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Preface 

The global population growth and tremendous economic development has led to 
increasing demand for energy from all over the world as well as increasing con-
cern for environment and global warming. The energy efficient and eco-friendly 
systems and technologies are critically needed for the further global growth and 
sustainable development. Advanced ceramics are enabling materials for a number 
of demanding energy efficient and eco-friendly applications in aerospace, power 
generation, ground transportation, nuclear, and chemical industries. These materi-
als have unique properties such as high strength, high stiffness, long fatigue life, 
low density, and adaptability to the intended functions. Significant achievements 
have been made worldwide in the design, development, manufacturing, and appli-
cation of these materials in recent years and considerable innovative research and 
technology development is still continuing to address technical and economic 
challenges. 

9th International Conference on Ceramic Materials and Components for Energy 
and Environmental Applications (9th CMCEE) in Shanghai, China was continua-
tion of series of international conferences held all over the world over the last three 
decades. The major goal of CMCEE was to bring together academicians, re-
searchers, and end users in various disciplines from all over the world to share 
knowledge and exchange views leading to industrial applications of these technolo-
gies. The current volume contains selected peer reviewed papers from more than 
300 presentations from all over the world. The papers in this volume also highlight 
and emphasize the importance of synergy between advanced materials and compo-
nent designs. This volume also contains selected papers from 4th International 
Laser Ceramics symposium which was held during the same time period. We would 
like to thank organizers and sponsors of this symposium. 

We would like to acknowledge the financial support from Chinese Academy of 
Sciences, Shanghai Municipal Corporation, and Shanghai Institute of Ceramics. 
Our special thanks to Abhishek Singh from Case Western Reserve University, 
Cleveland, Ohio for the editing of the manuscripts. We would also like to thank Mr. 
Greg Geiger, Technical Content Manager of The American Ceramic Society for all 
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the help in the production of this volume. We would like to thank all the contribu-
tors and reviewers from all over the world. 

Dongliang Jiang 
Yuping Zeng 
Shanghai Institute of Ceramics, Shanghai, China 

Mrityunjay Singh 
Ohio Aerospace Institute, Cleveland, USA 

Juergen Heinrich 
Clausthal University of Technology, Germany 
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ABSTRACT 
Strength data of brittle materials show significant scatter. Therefore designing with brittle materials 
has to be made with probabilistic methods. So far this is done using Weibull statistics, which is 
based on the weakest link hypothesis. It (implicitly) implies a particular type of defect distribution, 
which can be observed in many (but not in all) ceramic materials. It is shown that for very small 
specimens the Weibull assumptions claim unrealistic high densities of flaws. Then the flaws will 
interact, they are not longer statistically independent and the weakest link hypothesis is not valid. 
Consequently the Weibull distribution predicts too high a strength for very small specimens. 

INTRODUCTION 
Fracture of ceramics usually initiates from flaws which are randomly distributed in the material. 
The strength of the specimen then depends on the length of the major flaw, which varies from 
specimen to specimen. The strength of brittle materials has to be described by statistical means [1 -
3]. It follows from experiments that the failure probability increases with load amplitude and with 
size of the specimens [1-5]. The first observation is trivial. The second observation follows from 
the fact that it is more likely to find a major flaw in a large than in a small specimen. Therefore the 
mean strength of a set of large specimens is smaller than that of small specimens. This size effect 
of strength is the most prominent and relevant consequence of the statistical behaviour of the 
strength of brittle materials. 
Weibull developed his statistical theory of brittle fracture on the basis of the weakest link 
hypothesis, i.e. the specimen fails if its weakest element fails [6, 7]. In its simplest form and for an 
uniaxial homogenous and tensile stress state, σ, and for specimens of the volume, V, the so 
called Weibull distribution of the probability of failure, F, is given by: 

F(a,V) = l-exp 

The Weibull modulus, m, describes the scatter of strength data: the distribution is the wider the 
smaller m is. σ0 is the characteristic strength and V0 is the corresponding reference volume. 
Of course the probability of surviving (the reliability, R) is: R = 1 - F . Freudenthal [8] showed for 
sparsely distributed flaws, that the probability of failure only depends on the number of destructive 
flaws, NcS, occurring in a specimen of size and shape, S : 

Fs(°) = l-exP{-Nc<>) · 

NcS is the mean number of destructive (critical) flaws in a large set of specimens (i.e. the value of 
expectation). Jayatilaka et al. [9] showed, that, for brittle and homogeneous materials, the 
distribution of the strength data is caused by the distribution of sizes (and orientations) of the flaws. 
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A Weibull distribution of strength will be observed for flaw populations with a monotonically 
decreasing density of flaw sizes. Danzer et al. [10 - 12] extended these ideas to flaw populations 
with any size distribution and to specimens with an inhomogeneous flaw population. On the basis 
of these ideas a direct correlation between the flaw size distribution and the scatter (statistics) of 
strength data can be defined. 
The Weibull distribution is the state of the art statistics in the mechanical design process of ceramic 
components [1 - 3]. Strength testing and data evaluation are standardised. A sample of at least 30 
specimens has to be tested. The range of "measured" failure probabilities increases with the sample 
size [3, 13] and is - for a sample of 30 specimens - very limited (it is between 1/60 and 59/60). To 
determine the design stress, the measured data have to be extrapolated with respect to the volume 
and to the "tolerated" failure probability. This often results in a very large extrapolation span [3]. 
In this paper the Weibull theory is applied to very small specimens. The analysis follows the ideas 
presented in [13]. The relationships between flaw population, size of the fracture initiating flaw and 
strength are discussed. It is shown that a limit for the applicability of the classical fracture statistics 
(i.e. Weibull statistics based on the weakest link hypothesis) exists for very small specimens 
(components). 

FRACTURE STATISTICS AND DEFECT SIZE DISTRIBUTION 
The function NcS (σ) is obtained by integrating the local density, nc (σ, r), of destructive flaws 

nc(a,r)= J g (a , r )da 
α,.(σ) 

over the volume of the specimen: NcS = ¡ncdV [3, 8 - 10]. For simplicity, but without loss of 
generality [8], it is assumed that size and orientation of a flaw are described by a single variable 
(the flaw size, a). The frequency distribution of the density of flaw sizes, g(a,r), may depend on 
the position vector, r . A local fracture criterion (e.g. the Griffith criterion, [1, 2]) correlates stress 
amplitude and flaw length: the critical flaw size is the smallest flaw length, which - under the 
action of the stress - causes failure (the size of the smallest destructive flaw). Since ac depends 
on the magnitude of the applied stress, so do the values of nc and also Nc¿ (σ). For a 
homogeneous material loaded under uniaxial homogeneous tension the volume integral is trivial. 
For a flaw population with relative frequencies decreasing with a negative power the flaw size, a , 

8(a)=g0-(a/a0)" 

a Weibull distribution (eq. 1) occurs [9]. This function has only two independent parameters: the 
exponent ( - r ) and the coefficient (g0 ·α0''). Using these assumptions and after some algebra the 
density of destructive flaws in terms of a critical flaw size is: n(ac) = (ac · g(ac)) / (r - 1 ) . The 
critical flaw size can be defined using the Griffith/Irwin criterion [1 - 3]: 

c π \Υ·σ) 

KIc is the critical stress intensity factor (the fracture toughness) and Y is a dimensionless 
geometric factor. Inserting in the above expression analytical equations for the Weibull parameters 
results: The Weibull modulus is only related to the path of the flaw size distribution: 

m = 2 - ( r - l ) . 
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The second parameter in the Weibull statistics is: V0-a0
m = ( ( r - l ) / gQ -a0MKIC/ Υ^π·α0 V \ 

In the following a material behaving in the way as described above (eq. 1, eq. 4, etc.) is called 
"Weibull material". 
A Weibull type strength distribution also may arise for inhomogeneous stress and non uniaxial 
stress states (then the volume has to be replaced by an effective volume, [1 - 3]). If failure is caused 
by surface flaws, the volume has to be replaced by the surface [1,3, 12]. 
Danzer et al. have discussed the influence of other types of flaw populations (e.g. of bimodal distri-
butions) on strength [11, 12]. In these cases the Weibull modulus might depend on the applied load 
amplitude and on the size of the specimen. Then the determination of a design stress in the usual 
way may become problematic. A stress and size dependent modulus occurs for materials with an 
R-curve behaviour [11] and may also be caused by internal stress fields [11]. 
It should be noted that on the basis of a small sample size, e.g. only 30 specimens, it is not possible 
to differentiate between a Weibull, a Gaussian, or any other similar distribution functions, as shown 
by Lu et al. [14] using statistical measures or by Danzer et al. [12] using Monte Carlo simulations. 
This is caused by the inherent scatter of the data and the difference between sample and true 
population. The ultimate test for the existence of a Weibull distribution is to test a material on 
different levels of (effective) volumes. 

THE CORRELATION BETWEEN STRENGTH AND FLAW POPULATION 
In the following, the relationship between fracture statistics and defect size distribution is discussed 
for the simple case of tensile tests (uniaxial and homogeneous stress state) on a homogeneous 
brittle material. The tests are performed on specimens of equal size. It is assumed that the volume 
of the specimens is: V = V0. The number of tested specimens (the sample size) is X . In each test 
the load is increased up to the moment of failure. The strength is the stress at the moment of failure. 
In each sample the strength values of the individual specimens are different, i.e. the strength is 
distributed. 
If data determined in that way are evaluated the specimens are ranked according to their strength, 
/ being the ranking parameter. To estimate the failure probability for an individual specimen an 
estimation function is used [1,3, 13]: 

Fi=(i-\/2)/X , i = l,2,? X 

Inserting eq. 7 into eq. 2 and making a few rearrangements, we get: NcS(σ,) = h 2X/(2X - 2i +1). 
In this way the mean number of critical flaws per specimen (volume VQ; stress ai) can be read 
from the ranking number and the sample size. For the weakest specimen (i = 1) of a sample the 
estimator for the probability of failing is: FY = F(al) = l/2X . That specimen contains on average 
NcS(al) = \ñ2[x/(2X-l)] destructive flaws. For the strongest specimen of the sample (i = X) it 
holdsthat: Fx = F(ax) = (2X -\)/2X and NcS(ax) = h2X. 
A special situation occurs if the strength is equal to the characteristic strength (i.e. for V =V0 and 
σ = σ0). Then the probability of failure is F(a0) = \-\/e and NcS(a0) = \ and the density of 
critical flaws is: nc (σ0, V0) = NcS (σ0) / V0 = 1 / V0 · If the calculations made for σ = σ0 and V = V0 are 
generalized for any stress value <T¿ and for specimens of any volume V the equation reads: 

. . r-\ . 2X 
g(ari) = In c'1 V-ac. 2X-2i + \ 
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The use of this equation opens a simple possibility to determine the frequency distribution of flaw 
sizes in a wide range of parameters by testing specimens of different volume. 
In the following these ideas are applied to describe bending test results of a commercial silicon 
nitride ceramic. 

FRACTURE AND FLAW STATISTICS OF A TYPICAL COMMERCIAL SILICON NITRIDE 
MATERIAL 

A typical commercial gas pressure sintered silicon nitride ceramic is used as model material. Its 
hardness (HV5) is 15.5 ± 0.3 MPa, the fracture toughness (SEVNB, [15, 16]) is 5.0 ± 0.2 MPaVm, 
the Young's Modulus is 297 ± 2 GPa and the Poisson ratio is 0.27. More details can be found in 
[19]. A sample of 30 bending specimens was machined out from large discs (diameter 250 mm, 
thickness 5 mm). The specimen preparation and the tests were done according to EN 843-1 and 
evaluated according to EN 843-5 [17, 18]. The characteristic strength of this sample is 
σ0 = 871 MPa and the Weibull modulus is m= 14.1. The effective volume [1] of the bending 
specimens is Vejf =V(ra+2)/ 4(m + l)2 =8.5·10"9 m3. This value is used as scaling parameter 
V0 = V. The Weibull distribution is shown in Fig. l.a. The measured data are nicely distributed 
around the straight line, which describes the Weibull distribution. 

Fig. 1: a) Strength data of a silicon nitride ceramic tested in four point bending (4PB) in a Weibull 
plot and b) the relative frequency distribution of flaw sizes. The data points were determined by 
fracture experiments. 

By fractographic inspection fracture [20, 21 ] origins within the volume (inclusions) were found in 
3 specimens. In the other 27 specimens no clear evidence for the type of fracture origin was found. 
It is assumed that all flaws are small surface flaws, i.e. their geometric factor is Y = 1.12. 
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In the following, the strength data are used to determine the frequency distribution function of the 
defects. Using eq. 5 the size of the critical flaw for the characteristic strength is ac0 = 26· 10"6 m. 
This value is used in the following for the arbitrary scaling parameter: a0 = ac 0 . For the exponent 
r we get using eq. 6: r= 8.05. With these data the factor in eq. 4 is: g0 = 3.21013m~4, and 
therefore all parameters in eq. 4 are determined. The relative frequency distribution of flaw sizes is 
shown in Fig. l.b. The transformation of strength into flaw size data was done using eq. 8. Again 
the data are nicely distributed around the straight line. This is characteristic for a Weibull material. 
An extremely strong dependency of the relative frequency on the critical flaw size can clearly be 
recognized: although the size of the critical flaws in the samples only varies by a factor of around 
2.2 the corresponding relative frequency of the flaw sizes varies by a factor of around 500. That 
means that flaws with a radius of 21 μηι are about 500 times more frequent than flaws with a radius 
of 46 μπι. 

SIZE EFFECT ON STRENGTH; APPLICATION TO VERY SMALL SPECIMENS 
As discussed in the introduction a size effect on strength exists [1 -3] , which - for a Weibull 
material - is described by: 

Vval
m =V2-a2

m 

The probability of failure in a sample of specimens of volume V2 is equal to that in another 
sample containing specimens of volume V], if the stresses applied to the specimens are related 
according to eq. 9. Using the Griffith criterion we get [13]: 

ac,xlaca={VxIV2)2lm 

For the specimens with volume Vx the corresponding relative frequency of flaw sizes at σ = σ0 

is g(ax) = gQ-{axlaQyr and the density of destructive flaws is ηα(σΟΪ,νϊ)= 1/Vlt The analogue 
holds for specimens of volume V2. 
In Fig. 2 the diameter (2ac) of the critical flaws (for the characteristic strength of the specimens) is 
plotted versus the (effective) volume in a double logarithmic scale (eq. 10) using the example of 
the silicon nitride material described above. The slope of the line is: l/(m/2) = l/(r — 1) = 1/7.05 . 
The dashed line describes a typical scaling parameter for the volume of the specimen. For 
simplicity the edge length of a cube with volume V is taken as the characteristic length: / = V1/3. 
For materials with a modulus m > 6, there exists a point of intersection between both lines, which is 
- in the selected example - at a volume of about V~ 4.210"17 m3 (this corresponds to the diameter 
of the critical flaw of about 2a c « 3.4 μπι). 
Obviously the assumption made in eq. 4 (the relative frequency of flaws follows an inverse power 
law) can only approximate the behaviour of materials for large flaws. It fails for very small flaws: 
the relative frequency goes to infinity if the flaw size goes to zero: a —* 0, g(a) —> oo [13]. At the 
intersection point in Fig 2, the density of dangerous flaws gets so high that the volume of the 
specimens is completely filled with flaws and, left of that point; the "volume of dangerous flaws" 
even exceeds volume of the specimens. For obvious reasons this is not possible in real materials. 
Another inconsistency is caused by the fact, that the derivation of the fracture statistics (eq. 1 and 
eq. 2) assumes non-interacting flaws [8]. This will only be true in the case of a low flaw density. If 
fracture statistics are applied to very small specimens made of a Weibull material the density of 
dangerous flaws gets high and the interaction between flaws cannot be neglected any longer [22]. 
For that case it can be assumed that interacting flaws link up. This would cause an upper limit for 
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Table 1: Strength test on specimens of different size. 
Data set 

Specimen dimension 
/mm 

Charact. strength / 
MPa 

2ar 0 /μηι 
Weibull modulus / -
effective volume / 

1012m3 

x, /μπι 

V2 ßr .O '-

4PB 

45x3.95x2.98 

871 

52 
14.1 [11-17] 

8500 

2041 
39 

A (B3B-test) 
0 43; 

t = 2.484 

1053 

36 
12.4 [9-15] 

280 

654 
18 

B (B3B-test) 
0 20; 

t= 1.983 

1123 

31 
15.9 [12-19] 

65 

402 
13 

C (B3B-test) 
0 10.8, 

t= 1.054 

1226 

26 
21.7 [16-26] 

4.3 

163 
6.3 

D (B3B-test) 
0 4.7; 

t = 0.445 

1275 

24 
17.7 [13-22] 

0.6 

84 
3.5 

4PB: four point bending test; B3B: ball on three balls test; 0 : diameter; t: thickness; 2ac0: 
diameter of the critical flaw corresponding to the characteristic strength, / : reference length 
(defined to be the third root of the effective volume). Numbers in square brackets are limits of the 
90 % confidence interval. 

the strength, if the distance between the flaws gets too close, say 2 - 3 times their diameter. 
Further strength tests (data sets A- D) were made in biaxial bending on specimens of different size. 
Specimens were cut from the same plates as used for the bending specimens. Tests and results are 
described in [19]. Key results are summarised in Table 1. The data show a significant size effect, 
i.e. the characteristic strength is much larger for small than for large specimens (Fig. 3). The 
straight line shows the size effect as predicted by eq. 9 based on the bending test data. Although the 
data sets A and B are in the 90 % confidence interval of the extrapolation, the sets C and D show a 
significantly lower strength than predicted. 
The behaviour of small specimens is discussed in more detail in [13]. A possible reason for this 
drop of strength is the fact that machining of very small specimens (as is the case of set D) is very 
demanding and some machining damage cannot be excluded in this case. Additional damage would 
cause a reduction of strength as observed in Fig. 3. Further possible reasons for the (apparent) 
deviation of the strength of small specimens from the Weibull behaviour are experimental measure-
ment uncertainties, which become large for small specimens and which are not included in the 
scatter bars shown in Fig. 3. The plotted scatter bars refer to the uncertainties due to the sampling 
procedure (the sample is different from the underlying population, [12]). 
Another reason would be the interaction between flaws, as described above. The last line in 
Table 1 shows the ratio of the size parameter (corresponding with the effective volume; it is the 
length of the edge of a cube with the effective volume) divided by the diameter of the critical 
Griffith flaw for the characteristic strength. This ratio is larger than 10 for the sets 4PB, A and B. 
Here an interaction seems not to be likely. But for set D the ratio is as small as about 3. Here some 
overlapping of local stress field and linking of micro defects may become possible. But at present it 
is not clear if this really happens or not. 
Bazant formulated a statistical theory of fracture for quasibrittle materials [5, 23, 24]. He assumed 
that there exist several hierarchical orders which each can be described by parallel and serial 
linking of so-called representative volume elements (RVEs). For large specimens (and low 
probability of failures) the fracture statistics is equal to the Weibull statistics , i.e. if the specimens 
size is larger than 500 to 1000 times of the size of one RVE. In the actual case this is similar to the 
diameter of the critical flaw. For smaller specimens the volume effect disappears and the fracture 
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