, I feel that there
isn’t a book which gives a practical guide for scientists to the processes of
data analysis. The emphasis here is on the application of the techniques
and the interpretation of their results, although a certain amount of
theory is required in order to explain the methods. This is not intended
to be a statistical textbook, indeed an elementary knowledge of statistics
is assumed of the reader, but is meant to be a statistical companion to
the novice or casual user.

It is necessary here to consider the type of research which these meth-
ods may be used for. Historically, techniques for building models to
relate biological properties to chemical structure have been developed in
pharmaceutical and agrochemical research. Many of the examples used
in this text are derived from these fields of work. There is no reason,
however, why any sort of property which depends on chemical structure
should not be modelled in this way. This might be termed quantita-
tive structure–property relationships (QSPR) rather than QSAR where
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xii PREFACE

A stands for activity. Such models are beginning to be reported; re-
cent examples include applications in the design of dyestuffs, cosmetics,
egg-white substitutes, artificial sweeteners, cheese-making, and prepared
food products. I have tried to incorporate some of these applications
to illustrate the methods, as well as the more traditional examples of
QSAR.

There are also many other areas of science which can benefit from the
application of statistical and mathematical methods to an examination
of their data, particularly multivariate techniques. I hope that scientists
from these other disciplines will be able to see how such approaches can
be of use in their own work.

The chapters are ordered in a logical sequence, the sequence in which
data analysis might be carried out – from planning an experiment
through examining and displaying the data to constructing quantita-
tive models. However, each chapter is intended to stand alone so that
casual users can refer to the section that is most appropriate to their
problem. The one exception to this is the Introduction which explains
many of the terms which are used later in the book. Finally, I have in-
cluded definitions and descriptions of some of the chemical properties
and biological terms used in panels separated from the rest of the text.
Thus, a reader who is already familiar with such concepts should be able
to read the book without undue interruption.

David Livingstone
Sandown, Isle of Wight

May 2009
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CSA cluster significance analysis
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1
Introduction: Data and Its
Properties, Analytical Methods
and Jargon

Points covered in this chapter

� Types of data
� Sources of data
� The nature of data
� Scales of measurement
� Data distribution
� Population and sample properties
� Outliers
� Terminology

PREAMBLE

This book is not a textbook although it does aim to teach the reader
how to do things and explain how or why they work. It can be thought
of as a handbook of data analysis; a sort of workshop manual for the
mathematical and statistical procedures which scientists may use in order
to extract information from their experimental data. It is written for
scientists who want to analyse their data ‘properly’ but who don’t have
the time or inclination to complete a degree course in statistics in order

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd

1
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2 INTRODUCTION

to do this. I have tried to keep the mathematical and statistical theory
to a minimum, sufficient to explain the basis of the methods but not too
much to obscure the point of applying the procedures in the first case.

I am a chemist by training and a ‘drug designer’ by profession so it is
inevitable that many examples will be chemical and also from the field
of molecular design. One term that may often appear is QSAR. This
stands for Quantitative Structure Activity Relationships, a term which
covers methods by which the biological activity of chemicals is related to
their chemical structure. I have tried to include applications from other
branches of science but I hope that the structure of the book and the way
that the methods are described will allow scientists from all disciplines
to see how these sometimes obscure-seeming methods can be applied to
their own problems.

For those readers who work within my own profession I trust that
the more ‘generic’ approach to the explanation and description of the
techniques will still allow an understanding of how they may be applied
to their own problems. There are, of course, some particular topics which
only apply to molecular design and these have been included in Chap-
ter 10 so for these readers I recommend the unusual approach of reading
this book by starting at the end. The text also includes examples from the
drug design field, in some cases very specific examples such as chemical
library design, so I expect that this will be a useful handbook for the
molecular designer.

1.1 INTRODUCTION

Most applications of data analysis involve attempts to fit a model, usually
quantitative,1 to a set of experimental measurements or observations.
The reasons for fitting such models are varied. For example, the model
may be purely empirical and be required in order to make predictions for
new experiments. On the other hand, the model may be based on some
theory or law, and an evaluation of the fit of the data to the model may
be used to give insight into the processes underlying the observations
made. In some cases the ability to fit a model to a set of data successfully
may provide the inspiration to formulate some new hypothesis. The type
of model which may be fitted to any set of data depends not only on the
nature of the data (see Section 1.4) but also on the intended use of the
model. In many applications a model is meant to be used predictively,

1 According to the type of data involved, the model may be qualitative.
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but the predictions need not necessarily be quantitative. Chapters 4 and
5 give examples of techniques which may be used to make qualitative
predictions, as do the classification methods described in Chapter 7.

In some circumstances it may appear that data analysis is not fitting
a model at all! The simple procedure of plotting the values of two vari-
ables against one another might not seem to be modelling, unless it is
already known that the variables are related by some law (for example
absorbance and concentration, related by Beer’s law). The production
of a bivariate plot may be thought of as fitting a model which is simply
dictated by the variables. This may be an alien concept but it is a useful
way of visualizing what is happening when multivariate techniques are
used for the display of data (see Chapter 4). The resulting plots may be
thought of as models which have been fitted by the data and as a result
they give some insight into the information that the model, and hence
the data, contains.

1.2 TYPES OF DATA

At this point it is necessary to introduce some jargon which will help
to distinguish the two main types of data which are involved in data
analysis. The observed or experimentally measured data which will be
modelled is known as a dependent variable or variables if there are more
than one. It is expected that this type of data will be determined by
some features, properties or factors of the system under observation or
experiment, and it will thus be dependent on (related by) some more or
less complex function of these factors. It is often the aim of data anal-
ysis to predict values of one or more dependent variables from values
of one or more independent variables. The independent variables are
observed properties of the system under study which, although they may
be dependent on other properties, are not dependent on the observed
or experimental data of interest. I have tried to phrase this in the most
general way to cover the largest number of applications but perhaps
a few examples may serve to illustrate the point. Dependent variables
are usually determined by experimental measurement or observation on
some (hopefully) relevant test system. This may be a biological system
such as a purified enzyme, cell culture, piece of tissue, or whole animal;
alternatively it may be a panel of tasters, a measurement of viscosity,
the brightness of a star, the size of a nanoparticle, the quantification
of colour and so on. Independent variables may be determined exper-
imentally, may be observed themselves, may be calculated or may be



P1: OTA/XYZ P2: ABC
JWBK419-01 JWBK419/Livingstone September 25, 2009 14:48 Printer Name: Yet to Come

4 INTRODUCTION

ID Response Ind 1 Ind 2 Ind 3 Ind 4 Ind 5
Case 1 14 1.6 136 0.03 -12.6 19542
Case 2 24 2 197 0.07 -8.2 15005
Case 3 -6 9.05 211 0.1 -1 10098
Case 4 19 6 55 0.005 -0.99 17126
Case 5 88.2 3.66 126 0.8 0 19183
Case 6 43 12 83 0.79 -1.3 12087
……. ……. ……. ……. ……. ……. …….
……. ……. ……. ……. ……. ……. …….
Case n 11 7.05 156 0.05 -6.5 16345

Figure 1.1 Example of a dataset laid out as a table.

controlled by the investigator. Examples of independent variables are
temperature, atmospheric pressure, time, molecular volume, concentra-
tion, distance, etc.

One other piece of jargon concerns the way that the elements of a
data set are ‘labelled’. The data set shown in Figure 1.1 is laid out as
a table in the ‘natural’ way that most scientists would use; each row
corresponds to a sample or experimental observation and each column
corresponds to some measurement or observation (or calculation) for
that row.

The rows are called ‘cases’ and they may correspond to a sample or an
observation, say, at a time point, a compound that has been tested for
its pharmacological activity, a food that has been treated in some way,
a particular blend of materials and so on. The first column is a label,
or case identifier, and subsequent columns are variables which may also
be called descriptors or properties or features. In the example shown
in the figure there is one case label, one dependent variable and five
independent variables for n cases which may also be thought of as an n
by 6 matrix (ignoring the case label column). This may be more generally
written as an n by p matrix where p is the number of variables. There is
nothing unsual in laying out a data set as a table. I expect most scientists
did this for their first experiment, but the concept of thinking of a data
set as a mathematical construct, a matrix, may not come so easily. Many
of the techniques used for data analysis depend on matrix manipulations
and although it isn’t necessary to know the details of operations such as
matrix multiplication in order to use them, thinking of a data set as a
matrix does help to explain them.

Important features of data such as scales of measurement and distri-
bution are described in later sections of this chapter but first we should
consider the sources and nature of the data.
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Figure 1.2 Typical and not so typical dose–response curves for a set of five different
compounds.

1.3 SOURCES OF DATA

1.3.1 Dependent Data

Important considerations for dependent data are that their measurement
should be well defined experimentally, and that they should be consistent
amongst the cases (objects, samples, observations) in a set. This may
seem obvious, and of course it is good scientific practice to ensure that
an experiment is well controlled, but it is not always obvious that data is
consistent, particularly when analysed by someone who did not generate
it. Consider the set of curves shown in Figure 1.2 where biological effect
is plotted against concentration.

Compounds 1–3 can be seen to be ‘well behaved’ in that their
dose–response curves are of very similar shape and are just shifted along
the concentration axis depending on their potency. Curves of this sig-
moidal shape are quite typical; common practice is to take 50 % as the
measure of effect and read off the concentration to achieve this from
the dose axis. The advantage of this is that the curve is linear in this
region; thus if the ED50 (the dose to give 50 % effect) has been bracketed
by experimental measurements, it simply requires linear interpolation
to obtain the ED50. A further advantage of this procedure is that the
effect is changing most rapidly with concentration in the 50 % part of
the curve. Since small changes in concentration produce large changes in
effect it is possible to get the most precise measure of the concentration
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required to cause a standard effect. The curve for compound 4 illus-
trates a common problem in that it does not run parallel to the others;
this compound produces small effects (<50 %) at very low doses but
needs comparatively high concentrations to achieve effects in excess of
50 %. Compound 5 demonstrates yet another deviation from the norm
in that it does not achieve 50 % effect. There may be a variety of rea-
sons for these deviations from the usual behaviour, such as changes in
mechanism, solubility problems, and so on, but the effect is to produce
inconsistent results which may be difficult or impossible to analyse.

The situation shown here where full dose–response data is available is
very good from the point of view of the analyst, since it is relatively easy
to detect abnormal behaviour and the data will have good precision.
However, it is often time-consuming, expensive, or both, to collect such
a full set of data. There is also the question of what is required from
the test in terms of the eventual application. There is little point, for
example, in making precise measurements in the millimolar range when
the target activity must be of the order of micromolar or nanomolar.
Thus, it should be borne in mind that the data available for analysis may
not always be as good as it appears at first sight. Any time spent in a
preliminary examination of the data and discussion with those involved
in the measurement will usually be amply repaid.

1.3.2 Independent Data

Independent variables also should be well defined experimentally, or
in terms of an observation or calculation protocol, and should also be
consistent amongst the cases in a set. It is important to know the precision
of the independent variables since they may be used to make predictions
of a dependent variable. Obviously the precision, or lack of it, of the
independent variables will control the precision of the predictions. Some
data analysis techniques assume that all the error is in the dependent
variable, which is rarely ever the case.

There are many different types of independent variables. Some may be
controlled by an investigator as part of the experimental procedure. The
length of time that something is heated, for example, and the temperature
that it is heated to may be independent variables. Others may be obtained
by observation or measurement but might not be under the control of the
investigator. Consider the case of the prediction of tropical storms where
measurements may be made over a period of time of ocean temperature,
air pressure, relative humidity, wind speed and so on. Any or all of these
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parameters may be used as independent variables in attempts to model
the development or duration of a tropical storm.

In the field of molecular design2 the independent variables are most
often physicochemical properties or molecular descriptors which char-
acterize the molecules under study. There are a number of ways in which
chemical structures can be characterized. Particular chemical features
such as aromatic rings, carboxyl groups, chlorine atoms, double bonds
and suchlike can be listed or counted. If they are listed, answering the
question ‘does the structure contain this feature?’, then they will be bi-
nary descriptors taking the value of 1 for present and 0 for absent. If they
are counts then the parameter will be a real valued number between 0
and some maximum value for the compounds in the set. Measured prop-
erties such as melting point, solubility, partition coefficient and so on are
an obvious source of chemical descriptors. Other parameters, many of
them, may be calculated from a knowledge of the 2-dimensional (2D) or
3-dimensional (3D) structure of the compounds [1, 2]. Actually, there
are some descriptors, such as molecular weight, which don’t even require
a 2D structure.

1.4 THE NATURE OF DATA

One of the most frequently overlooked aspects of data analysis is consid-
eration of the data that is going to be analysed. How accurate is it? How
complete is it? How representative is it? These are some of the questions
that should be asked about any set of data, preferably before starting
to try and understand it, along with the general question ‘what do the
numbers, or symbols, or categories mean?’

So far, in this book the terms descriptor, parameter, and property
have been used interchangeably. This can perhaps be justified in that it
helps to avoid repetition, but they do actually mean different things and
so it would be best to define them here. Descriptor refers to any means by
which a sample (case, object) is described or characterized: for molecules
the term aromatic, for example, is a descriptor, as are the quantities
molecular weight and boiling point. Physicochemical property refers to
a feature of a molecule which is determined by its physical or chemical
properties, or a combination of both. Parameter is a term which is used

2 Molecular design means the design of a biologically active substance such as a pharmaceutical
or pesticide, or of a ‘performance’ chemical such as a fragrance, flavour, and so on or a
formulation such as paint, adhesive, etc.
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to refer to some numerical measure of a descriptor or physicochemical
property. The two descriptors molecular weight and boiling point
are also both parameters; the term aromatic is a descriptor but not a
parameter, whereas the question ‘How many aromatic rings?’ gives rise
to a parameter. All parameters are thus descriptors but not vice versa.

The next few sections discuss some of the more important aspects of
the nature and properties of data. It is often the data itself that dictates
which particular analytical method may be used to examine it and how
successful the outcome of that examination will be.

1.4.1 Types of Data and Scales of Measurement

In the examples of descriptors and parameters given here it may have
been noticed that there are differences in the ‘nature’ of the values used
to express them. This is because variables, both dependent and indepen-
dent, can be classified as qualitative or quantitative. Qualitative variables
contain data that can be placed into distinct classes; ‘dead’ or ‘alive’, for
example, ‘hot’ or ‘cold’, ‘aromatic’ or ‘non-aromatic’ are examples of
binary or dichotomous qualitative variables. Quantitative variables con-
tain data that is numerical and can be ranked or ordered. Examples of
quantitative variables are length, temperature, age, weight, etc. Quantita-
tive variables can be further divided into discrete or continuous. Discrete
variables are usually counts such as ‘how many objects in a group’, ‘num-
ber of hydroxyl groups’, ‘number of components in a mixture’, and so
on. Continuous variables, such as height, time, volume, etc. can assume
any value within a given range.

In addition to the classification of variables as qualitative/quantitative
and the further division into discrete/continuous, variables can also be
classified according to how they are categorized, counted or measured.
This is because of differences in the scales of measurement used for
variables. It is necessary to consider four different scales of measurement:
nominal, ordinal, interval, and ratio. It is important to be aware of the
properties of these scales since the nature of the scales determines which
analytical methods should be used to treat the data.

Nominal

This is the weakest level of measurement, i.e. has the lowest information
content, and applies to the situation where a number or other symbol
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is used to assign membership to a class. The terms male and female,
young and old, aromatic and non-aromatic are all descriptors based on
nominal scales. These are dichotomous descriptors, in that the objects
(people or compounds) belong to one class or another, but this is not the
only type of nominal descriptor. Colour, subdivided into as many classes
as desired, is a nominal descriptor as is the question ‘which of the four
halogens does the compound contain?’

Ordinal

Like the nominal scale, the ordinal scale of measurement places objects
in different classes but here the classes bear some relation to one another,
expressed by the term greater than (>). Thus, from the previous example,
old > middle-aged > young. Two examples in the context of molecu-
lar design are toxic > slightly toxic > nontoxic, and fully saturated >

partially saturated > unsaturated. The latter descriptor might also be
represented by the number of double bonds present in the structures
although this is not chemically equivalent since triple bonds are ignored.
It is important to be aware of the situations in which a parameter might
appear to be measured on an interval or ratio scale (see below), but
because of the distribution of compounds in the set under study, these
effectively become nominal or ordinal descriptors (see next section).

Interval

An interval scale has the characteristics of a nominal scale, but in addition
the distances between any two numbers on the scale are of known size.
The zero point and the units of measurement of an interval scale are
arbitrary: a good example of an interval scale parameter is boiling point.
This could be measured on either the Fahrenheit or Celsius temperature
scales but the information content of the boiling point values is the same.

Ratio

A ratio scale is an interval scale which has a true zero point as its origin.
Mass is an example of a parameter measured on a ratio scale, as are
parameters which describe dimensions such as length, volume, etc. An
additional property of the ratio scale, hinted at in the name, is that it
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contains a true ratio between values. A measurement of 200 for one
sample and 100 for another, for example, means a ratio of 2:1 between
these two samples.

What is the significance of these different scales of measurement? As
will be discussed later, many of the well-known statistical methods are
parametric, that is, they rely on assumptions concerning the distribution
of the data. The computation of parametric tests involves arithmetic ma-
nipulation such as addition, multiplication, and division, and this should
only be carried out on data measured on interval or ratio scales. When
these procedures are used on data measured on other scales they intro-
duce distortions into the data and thus cast doubt on any conclusions
which may be drawn from the tests. Nonparametric or ‘distribution-free’
methods, on the other hand, concentrate on an order or ranking of data
and thus can be used with ordinal data. Some of the nonparametric tech-
niques are also designed to operate with classified (nominal) data. Since
interval and ratio scales of measurement have all the properties of ordi-
nal scales it is possible to use nonparametric methods for data measured
on these scales. Thus, the distribution-free techniques are the ‘safest’ to
use since they can be applied to most types of data. If, however, the
data does conform to the distributional assumptions of the parametric
techniques, these methods may well extract more information from the
data.

1.4.2 Data Distribution

Statistics is often concerned with the treatment of a small3 number of
samples which have been drawn from a much larger population. Each
of these samples may be described by one or more variables which have
been measured or calculated for that sample. For each variable there
exists a population of samples. It is the properties of these populations
of variables that allows the assignment of probabilities, for example, the
likelihood that the value of a variable will fall into a particular range, and
the assessment of significance (i.e. is one number significantly different
from another). Probability theory and statistics are, in fact, separate
subjects; each may be said to be the inverse of the other, but for the
purposes of this discussion they may be regarded as doing the same job.

3 The term ‘small’ here may represent hundreds or even thousands of samples. This is a small
number compared to a population which is often taken to be infinite.
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Figure 1.3 Frequency distribution for the variable x over the range −10 to +10.

How are the properties of the population used? Perhaps one of the
most familiar concepts in statistics is the frequency distribution. A plot
of a frequency distribution is shown in Figure 1.3, where the ordinate
(y-axis) represents the number of occurrences of a particular value of a
variable given by the scales of the abscissa (x-axis).

If the data is discrete, usually but not necessarily measured on nominal
or ordinal scales, then the variable values can only correspond to the
points marked on the scale on the abscissa. If the data is continuous, a
problem arises in the creation of a frequency distribution, since every
value in the data set may be different and the resultant plot would be a
very uninteresting straight line at y = 1. This may be overcome by taking
ranges of the variable and counting the number of occurrences of values
within each range. For the example shown in Figure 1.4 (where there are
a total of 50 values in all), the ranges are 0–1, 1–2, 2–3, and so on up to
9–10.

It can be seen that these points fall on a roughly bell-shaped curve
with the largest number of occurrences of the variable occurring around
the peak of the curve, corresponding to the mean of the set. The mean
of the sample is given the symbol X and is obtained by summing all the
sample values together and dividing by the number of samples as shown
in Equation (1.1).

X = x1 + x2 + x3 + . . . . . . xn

n
=

∑
x

n
(1.1)
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Figure 1.4 Frequency histogram for the continuous variable x over the range 0
to +10.

The mean, since it is derived from a sample, is known as a statistic. The
corresponding value for a population, the population mean, is given the
symbol μ and this is known as a parameter, another use for the term. A
convention in statistics is that Greek letters are used to denote parameters
(measures or characteristics of the population) and Roman letters are
used for statistics. The mean is known as a ‘measure of central tendency’
(others are the mode, median and midrange) which means that it gives
some idea of the centre of the distribution of the values of the variable.
In addition to knowing the centre of the distribution it is important
to know how the data values are spread through the distribution. Are
they clustered around the mean or do they spread evenly throughout the
distribution? Measures of distribution are often known as ‘measures of
dispersion’ and the most often used are variance and standard deviation.
Variance is the average of the squares of the distance of each data value
from the mean as shown in Equation (1.2):

s2 =
∑

(X − X)2

n − 1
(1.2)

The symbol used for the sample variance is s2 which at first sight might
appear strange. Why use the square sign in a symbol for a quantity like
this? The reason is that the standard deviation (s) of a sample is the
square root of the variance. The standard deviation has the same units
as the units of the original variable whereas the variance has units that
are the square of the original units. Another odd thing might be noticed


